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Abstract
Medical diagnostics is often a multi-attribute problem, necessitating sophisticated tools for

analyzing high-dimensional biomedical data. Mining this data often results in two crucial bot-

tlenecks: 1) high dimensionality of features used to represent rich biological data and 2) small

amounts of labelled training data due to the expense of consulting highly specific medical

expertise necessary to assess each study. Currently, no approach that we are aware of has

attempted to use active learning in the context of dimensionality reduction approaches for

improving the construction of low dimensional representations. We present our novel method-

ology, AdDReSS (Adaptive Dimensionality Reduction with Semi-Supervision), to demon-

strate that fewer labeled instances identified via AL in embedding space are needed for

creating a more discriminative embedding representation compared to randomly selected

instances. We tested our methodology on a wide variety of domains ranging from prostate

gene expression, ovarian proteomic spectra, brain magnetic resonance imaging, and breast

histopathology. Across these various high dimensional biomedical datasets with 100+ obser-

vations each and all parameters considered, the median classification accuracy across all

experiments showed AdDReSS (88.7%) to outperform SSAGE, a SSDRmethod using ran-

dom sampling (85.5%), and Graph Embedding (81.5%). Furthermore, we found that embed-

dings generated via AdDReSS achieved a mean 35.95% improvement in Raghavan

efficiency, a measure of learning rate, over SSAGE. Our results demonstrate the value of

AdDReSS to provide low dimensional representations of high dimensional biomedical data

while achieving higher classification rates with fewer labelled examples as compared to with-

out active learning.

1 Introduction
The ability to mine disease patterns from large biomedical datasets could enable the identifica-
tion of prognostic disease markers, which in turn, could save lives, reduce morbidity, and alle-
viate the overall cost of healthcare today. Generally speaking, biomedical data may be regarded
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as a collection of diagnostic attributes, which can be obtained from a variety of sources, ranging
from medical imagery, DNAmicroarrays, or protein expression data obtained from mass spec-
trometry techniques [1–6]. Most popular approaches to identify disease patterns are some vari-
ant of supervised classification strategies. In these approaches, classifiers are taught to
distinguish between disease classes via a collection of these attributes and labeled training
instances [1].

One of the primary challenges in building predictors for biomedical data is that it is typically
high dimensional (large K) with relatively few samples (small N) [7]. Particularly in the case of
DNAmicroarray data, the number of features can number in the tens of thousands [8].
Machine learning classifiers are often used to leverage the predictive power of a multitude of
features and discriminate between patients with different underlying pathologies [2–6]. How-
ever, given the ‘curse of dimensionality’ problem [9], where K> N, it can be difficult to build a
generalizable classifier from biomedical data. The Hughes effect [10] states that given a fixed
number of training samples, increasing the dimensionality eventually reduces the predictive
power of a classifier. This is because training a discriminating classifier in a high dimensional
feature space results in many potential class separation boundaries for distinguishing the
instances to be classified [11]. This implies that before these measurements can be incorporated
within a classifier to generate predictions, the original measurements need to be first reduced
to a smaller number of variables, K<<N, in order to build an accurate and generalizable
classifier.

In the case of very high dimensional data, it has been desirable to represent the data in a low
dimensional representation that can allow for the classes to be separable. [3, 12–14]. Feature
selection is one method to reduce dimensionality by identifying the best k<<K features to
represent the data [14–18]. While more readily interpretable compared to dimensionality
reduction methods, feature selection methods may not provide the most compact or efficient
low dimensional representation due to curse of dimensionality and possible presence of redun-
dant and correlated features.

Dimensionality reduction (DR) methods, such as Principal Component Analysis (PCA)
[19], have been used for analyzing high dimensional biomedical data [3] by mapping high
dimensional data into a low dimensional embedded representation (or embedding). DR meth-
ods help to mitigate the ‘curse of dimensionality’ problem by learning a low dimensional repre-
sentation which aims to approximate the original high dimensional features with fewer
variables. DR methods can be grouped into two broad classes: linear and nonlinear methods.

