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A B S T R A C T   

Background and purpose: To investigate the value of radiomics features extracted from pre-treatment 18F-FDG 
PET/CT in predicting the outcomes of stage III-IV colorectal cancer (CRC), which may assist in clinical man-
agement strategies and precise treatment of stage III-IV CRC. 
Materials and methods: 124 patients with pathologically confirmed stage III-IV CRC who underwent pre-treatment 
18F-FDG PET/CT scans were enrolled in this study. The least absolute shrinkage and selection operator Cox 
regression (LASSO-Cox) was used to select radiomics features, and the radiomics scores (Rad-scores) were 
calculated to build radiomics models. The performance of radiomics models was represented by the concordance 
index (C-index) and compared with clinical models and complex model. The bootstrap resampling method was 
used to create validation sets. Additionally, nomograms were developed based on complex models. 
Results: The C-indices of the radiomics model for predicting PFS and OS were 0.712 (95%CI: 0.680–0.744) and 
0.758 (0.728–0.789), respectively. In the clinical model, these values were 0.690 (0.664–0.0.717) and 0.738 
(0.709–0.767), respectively. However, in the complex model were 0.734 (0.705–0.762) and 0.780 
(0.754–0.807), respectively. The Kaplan–Meier curves demonstrated that the radiomics model could effectively 
separate patients with stage III-IV stage CRC into high- and low-risk groups (p < 0.001). Multivariate Cox 
regression analysis confirmed the independent prognostic value of Rad-scores. 
Conclusion: Pre-treatment 18F-FDG PET/CT radiomics features can stratify the risk of patients with stage III-IV 
CRC and accurately predict their outcomes. These findings could be clinically valuable for precision treatment 
and management decisions in stage III-IV CRC.   

1. Introduction 

Colorectal cancer (CRC) has become the third most common cancer 
and the second most common cause of cancer-related deaths worldwide 
[1]. Approximately 60% of patients with CRC have already locally 
advanced disease or experience distant metastases at the time of diag-
nosis, and their 5-year survival rate is relatively low [2]. Although tar-
geted agents combined with chemotherapy regimens used for the 
treatment of metastatic CRC have significantly improved survival, the 
prognosis of patients with CRC remains an important factor in clinical 
patient management and selection of treatment decisions [3]. Therefore, 
the choice of treatment options and accurate assessments are crucial for 

predicting patients with III-IV stage CRC prognosis and individual 
treatment strategy decisions. 

The tumor-node-metastasis (TNM) staging classification system 
plays an important role in predicting patients with III-IV CRC prognosis 
[4]. Tumor heterogeneity in pre-treatment 18F-FDG PET/CT images may 
contribute to better characterization and improved prediction of ma-
lignant tumor survival outcomes[5]. Recently, radiomics has become 
the primary trend in medical imaging studies and has shown significant 
potential for the analysis of lesion characterization and intratumoral 
heterogeneity (ITH) [6,7]. It can extract large numbers of quantitative 
multidimensional and subvisual image features and excavate a large 
amount of image information to evaluate the biological characteristics 
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of tumors [8–10]. Radiomics studies for CRC prognosis are mostly based 
on computed tomography (CT) or magnetic resonance imaging (MRI) 
[11–14]. However, there are few reports on the prediction of stage III-IV 
CRC using 18F-fluorodeoxyglucose positron emission tomography/-
computed tomography (18F-FDG PET/CT) radiomics. Thus, this study 
aimed to develop and validate a baseline 18F-FDG PET/CT radiomics 
model to predict patients with stage III-IV CRC outcomes; the findings 
may have a potential application value in clinical management strate-
gies and precise treatment of stage III-IV CRC. 

2. Materials and methods 

2.1. Patient selection 

This retrospective, single-institution study was approved by the 
institutional ethics committee (approval no. 2021KY292), which waived 
the requirement for informed consent from patients. A database of 124 
patients with stage III-IV CRC who underwent pre-treatment 18F-FDG 
PET/CT screening between February 2014 and September 2020 in our 
department was assessed. 

