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Abstract: Background: Protozoal infection is a lingering public health issue of great concern, despite
efforts to produce drugs and vaccines against it. Recent breakthrough research has discovered
alternative antiprotozoal agents encompassing the use of snake venoms and their components to cure
these infections. This study collated the existing literature to examine the antiprotozoal effect of snake
venoms and their fractions. Methods: We conducted a systematic review following the PRISMA
guidelines. The PubMed and Embase databases were searched from their inception until 13 October
2021. Articles were screened at the title, abstract and full-text phases. Some additional studies were
obtained through the manual search process. Results: We identified 331 studies via the electronic
database and manual searches, of which 55 reporting the antiprotozoal effect of snake venoms
and their components were included in the review. Around 38% of studies examined the effect of
whole crude venoms, and a similar percentage evaluated the effect of a proportion of enzymatic
phospholipase A2 (PLA2). In particular, this review reports around 36 PLA2 activities and 29 snake
crude venom activities. We also report the notable phenomenon of synergism with PLA2 isoforms
of Bothrops asper. Importantly, limited attention has been given so far to the antiprotozoal efficacies
of metalloproteinase, serine protease and three-finger toxins, although these venom components
have been identified as significant components of the dominant venom families. Conclusion: This
study highlights the impact of snake venoms and their fractions on controlling protozoal infections
and suggests the need to examine further the effectiveness of other venom components, such as
metalloproteinase, serine protease and three-finger toxins. Future research questions in this field
must be redirected toward synergism in snake venom components, based on pharmacological usage
and in the context of toxicology. Ascertaining the effects of snake venoms and their components on
other protozoal species that have not yet been studied is imperative.

Keywords: antiprotozoal; snake venoms; venom fractions; systematic review

1. Introduction

The evolutionary origin of snake venom has been traced back to the Cenozoic era [1].
Snake venoms have been identified as one of the most well-characterized animal venoms,
with complex compositions of toxic, pharmacologically active proteins and peptides [2].
When compared with the venoms of other animals such as scorpions, spiders and cone
snails, snake venoms are considered advanced due to their vast array of larger proteins and
peptides that possess medicinal and toxicological effects [3]. About 50–100 components in
snake venoms are distributed in dominant and secondary families, presenting multiple
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proteins and peptide isoforms [4]. The dominant families include secreted phospholipases
A2 (PLA2s), snake venom metalloproteases (SVMPs), snake venom serine proteases (SVSPs)
and three-finger toxins (3FTXs) [4]. The secondary families comprise cysteine-rich secretory
proteins, L-amino acid oxidases (LAAOs), Kunitz peptides, C-type lectins, disintegrins and
natriuretic peptides [5].

The compositions of snake venom vary interspecifically and intraspecifically [4],
with various influencing factors including age, gender, location, diet and season [1]. These
factors influence the diversity of toxins and their multifunctionality, and they greatly impact
anti-venom production and envenomation treatment [6]. The pharmacological potentials
of snake venoms have been grouped into hemotoxic, neurotoxic and cytotoxic effects [7].
The major toxins involved have been identified as PLA2s, SVMPs, SVSPs and 3FTXs, either
singly or in combination. They are equally responsible for the pharmacological effects in
snakebite victims [8].

Protozoan diseases are also a significant public health issue of great concern world-
wide, especially in developing countries, with children being the most vulnerable pop-
ulation [9]. Millions of individuals globally experience one or more parasitic infections
annually, and most of the morbidity and mortality due to protozoan infections are attributed
to trypanosomatid and other Apicomplexan parasites [10,11]. However, Toxoplasma gondii
and Trichomonas vaginalis are medically important intestinal protozoa [12]. Some of these
are considered to be neglected tropical diseases, a term used to describe a group of chronic,
debilitating and usually stigmatized conditions that mostly affect poor communities in
tropical and subtropical regions [13].

The epidemiological control of protozoan diseases is still not satisfactory, due to the
difficulties in achieving vector and reservoir control [1,12]. Equally, efforts toward devel-
oping vaccines against these persistent diseases are slow and not yet fruitful. Currently,
chemotherapy remains the best choice for clinical management and disease control pro-
grams in endemic regions [12]. The chemotherapy agents in use are outdated and not
fully cost-effective. In recent decades, efforts have been diverted towards developing
novel chemotherapy agents to treat infectious diseases, due to increased drug resistance
and the recognition of novel and previously unnoticed infectious agents [14]. The use of
snake venoms and their components is an interesting and important concept, due to their
potential as therapeutic molecules with antimicrobial features that could be used against
shielded bacteria, fungi, parasites, protozoa and viruses [1,15].

We present a comprehensive systematic review of the existing literature on the an-
tiprotozoal effect of snake venoms and their components. Notably, the review is intended
to highlight the unconfirmed potentials of various snake venoms and their fractions as
alternative treatments for protozoal diseases.

2. Methods
2.1. Search Strategy and Study Screening Processes

The methodology and reporting of the systematic review were conducted following
the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guide-
lines [16]. Pertinent databases (PubMed and Embase) were searched from inception until
13 October 2021, without restricting the year of publication. Studies reporting the antiproto-
zoal effect of snake venoms or their components were searched and included in the review.
A comprehensive literature search was conducted for papers published in English, and
the search terms across the two databases were “antiprotozoal OR antiprotozoal activity
OR antiprotozoal drugs OR antiprotozoal agents” and “agents OR contrast agent” and
“snake venom OR snake venoms OR snake venom metalloproteinase OR phospholipase
PLA2 OR snake venom phospholipase A2 OR snake venom three-finger toxin OR snake
venom serine proteinases”. The detailed search strategy adopted in this study is presented
in Supplementary Table S1. Furthermore, the reference lists of the studies included in
the review via the electronic database search were manually searched to ensure wider
literature coverage. Citations were managed using EndNote version X9.0 (Clarivate An-
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alytics, Philadelphia, PA, USA), and duplicates were removed using the built-in “find
duplicates” feature. Two authors (Z.U.A. and S.S.M.) compiled the citations separately
and later discussed them with the other authors to ensure an accurate literature report.
Subsequently, the two authors independently and sequentially assessed the titles, abstracts
and full text of the non-duplicated generated citations against the eligibility criteria of the
study. Discrepancies in the outcomes of the screening processes between the two authors
were resolved by further discussions and consultations with the other authors.