Linear DR methods such as PCA, Linear Discriminant Analysis (LDA) [11], and Multidi-
mensional Scaling (MDS) [20, 21], generally preserve Euclidean distances when mapping data
into the embedding space. For example, PCA [19] determines the optimal projections of the
data by a rotation of the high dimensional space to the axis of greatest variance. Alternatively,
in MDS [20], Euclidean distances between each pair of data points are collected into a pairwise
affinity matrix, which is then mapped into a low dimensional embedding which best preserves
these distances.

In contrast, nonlinear dimensionality reduction (NLDR) methods [22–25] are founded on
the premise that Euclidean distance does not represent true object similarity. In fact, research-
ers have found that NLDR methods may be better suited towards classification of high dimen-
sional biomedical data compared to linear DR methods [12, 13, 26]. Graph-based DR methods
such as Graph Embedding [23] are similar to the idea of manifold learning [24], where a graph
dictates similarity between data points via a set of weighted edges. The graph itself is represen-
tative of an abstract low dimensional manifold which encompasses all data points and is
embedded in the high dimensional space [24]. In order to extract the manifold from the high
dimensional space, similarity between data points is re-defined as distances along the graph
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and the graph distance information can be projected into a low dimensional embedding. Spe-
cifically, NLDR methods such as Isomap [24], Locally Linear Embedding (LLE) [25], and
Graph Embedding (GE) [23] have been shown to provide low dimensional data representa-
tions for improving classification performance and overall data interpretation [12, 13].

While unsupervised methods, such as NLDR schemes, have been utilized for preliminary
analysis of data, for classification tasks, it is desirable to incorporate all available object class
labels to optimize the embedding for class separation, as opposed to basing the affinities solely
based off the pre-defined similarity criterion [27–29]. Recently, there has been a great deal of
interest in semi-supervised dimensionality reduction (SSDR) methods, which utilize labeled
instances to improve separation of object classes in the low dimensional embedding [30–36].
This is typically done by extending the pairwise affinity matrix of previous DR methods to
incorporate class label information, such that if a pair of objects belong to same class, they are
weighted to be more similar and will be mapped to be closer together in the low dimensional
embedding. Similarly, if a pair of objects are of different classes, they are weighted to be less
similar and will be mapped farther away in the embedding. Sugiyama et al. [33] applied semi-
supervised learning (SSL) to Fisher’s discriminant analysis in order to find the linear projection
that maximized object class separation. Verbeek et al. [37] utilized a method for semi-super-
vised learning using Gaussian fields with locally linear embedding for object pose recognition.
Yang et al. [34] similarly applied SSL toward manifold learning methods. Zhao [35] presented
a semi-supervised method for graph embedding which utilizes weights to simultaneously
attract samples of the same class labels and repel samples of different class labels given a neigh-
borhood constraint. Zhang [36] employed a similar approach to SSDR as Zhao, but without
utilizing neighborhood constraints.

In addition to the large-K/small-N problem, a second challenge with building predictors for
biomedical data is that very often, biomedical datasets are not adequately labeled or annotated
[38]. This is due to the significant overhead involved in procuring well-annotated biomedical
datasets and also due to the fact that invariably an expert is required to perform this task [5].
Hence, if one is attempting to build a predictor to identify disease aggressiveness or predict
long term outcome in a patient, one would need a well curated and annotated dataset to pro-
vide training instances for the predictor. Active learning (AL) can reduce the number of sam-
ples needed to train an accurate predictor.

AL is a specific instance of semi-supervised learning, where the learning algorithm may
interactively query the desired labels from a user or other source [39]. AL differs from random
sampling, which queries training instances randomly from an unlabeled pool [40]. The objec-
tive of AL is to find an optimal training set. The benefits of using AL are twofold as 1) classifier
accuracy can be improved, and 2) the number of training labels necessary to achieve a classifi-
cation goal is reduced.