The inclusion criteria were as follows: (1) primary lesions of stage III- 
IV CRC pathologically confirmed as adenocarcinoma, (2) 18F-FDG PET/ 
CT examination within 1 month of pathological examination and 2 
weeks before initial treatment, (3) no history of other malignant tumors, 
(4) complete clinical data, and (5) no loss to follow-up. The exclusion 
criteria were as follows: (1) patients with stage I-II CRC, (2) antitumor 
therapy before 18F-FDG PET/CT screening, (3) double or multiple pri-
mary CRC, (4) pathological diagnosis not obtained from the primary 
CRC lesions, and (5) tumor metabolic volume on PET/CT images < 5 
cm3. 

Of the 124 patients with CRC enrolled based on the above criteria, 82 
were male and 42 were female, with an average age of 58.69 ± 12.16 
(range, 26–83) years. Moreover, 36 and 88 patients were diagnosed with 
CRC in the colon and rectum, respectively. The patient screening process 
is shown in Fig. 1. 

2.2. Positron emission tomography/computed tomography imaging and 
acquisition parameters 

Each patient underwent 18F-FDG PET/CT examination using GEMINI 
GXL PET/CT (PHILIPS) scanner equipped with a 16-slice CT 1 month 
before treatment. After fasting 6 h, 18F-FDG was injected intravenously 
with 3.7–5.5 MBq/kg (0.1–0.15 mCi/kg). Blood glucose level was 
maintained at 11 mmol/L. Whole-body PET/CT examination was per-
formed 60 min after 18F-FDG injection. 

According to the Image Biomarker Standardization Initiative 
reporting guidelines [15], the scan parameters are shown in Table S1. 

2.3. Segmentation and radiomics feature extraction 

PET/CT images of all patients in the Digital Imaging and Commu-
nications in Medicine format were successively imported to the Local 
Image Features Extraction (LIFEx) package (version 7.0.0, http://www. 
lifexsoft.org) [16]. Two experienced nuclear medicine physicians inde-
pendently used 40% of the maximum standardized uptake value (SUV-
max) [17] as an optimization threshold to delineate the region of 
interest (ROI) of the CRC primary lesions using the LIFEx package. 
Manual segmentation was performed along the contour of the tumor 
during delineation to avoid the inclusion of intestinal gas, fatty tissue 
around the intestinal wall, and surrounding cords into the scope of the 
ROI. When it was difficult to determine the boundary of lesions, the 
boundary was determined by adjusting the window width and position 
or by combining coronal and sagittal images. The spatial resampling 
intervals X, Y, and Z on the PET/CT images were 2 mm × 2 mm × 2 mm 
for all patients [16,18]. Absolute intensity resampling setting are as 
follows: absolute value range: CT images were set as − 1000–3000HU, 
PET image were set as 0–25SUV. Intensity discretization setting: CT 
images were set as 0–400bins, PET images were set as 0–64bins. 

2.4. Radiomics feature selection and model building 

First, we standardized the radiomics features extracted from 18F-FDG 

Fig. 1. The flowchart shows the process of selection.  
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PET/CT. Then, the PET/CT radiomics features predicting progression- 
free survival (PFS) and overall survival (OS) were screened using least 
absolute shrinkage and selection operator Cox regression (LASSO-Cox), 
and linear fitting was conducted according to their respective coefficient 
weights [17]. Cross-validation was applied to select radiomics features 
with nonzero coefficients. The radiomics score (Rad-score) of each pa-
tient was calculated using the formula used to construct the radiomics 
models. We determined the optimal threshold of the Rad-score on the 
Youden index of the receiver operating characteristic curve and divided 
patients into high- and low-risk groups based on the optimal threshold of 
the Rad-score. Kaplan–Meier (K–M) analysis and log-rank test were used 
to evaluate the potential association between the radiomics model and 
PFS and OS. 

Univariate and multivariate Cox regression analyses were performed 
to select significant clinical variables that predicted the prognosis of PFS 
and OS in stage III-IV CRC to build a clinical model. The Rad-score and 
significant clinical variables were entered into a multivariate Cox 
regression to construct the complex model. 