2.2. Study Selection and Eligibility Criteria

Articles were included in this review if they assessed the antiprotozoal effect of
whole snake venoms or their fractions were published with at least an abstract in English.
Restrictions were not placed on the study design; hence, studies of various designs (ex-
perimental, quasi-experimental, observational, case-control and case series, among others)
were included. We excluded published reviews, review protocols, and conference abstracts.

2.3. Data Extraction and Synthesis

To satisfy the set criteria of the review, two authors (Z.U.A. and S.S.M.) independently
extracted all the relevant data using a pre-designed Excel sheet. The data extracted included
the author details, date of publication, snake species under study, snake venom components
or fractions, concentration of snake venom and components used, specificity of venoms
and fractions to protozoan species, and snake venom and component-induced activity on
protozoa. The extracted data were then compared, and cases of inconsistent outcomes
were rectified via further deliberations among the authors. The data analysis followed the
synthesis without meta-analysis (SWiM) guidelines [17].

3. Results
3.1. Literature Search Findings and Study Characteristics

The first search identified 309 articles through the electronic databases (100 in PubMed,
and 209 in Embase). Additionally, 22 articles were added via the manual search of the
reference lists of the included citations, totaling 331 papers (see Figure 1 for the outcomes
of the search processes). After duplicates were removed, 319 studies remained. We
screened the titles and abstracts of the 319 records against the stated eligibility criteria of
the study. Finally, 55 studies were included for further synthesis and analysis. Figure 1
illustrates the flowchart of the study search and screening processes, and Table 1 presents
the characteristics of the included studies.

3.2. Antiprotozoal Effect of Snake Crude Venoms

We identified 55 studies that met our inclusion criteria, of which 20 were conducted to evaluate
the antiprotozoal efficacy of snake crude venoms [18,21,28,34–36,38,40,43,45–47,49,50,58,61–63,65,69].
We identified a previous study that reported the antiprotozoal effect of snake crude ven-
oms, with some hypotheses about the specific snake venom fractions responsible for
antiprotozoal activity without proof from laboratory trials [10]. Three reports [35,50,61]
hypothesized that several proteins identified from the crude venom of Bitis arietans (B.
arietans) could be responsible for its trypanocidal activity. Alape-Giron et al. [73] described
snake venoms as a mixture of structured peptides, including enzymes and toxins, that
comprise metalloproteases (41–44%), PLA2s (29–45%), serine proteases (4–18%), LAAOs
(5–59%), disintegrins (1–2%), C-type lectin-like proteins (0.5%) and cysteine-rich secretory
proteins (CRISPs; 0.1%). Similarly, Imam et al. [50] reported that the venom of B. arietans is
composed of several catalytically active enzymes, including PLA2, LAAOs and CRISPs.
Adade et al. [18] also reported that crovirin, a CRISP contained in the snake venom of
Crolatus viridis viridis, showed promising activity against T. cruzi. PLA2s have equally been
reported to have antitrypanosomal activity [34].

Furthermore, previous studies [28,69] showed the impact of the trypanocidal activity
of LAAOs. However, this may exclude the possibility that the other proteins reported by
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Chechet et al. [35], which corresponded to those reported by Guidlolin et al. [74], were
responsible for the antitrypanosomal activity, either singly or synergistically. According to
Peichoto et al. [62], the activity of the crude venom on the protozoal species was due to
trimorphin. However, several works [18,40,45,46] suggested the need for further research
to ascertain which components possess antiprotozoal efficacy, though crucial information
has been reported on them, including their molecular weight and thermal stability [45,46].
Similarly, a need was reported to further investigate the fractions of B. jararaca and C.d.
terrificus with antigiardial potential, suggesting that more research will provide details on
the mechanisms of action [75].

Figure 1. PRISMA diagram for the study search and selection processes.



Pathogens 2021, 10, 1632 5 of 23

Table 1. Features of the included studies.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Adade et al. [18] July 2010 Crolatus viridis viridis Crude venom

TCE: 0.5, 0.6, 0.7, 0.9, 1.0
µg/mL

TTC: 0.3 µg/mL
TCA: 0.075, 0.037, 0.29, 0.17

µg/mL (LD50)

0.25–500 µg/mL Trypanasoma cruzi

Inhibited the cellular viability
of T. cruzi epimastigote,

trypomastigote, and amastigote.
Exerted effect on the

ultrastructure and intracellular
survival of T. cruzi. About
76–93% reduction in the
number of parasites was

observed and up to 94–97% per
cell after 9 h. However, at

concentrations of 8–500 µg/mL,
the venom could not promote

antitrypanosomal activity.

Adade et al. [19] October 2014 Crolatus viridis viridis Crovirin

TCT: 1.10 ± 0.13 µg/mL (LD50)
TCA: 1.84 ± 0.53
µg/mL (IC50)

TBR:BSF; 2.06 ± 0.12 µg/mL
(IC50)

TBR: PCF: 1.13 ± 0.31
µg/mL(IC50)

TBR: BSF & PCF: 0.6–4.8;
TCT: 0.45–4.8 µg/mL;

TTCA: 0.45–3.6 µg/mL.

T. cruzi
T. brucie rodhesiense

Active against all the human
infective trypanosomatids
including the intracellular

amastigotes.

LAAO: 1.21 ± 0.89 µg/mL;
1.05 µg/mL (IC50)

L.AP: 1.2–4.8
µg/mL;LAA:0.6–9.6

µg/mL
L.amazonensis

Adade et al. [20] August 2012 C. viridis viridis PLA2 2.50 ± 1.42 mcg/mL
0.77 ± 0.5 mcg/mL (IC50) 0.3125–10 mcg/mL L. amazonensis Inhibited the parasites’ growth

in vitro.