While AL has been used for providing fewer, optimal instances for training a classifier, its
extension towards learning the best training instances for improving the quality of low dimen-
sional embedding representations has not been heavily investigated [37, 41]. Zhang et al. [42]
has suggested that searching in a locally linear or manifold space could provide more represen-
tative points for active learning. Thus, an extension of AL to SSDR would be important for pre-
diction and representation of biomedical data.

In this paper, we present a novel dimensionality reduction (DR) method, AdDReSS (Adap-
tive Dimensionality Reduction with Semi-Supervision), which aims to seamlessly integrate
semi-supervised dimensionality reduction and active learning. This allows AdDReSS to con-
struct low dimensional data representations to improve classification of high dimensional bio-
medical data while using fewer labels compared to previous SSDR methods.

Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS)
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The major contributions and implications of this work are: First, a novel NLDR method
which seamlessly incorporates active learning and semi-supervised learning to guide embed-
ding construction. Second, a demonstration showing the effects of active learning towards
improving embeddings generated via SSDR compared to random sampling. Third, a simple
framework that could be extensible for other SSDR methods to create more discriminatory low
dimensional representations.

We evaluated our methodology on different tasks for four relevant medical datasets: (a) Dis-
crimination of tumoral and non-tumoral prostate samples in a gene expression dataset [8], (b)
Discrimination of neoplastic and non-neoplastic disease within the ovary in a protein expres-
sion dataset [4], (c) Mitosis detection in breast cancer images [43], and (d) Identifying white
matter and grey matter in a Brain MR Imaging dataset [44]. These datasets were chosen to rep-
resent varied types of imaging and non-imaging biomedical data—radiologic medical imaging,
histologic imaging, DNAmicroarray, and proteomic spectra.

The rest of this paper is organized as follows. In Section 2, we formalize notation and pro-
vide an overview of an unsupervised dimensionality reduction method (Graph Embedding)
and a semi-supervised dimensionality reduction method (Semi-Supervised Agglomerative
Graph Embedding) In Section 3, we introduce an active learning strategy (Uncertainty Sam-
pling), thereby providing the theoretical background for AdDReSS. and describe our method
AdDReSS (Adaptive Dimensionality Reduction with Semi-Supervision). In Section 4, we out-
line the datasets, training parameters, and the performance measures used to evaluate the
methodologies described in this work. In Section 5, we demonstrate the performance of the
comparative methodologies on the basis of learning rate, classification accuracy, clustering per-
formance, and variability, followed by concluding remarks in Section 6.

2 Review of Semi-Supervised Dimensionality Reduction Schemes

2.1 Notation
We denote a set E of samples ci, cj 2 E , i, j 2 {1, 2, . . ., N}, where N is the number of samples in

set E . Each sample ci is represented by a 1 × K feature vector xi 2 X. We can formalize a dataset
X as a N × Kmatrix containing K feature values for each of N samples. The goal of dimension-
ality reduction is to reduce the N × Kmatrix, defined by a 1 × K feature vector xi 2 X, where k
< K, to a N × kmatrix, where all samples ci are defined by a 1 × k eigen-feature vector yi 2 Y.
Label information may be introduced such that ℓ(ci) denotes the object class label of sample ci
as being a positive class (+1) or negative class (−1). Labels ℓ(ci) = 0 denotes that sample ci is
unlabeled.

2.2 Graph Embedding
NLDR methods, such as Graph Embedding [23], can be used to reduce samples ci originally
represented as K-dimensional vectors xi 2 X into k-dimensional vectors yi 2 Y, where k< K.
To perform this transformation, data X is first represented as an affinity matrixW, which
describes the similarity between all pairs of objects ci, cj 2 S as a graph G = {V, E}, where V rep-
resents all objects ci and cj as vertices, and E represents the edges which connect them.

Similarity is computed via the Gaussian diffusion kernel g ¼ e�
jjxi�xj jj2

s , which affects the
weighting of the components inW. The kernel allows for a flexible local neighborhood con-
straint induced based on σ. A small σ narrows the size of the local neighborhood such that
fewer points are deemed similar, whereas a large σ increases the size of the local neighborhood
such that more points are similar. We set σ = maxi,j||xi − xj||2.

Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS)
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Alternatively, E, the edges in the graph G, expressed via the affinity matrix,W, can be
pruned to further constrain local neighborhoods for NLDR. E can be defined based on a local
neighborhood size determined by the number of nearest neighbors κ. For each ci, if cj is one of
the κ-nearest neighbors of ci, then we may include cj in the setKi and we can express the edge
as E(ci, cj) = 1. The weight matrixW represents a non-binary extension of the graph G, which
takes into account the explicit similarity between objects ci and cj in terms of xi and xj such that

Wðxi; xjÞ ¼
(

g; if cj 2 Ki

0; otherwise:
; ð1Þ

As performed in the normalized cuts algorithm [23], the affinity matrix is normalized such
that

~Wðxi; xjÞ ¼
XN
ii

Wðxii; xjÞ �
XN
jj

Wðxi; xjjÞ
 !�1

Wðxi; xjÞ: ð2Þ

~Wðxi; xjÞ is used to solve the eigenvalue problem
ðD� ~WÞe ¼ lDe; ð3Þ

where D is a diagonal matrix containing the trace of ~W , and e are the eigenvectors. The embed-
ding YGE is formed by taking the most dominant eigenvectors eβ, β 2 {1, 2, . . ., k}, correspond-
ing to the k smallest eigenvalues λβ, where k corresponds to the dimensionality of YGE.

2.3 Semi-Supervised Agglomerative Graph Embedding
Adding semi-supervised learning to DR is performed by modifying the Graph Embedding
algorithm to introduce the label information ℓ(ci). A typical strategy for introducing label infor-
mation into the Graph Embedding framework is to apply an additional set of weighting con-
straints to describe pairs of ci and cj with either the same (ℓ(ci) = ℓ(cj)) or different (ℓ(ci) 6¼ℓ(cj))
labels. We utilize a methodology used by Zhao et al. [35], SSAGE, which includes a multiplier

to the Gaussian diffusion kernel g ¼ e�
jjxi�xj jj2

s , where σ = maxi,j||xi − xj||2, such that the affinity
matrix is now defined as

Ŵðxi; xjÞ ¼

gð1þ gÞ; if ‘ðciÞ ¼ ‘ðcjÞ and cj 2 Ki

gð1� gÞ; if ‘ðciÞ 6¼ ‘ðcjÞ and cj 2 Ki

g; if ‘ðcjÞ ¼ 0 and cj 2 Ki

0; otherwise

ð4Þ

8>>>>>>><
>>>>>>>:

Ŵ contains the weighted similarities between ci and cj based on (a) its position in K-dimen-
sional space via the Gaussian diffusion kernel, (b) its proximity to its κ nearest neighbors, (c)
whether that neighbor is of the same label class or not.

Ŵ is subsequently normalized via Eq (2) and the resulting normalized affinity matrix
undergoes eigenvalue decomposition as performed in Eq (3). As with GE, the embedding YSS

for SSAGE is formed by taking the most dominant eigenvectors eβ, β 2 {1, 2, . . ., k}, corre-
sponding to the k smallest eigenvalues λβ, where k is the dimensionality of YSS.

Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS)
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3 AdDReSS

3.1 Brief Overview
The spirit of AdDReSS is embodied in Fig 1. Given an initial low-dimensional representation, a
Support Vector Machine (SVM) [45] classifier is used to identify instances of the classes that
are difficult to classify. The goal then, is to separate these two classes in a lower dimensional
embedding representation such that each class is in a distinct region of the low dimensional
embedding space. AdDReSS invokes AL to identify difficult to classify samples from within the
embedding representation. These samples are subsequently used to train the semi-supervised
agglomerative graph embedding (SSAGE) strategy to produce a more separable representation
of the data. This process can be iterated to further refine the embedding representation.