2.5. Model validation 

The Harrell concordance index (C-index) was used to evaluate the 
performance of the three models [19,20]. Bootstrap resampling 1000 
times was used to obtain the corrected C-index of the three models for 
internal verification. Based on the best prediction model, a nomogram 
was developed that could intuitively and effectively predict the risk 
probability of each patient. In addition, the accuracy and repeatability of 
the model were visually evaluated using the Hosmer–Lemeshow test and 
calibration curves, and the deviation from the theoretical perfect cali-
bration was not significant (p > 0.05) [21]. 

2.6. Follow-up of patients 

All patients were followed every 3–6 months after treatment during 
the first 2 years and every 6 months thereafter. In this study, PFS was 
defined as the time from the date of pathological diagnosis of CRC to the 
follow-up confirmation of tumor progression, death, or follow-up cutoff. 
OS was defined as the time from the date of pathological diagnosis of 
CRC to the confirmation of death or the cut-off date of follow-up. The 
follow-up period ended on September 30, 2021. 

2.7. Statistical analyses 

Statistical analyses were performed using the International Business 
Machines Statistical Package for the Social Sciences Statistics version 
26.0 and R 4.2.1 software packages (http://www.R-project.org). The C- 
index values of radiomic model, clinical model and complex model were 
compared by compareC software in R language. All results were 
considered statistically significant at p < 0.05. 

3. Results 

3.1. Follow-up patients 

The median follow-up times of PFS and OS were 20.5 and 28.6 
(range, 1.1–60.5) months, respectively. Of the 124 patients, 70 
(56.45%) experienced relapse, and 61 (49.19%) died during the follow- 

up period. At the follow-up date, the PFS rates at 1, 2, and 3 years were 
62.10%, 50.55%, and 39.52%, respectively, and the OS rates were 
83.06%, 66.93%, and 53.23%, respectively. 

3.2. Clinical characteristics of patients and Cox analysis of prognostic 
factors 

The basic clinical characteristics of the enrolled patients and the 
univariate and multivariate Cox regression analyses for predicting PFS 
and OS are summarized in Tables 1 and 2, respectively. For PFS, Tumor 
location (p = 0.009), Tumor diameter (p = 0.042), Lymphatic metas-
tasis (p < 0.001), Distant metastasis (p < 0.001), Therapy method 
(p < 0.001), and carbohydrate antigen 199 (CA199) level (p = 0.012) 
were statistically significant in the univariate Cox regression analysis. 
However, multivariate Cox analysis showed that only Distant metastasis 
(p < 0.001) was an independent prognostic factor for PFS. The Tumor 
location (p < 0.001), Distant metastasis (p < 0.001), Lymphatic metas-
tasis (p < 0.001), Distant metastasis (p < 0.001), Therapy method 
(p < 0.001), and CA199 level (p = 0.024) were prognostic factors for OS 
in univariate Cox regression analysis. But only Distant metastasis 
(p < 0.001) and Therapy method (p = 0.013) were independent prog-
nostic factors for OS in multivariate Cox regression analysis. 

3.3. Radiomics features analysis and model establishment 

A total of 196 PET/CT radiomics features (98 PET and 98 CT fea-
tures) were extracted (Table S2). According to the LASSO-Cox results 
(Fig. 2), Eleven and twelve PET/CT radiomics features with nonzero 
coefficients for predicting PFS and OS were obtained, respectively, to 
construct radiomics models. 

For PFS, the screened 11 PET/CT radiomic features include 3 PET 
and 8 CT imaging features. The three PET radiomic features were as 
follows: Conventional_SUVKurtosis, Discretized_SUVKurtosis, Grey- 
Level Size Zone Matrix_Small Zone Low Grey Emphasis 
(GLZLM_SZLGE), the eight CT radiomic features were Con-
ventional_HUKurtosis, Discretized_HUmax, Discretized_HUQ2, Dis-
cretized_HUQ3, SHAPE_Compacity, Grey-Level Co-occurrence 
Matrix_Homogeneity (GLCM_Homogeneity), Grey-Level Run Length 
Mrtrix_Short Run Gray-Level Emphasis (GLRLM_SRHGE), Grey-Level 
Size Zone Matrix_Small Zone High Gray Emphasis (GLZLM_SZHGE). 
The Rad_score of each patient for predicting PFS was calculated using 
the following formula.    