Alfonso et al. [21] September 2019 Bothrops mattogrossensis

BmatTX-IV 62.4 µg/mL L. infantum,
BmatTX-IV inhibited the

cellular viability of L. infantum
promastigotes in vitro and that
of T. cruzi epimastigostes and

also a cytotoxic effect on
murine fibroblasts.

Crude venom
L.P:11.9 µg/mL (IC50)

TCE:13.8 µg/mL (IC50)
72.5 µg/mL T. cruzi

Allane et al. [22] December 2018 Cerastes cerastes Disintegrin_Cc DTDR (IC50) 1 µg L. infantum

Showed antileishmanial activity
and severe morphological

alterations of the Leishmania
promastigotes.
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Aranda-Souza et al. [23] December 2018 Bothrops leucurus BLL

1.5 ± 0.17 µg/mL and 1.3 ±
0.06 µg/mL (IC50) LAAO: 0.88
± 0.24 µg/mL and 0.86 ± 0.07

µg/mL

0.01–3.3; 0.8 and 1.6 µM L. amazonensis L.
braziliensis

Inhibited promastigote growth
and viability in both species

through a mechanism that was
dependent on galactose and

calcium.
Decreased the intracellular

parasites.
Caused severe changes in

amastigotes, without apparent
damage to the host cells.

Increased the proinflammatory
cytokines IL-6 and TNF-ð by
infected macrophages in both

species but with some
variations in relation to IL-1β

and IL-10.

Bandeira et al. [24] December 2017 Crotalus durissus terrificus Ctn, ctn (1–14), ctn (15–34),
IL-37

Ctn TCE:
Ctn(4.47 ± 0.9 µM); ctn
(1–14):DTDRIC50; ctn

(15–34):DTDRIC50 TCE
&TCP:0.9–100 µM

and
TCA: 0.22 or

0.44 µM

T. cruzi

Ctn resulted in the inhibition of
all T. cruzi developmental

stages, including the
amastigote, and showed a high

selective index against
trypomastigote. Cell death was

induced by necrosis and
morphological alterations.

TCT:
Ctn:0.22 µM

ctn (1–14):33.1
ctn (15–34):9.5 µM

Barbosa et al. [25] January 2021

Bothrops jararacuccu BjussuLAAO-II

DTDR IC50 1.56–12.5 µg/mL L. amazonensis
L. braziliensis

Both were severely cytotoxic to
the two Leishmania spp., even at
lower concentrations. However,

at the same concentrations,
both showed a different

cytotoxic effect.Bothrops moojeni BmooLAOO-II

Barros et al. [26] December 2015

Crotalus durissus terrificus PLA2

LAP:52.07 µg/mL (IC50)
Peptide fraction: 16.98 µg/mL

(IC50)
0.5–2.5 µg/mL

L. infantum Both showed in vitro
leishmanicidal activity.

Peptide fraction
LAAO: DTDR (IC50)

Macrophages: PLA2:98 µg/mL;
peptide:16.98 µg/mL

0.5–2.5 µg/mL
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Bastos et al. [27] December 2008 Bothrops neuwiedi Neuwiedase

BI: PI:7.70 µg/mL (IC50); PIR:
3.24 µg/mL

AI: 4.84 µg/mL
PIR: DTDR (IC50)

12 to 0.7 µg/mL T. gondi infected human
fibroblast

Inhibited the rate of infection
by 71% and 61% following
treatments before and after
infection, respectively. The
enzyme has the ability to

degrade extracellular matrix
components, which is necessary
to sabotage T. gondii activity on

infected cells.

Bhattacharya et al. [28] September 2013 Bungarus caeruleus Crude venom L.P:14.5 µg/mL (IC50) L.A:11.2
µg/mL (IC50) 1–50 µg/mL L. donovani

Showed antileishmanial activity
against L. donovani in vivo and
in vitro; the activity was partly

mediated by an
immunomodulatory activity

that involved the macrophages.

Borges et al. [29] September 2016

Bothrops pauloensis DTDR IC50

The toxin showed reasonable
cytotoxicity against HeLa cells

at a higher concentration;
however, the effect was reduced

with a reduction in
concentration. In addition, the
toxin could not elicit effects on
the viability of tachyzoites but

lessened its adhesion and
proliferation when the

tachyzoites were treated before
infection.

BnSP-7 200–1.5 µg/mL Toxoplasma gondii

Borges et al. [30] June 2018 Anti-BnSP-7 IgY antibodies 100–0.09 µg/mL Toxoplasma gondii and L.
amazonensis

Anti –BnSP-7 IgY antibodies
reduced parasite viability and,

at a concentration of 12.5
µg/mL, induced proliferation

intracellularly.

Bregge-silva et al. [31] December 2012 Lachesis muta (L.A. A.O)
2.22 µg/mL (IC50)

0.5–32 µg/mL
L. brasiliense Inhibited the activity of L.

brasiliense promastigotes.

DTDR IC50 T. cruzi T. cruzi showed resistance.

Carone et al. [32] October 2017 Bothrops jararacussu BJussuLAAO-II

4.56 µg/mL (IC50) 0.5–32 µg/mL L. amazonensis Showed an antileishmanial and
trypanocidal effect on

promastigotes and amastigotes
of Leishmania and Trypanosome,

respectively.
4.85 µg/mL (IC50) 0.93–50 µg/mL T. cruzi
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Castanheira et al. [33] March 2015 Bothrops pauloensis BpLec DTDR IC50 0.195–12.5 µg/mL T. gondii
Reduced T.gondi parasitic
activity after tachyzoite

treatment.

Castillo et al. [34] December 2012 Bothrops asper

Fraction V (containing
catalytically active PLA2s) 1.42 ± 0.56 µg/mL (IC50)

25–200 µg/mL P. falciparum

The whole venom and fractions
showed activity against the

parasite. Fraction V, however,
had the highest toxicity

compared to the whole venom
and fraction VI.