3.2 Active Learning by Uncertainty Sampling for Identifying Ambiguous
Samples
One can identify samples for AL by querying difficult to classify samples [5, 38, 40, 46, 47].
While many strategies have been investigated for AL using different classifiers, ultimately these
differences were found not to be heavily correlated with classification performance [5]. For
uncertainly sampling, a labeled set Str is first used to train a classifier. For each Str, γ and c
parameters are optimized by the grid search methodology proposed in Hsu et al. [48] and sub-
sequently used to predict on the unlabeled set Sts. For each sample in the unlabeled set Sts, the
classifier predicts the object class label ℓ(ci) with a certain probability that ci belongs to that par-
ticular object class ℓ(c) (i.e. P(ℓ(ci) = 1)). We can define the most ambiguous samples as those
with a probability of P(ℓ(ci)) = 0.5. We aim to find samples ci nearest to P(ℓ(ci)) = 0.5 via the
objective function

argmin
ci2Sts

��Pð‘ðciÞ ¼ 1Þ � 0:5
��: ð5Þ

Fig 1. An example of how AdDReSS improves embedding by incorporating AL. (a) The original
embedding representation generated by SSDR. (b) A support vector machine classifier is used as an active
learner. (c) samples within the low dimensional embedding found to be difficult to classify are selected as
candidates for training. (d) SSDR trained on the labels queried by AL provide greater separation of object
classes in the low dimensional embedding.

doi:10.1371/journal.pone.0159088.g001
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These samples ci are assigned to set Sa. Labels ℓ(ci), ci 2 Sa are queried and these ambiguous
samples are added to the training set

Str ¼ ½Str [ Sa�: ð6Þ

Learning via the updated labels ℓ(ci), ci 2 Str, we endeavor to improve classification perfor-
mance compared to Str =2 Sa.

3.3 Algorithm
The iterative Algorithm AdDReSS is presented below. Additionally, we employ the synthetic
Swiss Roll example [24] presented in Fig 2 to guide the explanation of the AdDReSS algorithm.
Fig 2(a) shows the 3-dimensional representation of the Swiss Roll dataset [24] shown with the
two classes. The goal is to separate these two classes in a lower dimensional embedding repre-
sentation such that each class is in a distinct region of the low dimensional embedding space.
Fig 2 illustrates how the use of active learning is able to improve upon the separability of the
two classes for this dataset.

Fig 2. Swiss Roll example. (a) 3D Swiss Roll with all labels revealed. (b) 3D Swiss Roll with initial labels
ℓ(Str) revealed. (c) Initial 2D embedding with labels. (d) Initial 2D embedding with initial labels ℓ(Str). (e)
Ambiguous samples (in blue) are determined via active learning. (f) Region of the Swiss Roll at the class
boundary (region is shown as a box in (e)). Note the selection of ambiguous samples (in blue) at the
boundary between the two classes (in red and green). (g) Subsequent 2D embedding incorporating newly
queried labels from the ambiguous samples. (h) Region near the class boundaries (shown as a box from (g))
revealing the increased separation between the two classes (in red and green) following application of the
AdDReSS scheme.

doi:10.1371/journal.pone.0159088.g002
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Difficult to classify examples are identified by the SVM classifier in embedding space and are
shown in blue in Fig 2(e). The newly identified objects discovered via AL attract towards similarly
labeled samples already available to SSAGE and the classifier while repelling from dissimilarly
labeled samples, thus creating the separation shown in Fig 2(g). Thus, it is clear that the discovery
of difficult to classify labels can produce greater separation of the embedding as these samples are
leveraged by SSAGE. The use of random sampling would probabilistically provide a uniform
sampling of points in the dataset such that SSAGE could not leverage the samples at the classifi-
cation boundary, resulting in a smaller degree of separation of object classes.

Line 0 of the algorithm refers toModel Initialization, the construction of the initial embed-
ding YAd, and is illustrated in Fig 2(c) which shows the application of AdDReSS on the Swiss
Roll dataset. The initialized embedding YAd is created using data X via GE. In Fig 2(d), the
revealed labels used for active learning are mapped onto YAd.