The selected 12 radiomics features which including five PET and 
seven CT radiomic features for predicting OS were: Con-
ventional_SUVKurtosis, Discretized_SUVKurtosis, Discretized_HISTO_ 
Energy, GLZLM_SZLGE, Grey-Level Size Zone Matrix_Zone Percentage 
(GLZLM_ZP) (PET radiomic features), Conventional_HUKurtosis, Dis-
cretized_HUmax, Discretized_HUQ2, Discretized_HUQ3, SHAPE_-
Sphericity, SHAPE_Compacity, GLRLM_SRHGE (CT radiomic features). 
For OS, the Rad-score formula for each patient was as follows: 

Rad socreOS = − 0.090 × Convent 

Rad scorePFS = − 0.125 × Conventional SUVKurtosis − 0.292 × Discretized SUVKurtosis−
0.159 × GLZLM SZLGE − 0.014 × Conventional HUKurtosis + 0.359 × Discretized HUmax
− 0.112 × Discretized HUQ2 − 0.084 × Discretized HUQ3 − 0.129 × SHAPE Compacity+
0.184 × GLCM Homogeneity − 0.284 × GLRLM SRHGE + 0.031 × GLZLM SZHGE   
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ional SUVKurtosis − 0.149 × Discretized SUVKurtosis − 0.018
× Discretized HISTO Energy − 0.026 × GLZLM SZLGE + 0.090
× GLZLM ZP − 0.006 × Conventional HUKurtosis + 0.363
× Discretized HUmax − 0.228 × Discretized HUQ2 − 0.007
× Discretized HUQ3 − 0.105 × SHAPE Sphericity − 0.144
× SHAPE Compacity − 0.650 × GLRLM SRHGE 

Regardless of the radiomics model used for predicting PFS and OS, the 
Rad-score in the high- and low-risk groups was statistically significant 
(p < 0.001). Stage III-IV CRC Patients with high Rad-scores had poor 
survival outcomes. 

3.4. Performance of the radiomics features, clinical variables, and 
complex model 

The results of the C-index and Hosmer–Lemeshow test are shown in  
Table 3. The C-indices of the radiomics model for predicting PFS and OS 
were 0.712 (95% CI: 0.680–0.744) and 0.758 (0.728–0.789), respec-
tively, which were 0.690 (0.664–0.717) and 0.738 (0.709–0.767), 
respectively, in the clinical model. However, the complex models based 
on Rad-score and clinical variables had higher C-indices (i.e., 0.734, 
95% CI: 0.705–0.762, and 0.780, 95% CI: 0.754–0.807, respectively). 
The C-indices between complex model and radiomics model in pre-
dicting PFS and OS were statistically different (both p < 0.001). And 
there was a statistically significant difference in the C-index for pre-
dicting PFS and OS between the complex and the clinical model ( PFS: 
p = 0.003; OS: p = 0.011). The findings were confirmed by bootstrap 
resampling (n = 1000). 

3.5. Individualized nomogram construction and calibration curve 

We divided the patients into high- and low-risk groups according to 
the optimum cutoff point of the Rad-score (Rad-scorePFS = − 0.0031, 
Rad-scoreOS = 0.0612). In the relapse risk stratification, 71 (57.5%) 
patients were classified into the high-risk group, and 58 (81.7%) of these 
patients experienced recurrence at the overall endpoint. A total of 53 
(42.7%) patients were assigned to the low-risk group, of which 18 
(34.0%) developed recurrence by the overall endpoint. The K–M curve 
demonstrated that the risk of recurrence was significantly higher in the 
high-risk group than in the low-risk group (p < 0.001) (Fig. 3A). For OS, 
52 (41.9%) patients were in the high-risk group, and 42 (80.8%) had 
fatal events. In total, 72 (58.1%) patients were assigned to the low-risk 
group, and among them, 19 (26.4%) died. The K–M curve indicated that 
the risk of death in the high-risk group was significantly different from 
that in the low-risk group (p < 0.001) (Fig. 3B). 