Fraction VI (containing a
catalytically inactive
PLA2-like protein)

22.89 ± 1.22 µg/mL (IC50)

Crude venom 0.13 ± 0.01 µg/mL (IC50)

Chechet et al. [35] December 2018 Bitis arietans Crude venom 0.3085 µg/mL (IC50) 0.02–5.0 µg/mL T. brucei brucei

Showed anti-trypanosomal
activity by lysing the parasite

across all different
concentrations with little or

mild lysis of the erythrocytes.

Ciscotto et al. [36] March 2009 Bothrops jararaca LAAO- active fraction
&venom DTDR IC50 0.8 mg/mL L. amazonensis

The venom and LAOO-active
fraction resulted in parasite

viability of 69% and 47%,
respectively.

Costa et al. [37] September 2015 Calloselasma rhodostoma CR-LAOO
L.C.P:16.66 µg/mL (IC50)
L.B.P:24.47 µg/mL (IC50)

0.5, 2, 8, 32 µg/mL L. braziliensis,
L. chagasi Caused cytotoxic effect on T.

cruzi and Leishmania spp.
promastigotes; the activity

against all the trypanosomatids
was significantly inhibited by

catalase.

0.5, 2, 8, 32 µg/mL L. infantum

0.5, 2, 8, 32 µg/mL T. cruzi

Costa-Torres et al. [38] April 2010 Bothrops marajoensis

PLA2 (BmarPLA2) DTDR IC50 0.39–6.25 µg/mL

L. amazonensis and L.
chagasi

For BmarPLA2, the dosage
used (100 µg/mL) could not

reach IC50; BmarTV and Bmar
LAAO inhibited the growth of

L. amazonensis and L. chagasi
stages.

Crude venom (BmarTV) LAP:86.56 and LCP:79.02
µg/mL (IC50) 12.5–200 µg/mL

BmarLAAO LAP:2.55 µg/mL and LCP:2.86
µg/mL (IC50) 0.39–6.25 µg/mL

De Barros et al. [39] July 2016 Bothrops jaracussu PLA2 14.36 µg/mL (IC50) 100 µg/mL–6.25 µg/mL L. amazonensis

Showed antileishmanial effect,
reduced the promastigotes by

78%, and strengthened the
macrophages’ viability by 82%.

After 48 h, an amastigote
reduction of up to 55% was

recorded.
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

de Menezes et al. [40] January 2012 Bothropoides lutzi Crude venom

61.2 µg/mL (IC50) 6.25–200 µg/mL Leishmania chagasi Caused inhibitory effects on L.
amazonensis and L. chagasi

promastigotes.
Repressed the growth of T. cruzi

epimastigotes.

234.6 µg/mL (IC50) 6.25–200 µg/mL L. amazonensis

DTDR IC50 6.25–100 µg/mL T. cruzi

Dematei et al. [41] June 2021 Bothrops atrox

BatxC, 4.90 (EC50) 0 to 50 µM; BatxC (0.70,
0.47, 0.23 µM); BatxC
(C-2.14Phe) des-Phe

(1.94, 0.97 and 0.48 µM)
BatxC (C-2.15Phe) (0.93,

0.47 and 0.23 µM)

L. amazonensis

All showed antileishmanial
activity on promastigotes and
amastigotes and also induced

morphological changes.
BatxC (C-2.15Phe) 6.74 (EC50),

BatxC (C-2.14Phe)
des-Phe1 8.86 µM (EC50)

Deolindo et al. [42] November 2010 Bothrops jararaca LAAO 4.3 µg/mL (LD50) 10–60 µg/mL T. cruzi

Induced antitrypanosomal
activity, resulting in changes
similar to those observed in
programmed cell death. The

activity was, however, reversed
not only by the presence but

also by the absence of a
hydrophobic amino acid that
was required for the process.

Deolindo et al. [43] February 2005 Bothrops jararaca Crude venom 10 µg/mL (IC50) 5, 10, 25, 50 µg/mL T. cruzi

Both induced the programmed
death of cells in T. cruzi

epimastigotes, with the activity
of crude venom being due to

stress, through a process similar
to that of apoptosis in

metazoans.

El Chamy Maluf et al. [44] April 2016 Crotalus durissus Crotamine 1.87 µM (IC50) 1.25–20 µM P. falciparum
Inhibited the development of P.
falciparum in a dose-dependent

pattern.

Fernandez et al. [45] August 1994
Cerastes cerastes

Naja haje
Vipera lebetina

Crude venom DTDR (IC50) 1–100 µg/mL T. cruzi, L. donovani
infantum

The venoms of C. cerastes and N.
haje showed a growth inhibition
effect on the trypanosomatids.
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Gonçalves et al. [46] March 2002 Bothrops jararaca Crude venom DTDR (IC50)
K0.5: 0.1–0.3 µg/mL (IC50)

50 µg/mL L. major Resulted in ultrastructural
alteration and inhibited the

growth of L. major
epimastigotes and amastigotes.
Resulted in the ultrastructural
alteration and inhibition in the

growth of T. cruzi
trypomastigotes.0.1, 1, 10, 100 µg/mL T. cruzi

Grabner et al. [47] September 2017 Bothrops marajoensis

Crude venom: 0.14 ± 0.08µ g/mL (IC50)
BmajPLA2-II(b): 6.41 ± 0.64 µg/mL (IC50)

Venom: 3–0.093 µg/mL;
PLA2: 10–0.3125 µg/mL P. falciparum Showed antiplasmodial activity

against the parasites.

DTDR(IC50) 125 µg/mL T. cruzi Showed activity against the
stages of trypanosome.

BmajPLA2-II(b)
Dosage used (100 µg/mL) did not reach IC50

100–6.25 µg/mL L. infantum Showed activity against the
stages of Leishmania.

Guillaume et al. [48] March 2004

Najamossambica PLA2 2.3 pM (IC50)

P. falciparum

All the tested PLA2s inhibited
the intraerythrocytic

development of P. falciparum.
All PLA2s showed toxicity

against trophozoite as well as
schizont stages.

Notechis scutatus Notexin 2.6 nM (IC50)

Agkistrodon halys PLA2 82.3 pM (IC50)

Vipera ammodytes Ammodytoxin A 2.8 nM (IC50)

Hajialiani et al. [49] April 2020 Naja Naja Oxiana Venom fraction 0.026 µg/mL (IC50) 2.6 µg/mL–0.0000026
µg/mL P. falciparum

The active fraction at the
particularly stated

concentration possessed
anti-plasmodial efficacy.