The subsequent illustrations, Fig 2(e) and 2(g), represent successive runs of Active Learning
andModel Refinement via SSDR, respectively, which are contained within the while loop of the
algorithm (lines 2-7).

Algorithm AdDReSS

Input: X, ℓ(Str)
Output: YAd

begin
0. Build initial embedding YAd using X, ℓ(c) = { } via Eq (3)
1. while Sts 6¼ { }
2. Train classifier using YAd, ℓ(Str)
3. Predict ℓ(ci) in Sts using classifier model in Step 2
4. Identify ambiguous samples from ci 2 Sts via Eq (5)
5. Query labels ℓ(ci), ci 2 Sa
6. Update Str via Eq (6)
7. Update embedding YAd using updated ℓ(Str) via Eq (4)
8. end
9. return YAd

end

Lines 2-6 of the algorithm represent the Active Learning component described earlier in Sec-
tion 3.2, where ambiguous samples are identified based on the results of a trained classifier.
Although Doyle et al. [5] have suggested that the particular choice of active learner is not sig-
nificantly correlated with classifier performance, we have chosen the Support Vector Machine
(SVM) classifier to identify the ambiguous samples for the following reasons. Firstly, SVMs
have been shown to be highly generalizable to new unseen testing data, suggesting that the
algorithm can consistently identify ambiguous samples [45, 46]. Secondly, SVMs have been
heavily investigated and employed for active learning [49, 50]. Finally, SVMs, like GE, operate
on a kernel representation of the data, allowing for seamless identification of ambiguous sam-
ples derived from the kernel space in construction of the embeddings. A linear kernel was used
based on the assumption that the NLDR method GE provides a linearly separable embedding
as GE is able to account for non-linear data. We have previously shown the ability of linear ker-
nel SVM to separate biomedical data using low dimensional representations from NLDRmeth-
ods [13].

Fig 2(e) shows a visualization of the ambiguous samples found via SVM classification of Fig
2(d). Difficult to classify samples (shown as blue points) are found at the intersection of the
two labeled classes (Fig 2(f)). New labels are obtained for these samples and added to the train-
ing set, completing the active learning phase (lines 2-6).

Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS)
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Line 7 of the algorithm represents theModel Refinement component where the updated
label set ℓ(Str) found via active learning is used to create an improved embedding representa-
tion via SSDR (Fig 2(g)). This representation demonstrates an improvement upon the previous
embedding (Fig 2(c)). These steps of identifying samples (Fig 2(e)) and generating an opti-
mized representation (Fig 2(g)) may be repeated until there are no additional unlabeled sam-
ples available for querying or until there is a lack of ambiguous samples to be queried.

4 Experimental Design

4.1 Dataset Description
A total of 4 datasets (D1—D4) were used in this study. These datasets include:D1: gene-expres-
sion of prostate cancer,D2: protein expression of ovarian cancer,D3: breast histology image
data, andD4: synthetic brain image data. The datasets are summarized in Table 1.

4.1.1D1: Gene Expression of Prostate Cancer. Preprocessing: Gene expression data [8]
was acquired from the Biomedical Kent-Ridge Repositories (http://datam.i2r.a-star.edu.sg/
datasets/krbd/), consisting of high quality expression profiles from 52 prostate tumors and 50
non-tumor (normal) prostate samples. The samples are derived from oligonuleotide microar-
rays containing probes for 12,600 genes.

Feature Extraction: No additional feature extraction was performed and all embeddings
were calculated directly from the provided data. For all results, the K = 12,600 dimensional
dataset was reduced down to dimensionality k 2 {2,3}.

4.1.2D2: Protein Expression of Ovarian Cancer. Preprocessing: The study [4], obtained
from the Biomedical Kent-Ridge Repositories (http://datam.i2r.a-star.edu.sg/datasets/krbd/)
uses proteomic spectra extracted from serum to distinguish 91 neoplastic from 162 non-neo-
plastic disease within the ovary. The proteomic spectra generated by SELDI mass spectroscopy
for each sample contains the relative amplitude of 15,154 intensities at each molecular mass /
charge (M/Z) identity.