The median and interquad distances Conventional_SUVkurtosis PET 
radiomic feature to predict PFS into high- and low risk group were 
− 0.219 (− 0.270, − 0.154) and − 0.126 (− 0.226, 0.031), respectively 
(p < 0.001). Discretized_SUVkurtosis has a median and interquartile 
interval of 0.245 (− 0.303, − 0.175) and 0.147 (− 0.254, 0.124) in the 
high- and low-risk group, respectively (p < 0.001). The median and 
interquinqual intervals of Conventional_SUVkurtosis were − 0.215 
(− 0.269, − 0.132) and − 0.180 (− 0.251, − 0.061), respectively to the 
predicted high- and low-risk groups (p = 0.072). Dis-
cretized_SUVkurtosis has a median and interquartile interval of − 0.244 
(− 0.302, − 0.152) and − 0.192 (− 0.277, − 0.063), respectively, in the 
high-risk and low-risk groups for predicting deaths (p = 0.035). 

Considering that the complex model based on independent predic-
tive factors, including Rad-score and clinical variables (Distant 

Table 1 
Baseline clinical characteristics of stage III-IV CRC patients, univariate and multivariate Cox regression analysis for predicting PFS in stage III-IV CRC patients.  

Characteristics All patients（（N ¼ 124）） Univariate analysis Multivariate analysis 

HR 95%CI P-value HR 95%CI P-value 

Gender, n (%)  1.29 0.80–2.09 0.292    
Male 82 (66.1%)       
Female 42 (33.9%)       
Age, n (%)  1.14 0.72–1.81 0.585    
＜61 61(49.2%)       
≥ 61 63(50.8%)       
Tumor location, n (%)  0.52 0.32–0.85 0.009* 1.29 0.76–2.20 0.341 
Colon 36(29.0%)       
Rectum 88(71.0%)       
Tumor diameter, n (%)  0.62 0.38–0.98 0.042* 0.97 0.58–1.61 0.904 
＜5.0 cm 61(49.2%)       
≥ 5.0 cm 63(50.8%)       
T stage, n (%)  1.24 0.77–2.01 0.384    
T2–3 81(65.3%)       
T4 43(34.7%)       
Lymphatic metastasis, n (%)  0.39 0.24–0.63 < 0.001* 1.18 0.65–2.14 0.596 
No 32(25.8%)       
Yes 92(74.2%)       
Distant metastasis, n (%)  5.26 3.07–9.00 < 0.001* 4.36 2.44–7.81 < 0.001* 
No 62(50.0%)       
Yes 62(50.0%)       
Therapy method, n (%)  2.81 1.75–4.53 < 0.001* 1.57 0.94–2.64 0.087 
Comprehensive surgical treatment 69(55.6%)       
Nonoperative comprehensive treatment 55(44.4%)       
BMI, n (%)  0.79 0.49–1.27 0.327    
＜24.9 68(54.8%)       
≥ 24.9 56(45.2%)       
CEA, n (%)  1.27 0.73–2.18 0.398    
＜5 ng/mL 33(26.6%)       
≥ 5 ng/mL 91(73.4%)       
CA199, n (%)  1.82 1.14–2.89 0.012* 1.25 0.77–2.04 0.370 
< 27.0 ng/mL 74(59.7%)       
≥ 27.0 ng/mL 50(40.3%)       
Rad_score / / / / 2.56 1.46–4.48 0.001* 

BMI, body mass index; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen199; / not apply. * P＜0.05. 
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metastasis and Therapy method), had a better ability to predict PFS and 
OS, we developed a nomogram that could intuitively predict the risk 
proportion of each factor and individually predict the prognosis of pa-
tients (Fig. 4A, E). The calibration curves of the nomogram for pre-
dicting PFS and OS are shown in Fig. 4B–D and F–H and visually 
evaluated the consistency between the predicted and actual survival 
probabilities. The Hosmer–Lemeshow test was not statistically signifi-
cant in either the complex model for predicting PFS (χ2 = 0.150, 
p = 0.928) or OS (χ2 = 11.605, p = 0.071). 