Imam et al. [50] February 2021
Naja nigricolis

Crude venom
0.411 µg/mL (IC50)

1.2, 2.4, 3.6 µg/mL Trichomonas vaginalis Showed trichomonicidal
potency.Bitis arietans 0.805 µg/mL (IC50)

Izidora et al. [51] May/June 2011 Bothrops pijarai BpirLAAO-I
BI: 1.83 µg/mL (ID50); 3.14

µg/mL
AI: 1.20 µg/mL (ID50)

20 to 0.3 µg/mL T. gondii in human
foreskin fibroblasts

The enzyme was effective in
inhibiting the infection of

neighboring cells and, hence,
the spread of the parasite,

instead of targeting the primary
infection and arresting parasite

replication.
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Kayano et al. [52] November 2015 Bothrops brazili Venom BbMP-1
Venom:

3.2 µg/mL (IC50)
BbMP-1: 0.17 µg/mL (IC50)

20–0.001 µg/mLs P. falciparum

Showed the biotechnological
potential of the

metalloproteinase as an
antiplasmodial candidate.

Macedo et al. [53] January 2015 Crotalus durissis terrificus
Crotamine, Crotamine in

solution and in
microparticles

DTDR IC50 100 to 3.1 µg/mL L. amazonensis in
infected macrophages

Caused a decrease in the
number of amastigotes. When a
comparison was made with its

activity on infected
macrophages; the

biodegradable microparticles
containing crotamine were
trapped by macrophages,

which led to an increase in
TNF-α levels of about 196

pg/mL.

Martins et al. [54] July 2019 Bothrops moojeni
Crude venom 0.5 ± 0.01 µg/mL (IC50)

20 µL P. falciparum Inhibited the growth of W2
strain P. falciparum in vitro.BmooMP α-I 16.14 ± 2.35 µg/mL (IC50)

Mello et al. [55] May 2017 Bothrops atrox (BatxC) TT: 0.44 µM (IC50)
TE: 11.3 µM(IC50) 0.44–100 µm T. cruzi

Inhibited all the developmental
stages of T. cruzi, with a high

selective index of 315, and also
caused necrosis.

Mendes et al. [56] December 2019 Agkistrodon contortrix

p-Acl
pAcl: L.A.P:50.98, (EC50)

L.A.A: 57.23 (EC50)
L.I.A: 220.32) µm (EC50)

L.A.P. & L.A.A:0–250
µm

L.I.A:0–100 µm
L. amazonensis Active against L. amazonensis

and L. infantum promastigotes
and amastigotes, with low

cytotoxicity on primary murine
macrophages.p-AclR7

27.19, 36.83, 70.72 µm (EC50) L. infantum

P-ACLR7: 237.70 µM (CC50)
P-Acl-232.88 µM (CC50) 0, 2.5, 50, 100, 150 µm L. infected macrophages

Merkel et al. [57] September 2007 Eristocophis macmahoni Spermine 186 ng/mL (IC50) 2–10 µg/mL T. brucie Caused autophagy in the
parasite.

Moura et al. [58] March 2014 Bothrops mattogrossensis

BmatTX-I

DTDR IC50
3.12, 6.25, 12.5, 25, 50,

100 µg/mL L. amazonensis
Inhibited the cellular viability

of L. amazonensis promastigotes
in vitro.

BmatTX-I II

BmatTX-I I

Crude venom
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Nunes et al. [59] February 2013 Bothrops pauloensis BnSP-7 LP:58.7 µg/mL (IC50) and
LA:28.1 µg/mL (IC50)

L.P-25–200 µg/mL
L.A-100 µg/mL L. amazonensis

This resulted in the inhibition
of parasite proliferation of the

promastigotes and reduced the
cellular viability of the

amastigotes. The toxin also
resulted in severe

morphological changes in the
promastigotes.

Paiva et al. [60] May 2011 Bothrops atrox BatroxLAAO

LDP: 4.3 µg/mL (EC50) 0.5–32 µM L.donovani
Resulted in

dose-dependent killing of the
parasite.

LMP: 4.5 µg/mL 0.5–32 µM L. major Resulted in the dose-dependent
killing of Leishmania spp.

promastigotes and T. cruzi
trypomastigotes.

LBP: 23.34 µg/mL (EC50) 0.5–32 µM L. braziliensis

TCP: 62.8 µg/mL (IC50) 0.5–32 µM T. cruzi

Passero et al. [61] July 2007 Crotalus species

Crotalus durissus terrificus
(Cdt) venom (4.70 ± 1.72 µg/mL IC50) 7.81–500 µg/mL Crotalus durissus terrificus (Cdt)

venom resulted in higher
antileishmanial activity than

Cdca.
Crotalus durissus cascavella
(Cdca) venom resulted in
antileishmanial activity;

however, a concentration of
44.30 µg/mL increased parasite

numbers by 50%. Equally, the
venom showed less

antileishmanial activity at
higher concentrations (281.00

µg/mL IC50).

Crotalus durissus cascavella
(Cdca) venom

(9.41 ±1.21 µg/mL IC50)

Crotalus durissus collineatus
(Cdcol) venom

(281.00 ± 9.50µg/mL IC50) 7.81–500 µg/mL

Cdca crotamine- 19.95 ± 4.21 µg/mL (IC50)

3.12–100 µg/mL
Cdca crotoxin- 99.80 ± 2.21 µg/mL (IC50)

Cdca gyroxin- 3.80 ± 0.52 µg/mL (IC50)

Cdca convulvin DTDR IC50
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Peichoto et al. [62] July 2011

Philodryas patagoniensis
(PPV)

Crude venoms

DTDR (IC50) 50.1–1.695 µg/mL

L. major

TblV showed significant
antileishmanial activity at its

highest concentration; however,
it resulted in parasite

proliferation at intermediate
concentrations.