Feature Extraction: No additional feature extraction was performed and all embeddings
were calculated directly from the provided data. For all results, the K = 15,154 dimensional pro-
tein spectra was reduced down to dimensionality k 2 {2,3}.

4.1.3D3: Mitotic Detection in Breast Cancer Histological Images. Preprocessing: This
dataset was obtained from the mitosis 2012 ICPR contest [43]. The task is mitotic nuclei identi-
fication (http://www.ipal.cnrs.fr/event/icpr-2012). Five breast cancer biopsy slides are stained
with hematoxylin and eosin (H&E). In each slide, pathologists selected 10 high power fields
(HPF) at 40X magnification. An HPF has a size of 512 × 512 μm2. Each HPF was scanned by
an Aperio XT scanner at 0.2456 μm per pixel to create a 2084 × 2084 image. These 50 HPFs
contain 316 annotated mitotic nuclei in total and an automated nuclear detection algorithm is
used to select an additional 8592 non-mitotic nuclei for a total of 8908 nuclei.

Table 1. Datasets used for evaluation.

BiomedicalDatasets Description Features

D1: Prostate Cancer 52 Tumor, 50 Normal Gene Expression (12600)

D2: Ovarian Cancer 162 Tumor, 91 Normal Protein Expression (15154)

D3: Breast Histopathology 316 Mitotic nuclei, 8592 Non-mitotic nuclei Multi-window RGB Intensities (758)

D4: BrainWeb

109 × 131 image

5,975 total Grey Matter and White Matter pixels

2607 Grey Matter, 3368 White Matter
Texture (14)

doi:10.1371/journal.pone.0159088.t001
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The automated nuclei detection algorithm involves the application of a blue ratio transfor-
mation [51] upon each HPF followed by a global thresholding via Otsu’s method [52] to obtain
a binary image. Following a morphologic opening operation applied to the binary image, we
assign the centroid of each connected component as a nucleus. Patches containing each nucleus
as its centroid are illustrated in Fig 3.

Feature Extraction: 8908 nuclei are processed using the centroid of each nuclei as the center
of an 8 × 8 image. In this manner, 8 × 8 images are generated for 4 resolutions (20X, 10X, 5X,
and 2.5X). These RGB intensities for all pixels across all the 4 patch resolutions are subse-
quently vectorized such that 8 × 8 × 4 × 3 = 768 RGB intensities [53]. The K = 768 dimensional
feature vector was reduced down to dimensionality k 2 {2, 3}.

4.1.4D4: BrainWeb Images. Preprocessing: Synthetic brain data [44] was acquired from
the Montreal Neurological Institute (http://www.bic.mni.mcgill.ca/brainweb/), consisting of
simulated proton density (PD) MRI brain volumes at various noise and bias field inhomogene-
ity levels. Gaussian noise artifacts have been added to each pixel in the image, while inhomoge-
neity artifacts were added via pixel-wise multiplication of the image with an intensity non-
uniformity field. Parameters for Gaussian noise artifacts (NO) ranged from 1% to 9% noise.
Similarly, intensity non-uniformity (RF) ranged from 0 to 40%. Images were acquired at a slice
thickness of 1mm. The dataset provides corresponding labels for each of the separate regions
within the brain, including white matter (WM) and grey matter (GM). A single slice is used in
this study comprising WM and GM alone (ignoring other brain tissue classes).

Feature Extraction: 14 texture features [54] were extracted from each image on a per-pixel
basis: angular second moment, contrast, correlation, sum of squares variance, inverse differ-
ence moment, sum average, sum variance, sum entropy, entropy, difference variance, differ-
ence entropy, two features of information measure of correlation, and max correlation
coefficient. These features are based on calculating statistics from a gray level intensity co-
occurrence matrix constructed from the image, and were chosen due to previously demon-
strated discriminability between cancerous and non-cancerous regions in the prostate [55] and
different types of brain matter [56] for MRI data. For all results, the K = 14 dimensional texture
feature space is reduced to dimensionality k 2 {2, 3}.