4. Discussion 

In this study, we developed and validated a baseline 18F-FDG PET/CT 
radiomics model with moderate predictive ability for PFS and OS in 
patients with stage III-IV CRC. The radiomics signature is an indepen-
dent risk factor for prognosis and provides a noninvasive method for 
stratifying the risk of recurrence or death in patients with stage III-IV 
CRC. Furthermore, complex models that combine Rad-score and 
optimal clinical variables to predict CRC outcomes were developed, and 
they showed significantly better predictive ability than a single radio-
mics or clinical model. The visualized nomogram based on complex 
models can identify patients at a high risk of early progression or death 
and provide individualized treatment strategies that are beneficial for 
these patients. The K–M curve indicated that our radiomics models could 
effectively distinguish between high- and low-risk groups in patients 
with stage III-IV CRC. 

In this retrospective study, among the 18F-FDG PET/CT radiomics 
features associated with PFS and OS, SUVkurtosis was a basic PET 
feature of the area under the curve of the cumulative SUV volume his-
togram. The SUVkurtosis was lower in the high-risk group than in the 

low-risk group. Compared with SUVmean, SUVkurtosis improves data 
fluctuation caused by statistical noise and is less susceptible to variations 
caused by subjective factors, and the data are more objective, to facili-
tate data comparison between different studies. Wagner et al. showed 
that the kurtosis of 18F-FDG PET/CT parameters was significantly 
different between primary colon cancer lesions and hepatic metastases, 
which plays an important role in evaluating the heterogeneity of colon 
cancer [22]. Other studies have shown that the absolute gradient 
(GrKurtosis) is significantly associated with the 3-year disease-free 
survival (DFS) of locally advanced rectal cancer (LARC) and is an in-
dependent prognostic indicator of the outcome of LARC [23]. In our 
study, we found that patients with stage III-IV CRC with low SUVkurtosis 
had a higher risk of recurrence or death, which is consistent with the 
above findings. 

The PET/CT first-order radiomics features that we screened to pre-
dict the prognosis in stage III-IV CRC also included Histogram based 
feature, Discretized_HISTO_Energy (PET feature), and two shape-based 
features, SHAPE_Compacity and SHAPE_Sphericity (CT features). The 
HISTO_Energy feature mainly describe the intensity of changes in the 
gray intensity information (or brightness information) of the lesions. In 
general, the smaller the change, the larger the HISTO_energy value. 
Some studies have shown that HISTO_Energy which extracted from 18F- 
FDG PET/CT can predict disease-free survival (DFS) in patients with 
non-small cell lung cancer (NSCLC) [24] and OS in patients with 
esophageal cancer [25]. SHAPE_Compacity describes the degree of 
sphericity of the lesion, that is, it reflects the Compactness of the lesion. 
SHAPE_Sphericity is a feature that describes how similar an ROI is to a 
sphere, ideally with a sphericity of 1. Both are important factors for 
predicting the response of rectal cancer to nCRT [26,27], and have 
significant correlation with clinical prognostic factors [28]. Some 

Table 2 
Baseline clinical characteristics of stage III-IV CRC patients, univariate and multivariate Cox regression analysis for predicting OS in stage III-IV CRC patients.  

Characteristics All patients（（N ¼ 124）） Univariate analysis Multivariate analysis 