PPV was not very active in
inhibiting parasite growth and
its highest concentration was

required to inhibit 51.5%
proliferation. PbV, PooV and

HttV at their final
concentrations did not

significantly inhibit L. major
growth.

PLA2 (trimorphin) of TbLV
caused a biphasic effect with

potent cytotoxicity in a
dose-dependent pattern and

resulted in parasite
proliferation at its highest

concentration.

Philodryas baroni (PbV)
DTDR (IC50) 438,524,562 µg/mL

P. olfersi olfersi (POOV)

Hypsiglena torquata
texana (HttV)

Trimorphodon biscutatus
lambda (TlbV)

(108.6 µg/mL IC50) 11.9–191 µg/mL

(TblV) PLA2
(Trimorphin)

0.25 µM; 3.6 µg/mL 0.01–1 µM

Quintana et al. [63] November 2012 Crotalus durissus
cumanensis

Crude venom 0.17 ± 0.03 µg/mL (IC50) 0.05–0.5 µg/mL

P. falciparum

The venom and the two
fractions showed

antiplasmodial activity against
the mononuclear cells.
Although all showed a

cytotoxic effect, crotoxin B
showed the highest at a

concentration higher than the
one required to exert an

antiplasmodial effect.

Crotoxin B 0.6 ± 0.04 µg/mL (IC50) 0.1–1.0 µg/mL

Crotoxin B complex

0.76 ± 0.17 µg/mL (IC50) 0.1–1.0 µg/mL

2.22 µg/mL (IC50) 0.5–2.00 µg/mL

DTDR IC50

Sharifi et al. [64] November 2021 Naja Naja oxiana Venom fraction NNOV-FK
LTP: 46.59 ± 2.38 µg/mL:(IC50)
LTA:0.18 ug/mL ± 0.02 (IC50)
and L.IM: 0.51 µg/mL (IC50)

6.25–100 µg/mL L. tropica

Showed severe leishmanicidal
activity against developmental
stages in a dimensional pattern.
The Th1 indicators significantly

improved (TNF-α,
interleukins-12 and iNOS gene
expression). Conversely, IL-10

(T helper 2 markers) were
drastically reduced.
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Shinohara et al. [65] December 2005
C. d. terrificus

DTDR (IC50)
3.125–200 µg/mL

Giardia duodenalis

Both inhibited the growth of
trophozoites, and the inhibition
level varied with concentration

and incubation times.
B.jararaca 5–320 µg/mL

Simoes-Silva et al. [66] September 2021 Bothrops asper

Venom and acidic PLA2s;
BasPAC-I, BASPAC-II,

BASPAC-III, and
BASPAC-IV and the basic

PLA2s; BASPB-I, BASPB-II,
BASPB-III, BASPB-IV and

BASPB-V

8.6 µg/mL (IC50): 100–6.25 µg/mL L. infantum All the acidic, BASPAC-I,
BASPAC-II, BASPAC-III,

BASPAC-IV demonstrated
action against L. infantum
promastigotes and T. cruzi

epimastigotes.
The basic, BASPB-II, and
BASP-IV showed activity
against P. falcifarum with
activity showing about a

10-fold increase when
ASP49-PLA2 and LYS49-PLA2

were associated with each other,
thereby proving a synergistic

action between the PLA2
isoforms.

34.7 µg/mL (IC50) BASPB-II (100–6.25) T. cruzi

BASPB-II:2.46; 0.98 µM (IC50)
BASPB-IV: 0.019; 0.0019 µm

(IC50)

BASPB-II:40–0.625 µm
BASPB-IV (0.2–0.0031

µm)
P. falciparum

Soares et al. [67] July 2020 Micrurus lemniscatus ML-LAAO

0.14 µg/mL (IC50)

5.0 to 0.03 µg/mL

L. amazonensis Showed in vitro leishmanicidal
action in a dose-dependent

pattern, which was significantly
reduced by catalase.0.039 µg/mL (IC50) L. chagasi

Stábeli et al. [68] March/April 2006 Bothrops moojeni MjTX-II

DTDR (IC50)

0.1–100 µg/mL

L. donovani
Inhibited the cellular viability
of L. amazonensis, L. braziliensis,

L. donovani, and L. major
promastigotes in vitro.

L. major

DTDR (IC50) L. braziliensis

L. amazonenis

Tempone et al. [69] January 2001 Bothrops moojeni

Crude venom Crude venom: LAP:7.56 ±
0.020 µg/mL (EC50)

30–0.15 µg/mL

L. amazonensis
L. chagasi

L. panamensis

Caused a killing effect in vitro
against Leishmania spp., and
activity was attributed to the

activity of an enzyme that
constitutes 1.5% of the venom,
characterized as L-amino acid

oxidase.
LAOO

LAP: 1.44 ± 0.062 µg/mL
LPP: 1.19 ± 0.0083 µg/mL

(EC50)
LCP: 1.08 ± 0.0024 µg/mL

(EC50)

300–0.244 µg/mL
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Table 1. Cont.

Study DOP Snake Specie(s) Venom/
Venom Fractions IC50/ EC50/LD50 Dosages Dosage Trial Protozoans

Activity of Snake
Venom/Snake Venom Fraction

on Protozoal Species

Toyama et al. [70] January 2006 Crotalus durissus
cascavella LAAO 2.39 µg/mL (IC50) 4.81–77 µg/mL L. amazonensis

Resulted in severe
antileishmanial activity on the
L. amazonensis promastigote.

Vitorino et al. [71] December 2020 Bothrops diporus

Enzymatically active
PLA2s and homologs:

BdTX-I,
2.44 µg/mL (IC50)

10–0.00488 µg/mL P. falciparum

All the phospholipases showed
antiparasitic activity against the

P. falciparum W2 strain.BdTX-II 0.0153 µg/mL,

BdTX-III 0.59 µg/mL, respectively (IC50)

Zieler et al. [72] December 2001 Crotalus adamanteus PLA2 DTDR IC50 0.0001–10 µmol L−1 P. gallinaceum and P.
falciparum

Blocked ookinete adhesion and
oocyst formation of P.

gallinaceum and P. falciparum.
Although PLA2 did not present

a direct effect on the parasite,
pretreatment of the midguts
with its catalytically active or

inactive form may strongly
lessen the association between

ookinete and midgut. This
indicated that PLA2 functions
by associating with the midgut

surface and preventing the
activity of ookinete in relation

to it.

Abbreviations: P-Acl = Agkistrodon contortrix myotoxin; p-AclR7 = Acl homolog; Ctn = cathelicidin; Batxc = Bothrops cathelicidin; BLL = Bothrops leucurus lectin; Bplec = Bothrops pauloensis lectin; BPP = Bradykinin
potentiate peptide; BSF = Blood Stream form, PCF = procyclic form; TCP: Tissue culture promastigotes; BatxC = Batroxicidin; MTx = Mojave toxin; MjTx-II = Bothrops moojeni myotoxin-II; BnSP-7 = B. pauleonsis
toxin; BdTx = B. diporus toxin; BjTx = B. moojeni toxin; LAAO = L-amino acid oxidase; LIM = Leishmania-infected macrophages; NI = not indicated; BI = before infection; AI = after infection; IR = intracellular
replication; PI = parasite invasion; ASA = all species above; LA = Leishmania amastigotes; L.P = Leishmania promastigotes; TT = Trypanosome trypomastigotes; DTDR IC50: dosage tried did not reach IC50; ADSC:
at different serial concentrations; LAP: L. amazonensis promastigotes; LLP: Leishmania panamensis promastigotes; LCP: Leishmania chagasi promastigotes; LDP: Leishmania donovani promastigotes; LMP: Leishmania
major promastigotes; LBP: Leishmania braziliensis promastigotes; TCT: Trypasoma cruzi trypomastigotes.ss.
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3.3. Antiprotozoal Effect of Snake Venom Components or Fractions

LAAOs are oxidoreductase flavoenzymes that catalyze the stereospecific oxidative
deamination of L-amino acids to produce the α-keto acids, NH3 and H2O2 [25]. They form
part of several proteins in ophidians, particularly hemorrhagic venoms. LAAOs have been
reported to possess the ability to induce apoptosis in several types of cells [25], including
vascular endothelial cells, but the mechanism of action remains unclear. The LAAO activity
has been proven to be due to H2O2 production, which, in turn, has been linked with the
oxidation of several proteins in the plasma membrane [1]. Our systematic review found
different documented antiprotozoal activities of LAAOs. Several researchers reported
antileishmanial activity in the respective species [31,32,36,67,70]. Other [25,37,38,42,60]
showed their influence on growth inhibition, cytotoxic activity, inhibitory effect, pro-
grammed cell death and parasite killing on trypanosomatids. Furthermore, the LAAOs of
Bothrops pirajai resulted in maximal inhibition of infection with T. gondii [51].

PLA2s are enzymatic proteins with a low molecular weight. They are responsible
for promoting hydrolysis of the 3-sn-phosphoglyceride-dependent calcium 2-acyl ester
bond, resulting in lysophospholipids and fatty acid products [1]. The PLA2s of snake
venoms may appear to be the same but could have different toxicological efficacies in their
myotoxicity, neurotoxicity, anticoagulant activity, hemolysis, hyperalgesia, inflammation,
edema, cytotoxicity, hypotension, and parasitic activity [10]. The activity of PLA2s on
protozoal species varies across species of snakes and the protozoal organisms involved, as
described in Table 1. Previous reports [34,47,71] indicated the inhibitory effects of PLA2s of
the respective snake venoms on P. falciparum. According to many other studies [21,58,59,68],
various PLA2s inhibited the cellular viability of Leishmania species. In addition, Borges
et al. [29] and Borges et al. [30] reported that PLA2s of B. pauloensis inhibited parasite
adhesion, intracellular proliferation, parasite viability, intracellular proliferation and pro-
inflammatory cytokine production in T. gondii. Furthermore, the PLA2s of B. pauloensis
induced in vitro cell death in L. mexicana [52], and Zieler et al. [72] reported that the PLA2s
of C. adamanteus blocked the ookinete adhesion and oocyst formation of both P. gallinaceum
and P. falciparum. According to a previous study [63], crotoxin B and its complex from C.
durissus cumanensis exerted a cytotoxic effect against the mononuclear cells of P. falciparum,
and another [19] reported that the crovirin from C. viridis could inhibit and lyse human-
infective trypanosome species, including the intracellular amastigotes. However, despite
the successful antiprotozoal activities of PLA2s on protozoal species, Costa-Torres et al. [38]
reported that the PLA2s of B. marajoensis did not promote any inhibition of L. amazonensis
or L. chagasi growth. Similarly, Grabner et al. [47] reported that the PLA2s of B. marajoensis
did not promote the in vitro inhibition of cellular viability in T. cruzi epimastigote, even at
100 µg/mL.

Snake venom metalloproteases (SVMPs) are zinc-dependent proteinases of around
20–110 kDa [76]. They are grouped into P-I, P-II and P-III classes according to their
structural domains. These toxins are significant in viper venom compositions and have a
substantial role in the toxicity of these venoms. The origin of SVMPs is linked to disintegrin
and metalloproteinase (ADAM) proteins, particularly ADAM28 [77], with the P-III class
being the most basal structural variant, comprising metalloproteinase, disintegrin-like,
and cysteine-rich domains. Subsequently, P-II SVMPs came from P-IIIs and consisted of a
metalloprotease and disintegrin domain, with the latter particularly found in venom as
a proteolytically processed product [1]. The final class, PI SVMPs, which have only the
metalloproteinase domain, evolved on multiple independent occasions in specific lineages
due to the loss of the P-II disintegrin coding domain. SVMPs contribute extensively to the
hemorrhagic and coagulopathy venom activities following bites by viperid snakes. Their
isoform diversity often presents in their venom, likely facilitating synergistic effects such as
a simultaneous action on multiple steps of the blood-clotting cascade [1]. Reports [27,52,54]
showed the antiprotozoal activities of a metalloproteinase from the Bothrops species on T.
gondii, and P. falciparum, which is one of the most threatening and widespread species.
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4. Discussion