HR 95%CI P-value HR 95%CI P-value 

Gender, n (%)  1.42 0.85–2.38 0.182    
Male 82 (66.1%)       
Female 42 (33.9%)       
Age, n (%)  1.31 0.79–2.12 0.298    
＜61 61(49.2%)       
≥ 61 63(50.8%)       
Tumor location, n (%)  0.39 0.23–0.65 < 0.001* 0.92 0.50–1.69 0.786 
Colon 36(29.0%)       
Rectum 88(71.0%)       
Tumor diameter, n (%)  0.63 0.38–1.05 0.074    
＜5.0 cm 61(49.2%)       
≥ 5.0 cm 63(50.8%)       
T stage, n (%)  1.39 0.83–2.34 0.215    
T1–3 81(65.3%)       
T4 43(34.7%)       
Lymphatic metastasis, n (%)  0.26 0.15–0.44 < 0.001* 0.77 0.42–1.41 0.389 
No 32(25.8%)       
Yes 92(74.2%)       
Distant metastasis, n (%)  6.04 3.27–11.17 < 0.001* 4.88 2.55–9.34 < 0.001* 
No 62(50.0%)       
Yes 62(50.0%)       
Therapy method, n (%)  3.25 1.93–5.49 < 0.001* 2.01 1.16–3.50 0.013* 
Comprehensive surgical treatment 69(55.6%)       
Nonoperative comprehensive treatment 55(44.4%)       
BMI, n (%)  0.62 0.37–1.04 0.070    
＜24.9 68(54.8%)       
≥ 24.9 56(45.2%)       
CEA, n (%)  1.21 0.68–2.17 0.519    
＜5 ng/mL 33(26.6%)       
≥ 5 ng/mL 91(73.4%)       
CA199, n (%)  1.79 1.08–2.96 0.024* 1.18 0.70–1.98 0.542 
< 27.0 ng/mL 74(59.7%)       
≥ 27.0 ng/mL 50(40.3%)       
Rad_score / / / / 2.90 1.65–5.11 < 0.001* 

BMI, body mass index; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen199; / not apply. * P＜0.05. 
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studies reported that the three radiomics features showed good repeat-
ability[26,29]. In our study, the three radiomics features could predict 
PFS or OS in patients with stage III-IV CRC. 

Among the eleven and twelve 18F-FDG PET/CT radiomics features 
associated with PFS and OS, there were four (one PET texture features 

GLZLM_SZLGE, and three CT texture feature, including GLCM_homo-
geneity, GLRLM_SRHGE and GLZLM_SZHGE) and three (two PET texture 
feature, including GLZLM_SZLGE and GLZLM_ZP, and one CT texture 
features GLRLM_SRHGE) second-order texture features, respectively. 
GLRLM, GLZLM, and GLCM are second-order texture parameters 
commonly used to quantify ITH. However, tumors with higher hetero-
geneity have poor prognosis [30]. In this study, patients with stage III-IV 
CRC with a high risk of recurrence or death had higher ITH. PET or 
multimodal imaging enables fine characterization of ITH in a noninva-
sive manner [31]. Previous studies have also shown that texture features 
based on GLCM, GLRLM, and GLZLM can capture spatial relations be-
tween adjacent pixels of a given image, which is a hot topic in radiomics 
and is closely related to prognosis [32]. Kang et al. established a prog-
nostic prediction model for 381 patients with CRC using preoperative 
18F-FDG PET/CT radiomics features and found that GLRLM_LRE and 
GLZLM_SZLGE were independent factors of PFS [33]. Our study also 
showed that the texture features GLRLM and GLZLM were independent 
indicators of PFS and OS. The selected texture parameters differ among 
different studies, which may be attributed to the stability of texture 
features affected by imaging equipment, imaging technology, and 
reconstruction parameters. 

Some scholars have attempted to predict the prognosis of patients 
with CRC using radiomics based on CT or MRI. Xue et al. found that the 
C-index of the nomogram, which was built by combining the Rad-score 

Fig. 2. The LASSO-Cox were used to select radiomic features to predicting PFS and OS. 10-fold cross-validation with the minimum criteria were used in the LASSO- 
Cox to select λ (A) PFS and 11 nonzero coefficients produced with the optimal λ (B) PFS. 10-fold cross-validation with the minimum criteria were used in the LASSO- 
Cox to select λ (C) OS and 12 nonzero coefficients produced with the optimal λ (D) OS. 

Table 3 
The results of the C-index and the Hosmer-Lemeshow.   

C-index（95CI 
%） 

corected C-index 
(Bootstrap, B=1000) 

χ2 

value 
p 
valuea 

PFS       
Radiomics 

model 
0.712 
(0.680–0.744) 

0.671 (0.723–0.834)  6.741  0.565 

Clinical 
model 

0.690 
(0.664–0.717) 

0.689 (0.639–0.744)  0.000  1.000 

Complex 
model 

0.734 
(0.705–0.762) 

0.730 (0.678–0.788)  0.150  0.928 

OS       
Radiomics 

model 
0.758 
(0.728–0.789) 