A total of 55 articles on the antiprotozoal effect of snake venoms and their components
were identified through our systematic search of the existing literature. The majority were
on the antiprotozoal efficacy of PLA2s. Over 70% of the snake species reported were vipers,
with very few reports on the Colubridae species [78]. A significant proportion (around 20%)
constituted species of the Elapidae family. PLA2s form a considerable component in the
venoms of vipers and elapids [78], due to their biomedical importance over others [79].
PLA2s have catalytically active and inactive components. Asp49-PLA2s are the catalytically
active component, and Lys49-PLA2s are the catalytically inactive component, which can
facilitate pharmacological effects regardless of catalytic activity [80,81]. Findings on both
the catalytically active and catalytically inactive PLA2s were reported in our study. The
mediation of antiprotozoal effects by PLA2s could occur through the interaction of either
PLA2 phospholipids or PLA2 proteins. Interestingly, the commonly described receptors in
the cell membranes are the vascular endothelial growth factor receptor-2 (VEGFR-2), M-
type receptors, and nucleolin [82,83]. Bregge-Silva et al. [31] reported synergism involving
the PLA2 isoforms of B. asper, which resulted in around a 10-fold increase in antiplasmodial
activity during the association of AS49-PLA2 and LYS49-PLA2.

Synergism is an important phenomenon that occurs in snake venoms, leading to evolv-
ing strategies to potentiate toxicities. Synergism exists between toxins or toxin complexes
in various snake venoms, with PLA2s (toxins or subunits) the primary enablers [84]. Snake
venoms can induce considerable toxicity, which may be due to many toxins’ cumulative or
synergistic roles. Their compositions function together, directly or indirectly, and result
in improved toxicity and pharmacological efficacy. Most synergisms of toxins have been
noticed where SVSPs, PLA2s, 3FTxs and SVMPs were co-administered [84]. Synergism
involving two PLA2s in B. asper has also been reported [85]. The ASP49-PLA2 and LYS49-
PLA2 homologs were reported to have acted synergistically, leading to an increase in Ca2+

ions in the plasma membrane, in turn resulting in the rapid death of myotubes. Another
study reported a synergistic phenomenon between the myotoxins of ASP49-PLA2 and
LYS49-PLA2, which resulted in irreversible membrane and overall cell damage [86].

Concerning the antiprotozoal activity of whole crude venoms, variations in their ac-
tivity and composition are not uncommon, leading to their unique potentials in biomedical
research [79]. The past literature has noted that variations in snake venoms’ biochemical
makeup occur even among closely related species and within species [87–89]. For instance,
in pit vipers and adders, intra-genus or intra-specific variation in venoms has been doc-
umented [87,90]. These diversities are attributed to diet [87,91–93] or topography [94,95].
Other attributable factors include repetitions in toxin-encoding genes, production pro-
cesses [96–100], and functional and structural diversifications [75,88,101,102]. For example,
venom from Laticauda semifasciata (a sea snake) does not have a complex composition, and
it has just two prominent families of proteins, 3FTxs and PLA2s. However, the venoms
of rattlesnakes and mambas can have 50–100 peptides or proteins, representing around
10–20 protein families [84]. Generally, the predominant protein families in snake venoms
significantly comprise phylogenetic trends. The venoms of cobras, kraits, mambas and
hydrophids in particular have more negligible toxins, such as 3FTxs and PLA2s. In contrast,
viperid venoms are made up of more significant fractions with enzymatic activities such as
snake venom metalloproteinase and snake venom serine protease [84]. For instance, the
venom of C. durissus terrificus is composed of amino acids, small peptides, carbohydrates,
lipids, biogenic amines, and enzymes, whereas that of B. jararaca has peptides, serine, and
metalloproteases as its constituents [75]. Hence, the activity of venoms varies with the
difference in concentrations and compositions.

Aside from the role of snake species in the antiprotozoal effect, parasites also present
contributing factors. Promastigotes and amastigotes are physiologically different in their
sensitivity to drugs, with amastigotes having the greater capability to accumulate drugs [75].
Furthermore, Podešvová et al. [52] reported that variations in the compositions of parasite
membranes could also be responsible for the differences in the activities of snake venoms
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and their fractions. Additionally, mechanisms including post-translational modifications,
protein stability, and folding may likely influence toxin activity on parasites [52].

4.1. Strengths

This systematic review was conducted following an extensive literature search of the
pertinent PubMed and Embase databases. Relevant citations were extracted using the
reference lists of the included studies to ensure robust coverage of the existing literature.
The systematic review covered studies on the antiprotozoal effect of crude venoms and
their components from clinical studies and scientific reports. No restrictions were placed
on the year of publication to ensure the thorough collation of relevant information. Equally,
the study inclusion criteria were not restricted to snake species or components, to provide
detailed information to the research community on the research question and the gaps in
the literature.

4.2. Limitations

Despite the strengths of our systematic review, it has some limitations. First, we re-
stricted inclusion to studies published in English, thereby limiting the ability to incorporate
relevant data from studies in languages other than English. Additionally, incorporating
a meta-analysis on the antiprotozoal efficacy of venoms and their fractions would have
improved the quality of our work, which could be considered in future studies.

5. Conclusions

This systematic review provides a general overview of the antiprotozoal effect of
snake venoms and their components. We found varying antiprotozoal activities, presenting
outstanding breakthroughs in the quest for alternative therapies for lingering protozoal
infections. However, several variations were documented, including the concentrations of
the crude venoms and fractions used, IC50 dosages, protozoan species, and antiprotozoal
activities. These findings present challenges as to how the reviewed snake venoms and
their fractions could serve as alternative antiprotozoal agents for many protozoal species,
if not all. An excellent approach to this dilemma could be gearing research efforts toward
understanding the relationships between venom components in the context of synergism,
rather than toward studies on individual units, mainly because venomous snake species are
numerous. Future studies also need to focus on other snake venom components that have
received little attention. We recommend that other protozoan species should be subjected
to trials with crude snake venoms and their fractions.
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