0.718 (0.682–0.795)  7.286  0.506 

Clinical 
model 

0.738 
(0.709–0.767) 

0.736 (0.680–0.794)  2.470  0.291 

Complex 
model 

0.780 
(0.754–0.807) 

0.772 (0.723–0.834)  11.605  0.071 

χ2 and ap value for the Hosmer-Lemeshow test. 
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with clinical factors to predict OS was 0.782, 0.721 and 0.677. These 
findings might affect treatment strategies of CRC [34]. Other scholars 
have developed a comprehensive model combining MRI radiomics fea-
tures, morphological imaging models, and clinicopathological models to 
predict the 3-year OS of 206 patients with rectal cancer who underwent 
radical surgery, with a C-index of 0.872, which has a good predictive 
ability for OS [35]. However, there have been few studies on the 
application of imaging features extracted from PET/CT to predict the 
prognosis of CRC. Recently, a radiomics nomogram has been developed 
using 18F-FDG PET/CT radiomics features, lymph node staging, and 
lymphovascular invasion and has shown good predictive power in pa-
tients with CRC, comparable to American Joint Committee on Cancer’s 
staging systems in calibration. Their C-indices were 0.737 and 0.64, 

respectively, and the study demonstrated that 18F-FDG PET/CT radio-
mics features may enable detailed stratification of outcomes in patients 
with CRC [33]. Another study used machine learning to develop and 
validate an integrated clinico-biological model based on 18F-FDG 
PET/CT radiomics features had good predictive performance in pre-
dicting recurrence-free survival RFS in 196 patients with stage I–IV CRC. 
A previous study showed that 18F-FDG PET/CT radiomics provides the 
possibility for precision treatment of CRC [36]. However, none of these 
studies demonstrated the predictive performance of a single18F-FDG 
PET/CT radiomics model in predicting the outcomes of patients with 
CRC. In this study, we established pre-treatment 18F-FDG PET/CT 
radiomics, clinical, and complex models to predict the outcomes of pa-
tients with stage III-IV CRC. The results demonstrated that the radiomics 

Fig. 3. The Kaplan-Meier survival analysis stratified the risk of recurrence or death based on the radiomics (A) PFS and (B) OS. The log-rank test was used to 
calculate p value. 

Fig. 4. The nomograms were developed combined Rad_score and clinical variables, A is for PFS and E is for OS. Calibration curves based on complex model for 1–3 
year PFS (B-D) and OS (F-H). 
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model had good predictive ability in predicting PFS and OS, but the 
complex model showed the best predictive ability, which was consistent 
with the results of the above two studies. Therefore, our classifier was 
able to predict the prognosis and stratify the risk of patients with CRC. 

Although 18F-FDG PET/CT radimoic features can be applied to a 
variety of diseases, its application in colorectal cancer is increasing, and 
it has formed a relatively complete theoretical system and workflow, but 
it still faces some challenges. First, most of the current studies on 18F- 
FDG PET/CT radiomic are single-center, small-sample retrospective 
studies, and large-sample, multi-center, randomized controlled pro-
spective studies are needed for model validation, so as to verify the 
robustness and reproducibility of the model. Second, the potential 
relationship between some 18F-FDG PET/CT radiomic features and 
tumor heterogeneity, such as anatomical, physiological or metabolic 
levels, is unknown and lack of explanation. 

5. Conclusion 

In conclusion, the establishment of a pre-treatment 18F-FDG PET/CT 
radiomics model provides significant prognostic information about PFS 
and OS in patients with stage III-IV CRC and demonstrates important 
stratification power in predicting PFS and OS in CRC. Therefore, it may 
be helpful to guide precision treatment and clinical management de-
cisions for patients with stage III-IV CRC. 
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M. Götz, M. Guckenberger, S.M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, 
R. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegård, K.H. Maier-Hein, O. Morin, 
H. Müller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E. Pfaehler, A. Rahmim, A. Rao, 
J. Scherer, M.M. Siddique, N.M. Sijtsema, J. Socarras Fernandez, E. Spezi, 
R. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E. Troost, T. Upadhaya, 
V. Valentini, L.V. van Dijk, J. van Griethuysen, F. van Velden, P. Whybra, 
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