4.2 Comparative Strategies
Our experimental design was constructed to highlight the differences between embeddings
generated via three schemes: (1) Graph Embedding (GE), (2) Semi-Supervised Agglomerative
Graph Embedding (SSAGE) and (3) AdDReSS, a SSDR method using active learning. A sum-
mary of the methods is presented in Table 2. An empirical maximum (“Empirical Max”) is also
shown in some of the plots to demonstrate a ceiling for classification performance. The empiri-
cal maximum is calculated as the highest ϕAcc obtained for any single iteration of Y such that

Fig 3. Selection of mitotic and non-mitotic nuclei from the MITOS2012 dataset. A nuclei candidate
detection algorithm is used and patches centered at each candidate centroid are extracted.

doi:10.1371/journal.pone.0159088.g003
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�EM ¼ maxi;l½�Acc
i ðYAc

l Þ�, where i 2 {1, 2, . . ., n} denotes specific run of YAc with a unique initial

training set Sts.

4.3 Embedding Parameters
Embeddings YAd and YSS for AdDReSS and SSAGE, respectively, (refer to Sections 2.3 and 3.3
for more details) were generated with 20 different randomly selected training sets Str of training
samples. Measures designed to evaluate each embedding were calculated across multiple itera-
tions, YAd

l% , corresponding to an embedding for a percentage l of revealed labels ℓ(ci). These tri-
als were repeated across a range of parameters for each datasetD1-D3 (as described in Section
4). Embeddings YGE were also generated for unsupervised GE (refer to Section 2.2 for more
details) for comparison, but since no label information is used, only one embedding is obtained
across all label iterations for each parameter set. Optimal κ parameters κ 2 {2, . . ., n − 1} were
selected for all experiments, where n is the number of samples in the dataset.

4.4 Training Parameters
Each dataset is divided equally into training and testing pools, E tr and E ts, respectively, for the
purpose of an unbiased evaluation of the resulting Y. Random stratified sampling was per-
formed such that samples for each of E tr and E ts are randomly chosen such that the number of
positive and negative class labels ℓ(c) is the same in both E tr and E ts. Note that E tr and E ts are
distinct from the training and testing sets Str and Sts used for querying samples for active learn-
ing. Str and Sts are solely used for construction of the embedding and make up the entirety of
the training pool E tr , described in this section such that E tr = [Str [ Sts]. Meanwhile, the labels
‘ðE tsÞ in the testing pool are used only for analysis and are not used for constructing Y.

4.5 Performance Evaluation
We evaluate AdDReSS on the basis of summarize 7 evaluation measures summarized in
Table 3. 5 measures have been previously explored, and we refer the reader to the provided
citations and Appendix for additional details on Random Forest classification accuracy [57],
Silhouette Index [58], and Raghavan Efficiency [59]. Additionally, we present 2 new additional

Table 2. Strategies compared in this work.

ReductionStrategy Description KeyEquation

GE [23] Unsupervised NLDRmethod which does not use any label information
Wðxi; xjÞ ¼

g; if cj 2 Ki

0; otherwise

(

SSAGE [35] SSDRmethod which utilizes random sampling

Ŵ ðxi; xjÞ ¼

gð1þ gÞ; if ‘ðciÞ ¼ ‘ðcjÞ and cj 2 Ki

gð1� gÞ; if ‘ðciÞ 6¼ ‘ðcjÞ and cj 2 Ki

g; if ‘ðcjÞ ¼ 0 and cj 2 Ki

0; otherwise

8>>><
>>>:

AdDReSS SSDR method using active learning

Ŵ ðxi; xjÞ ¼

gð1þ gÞ; if ‘ðciÞ ¼ ‘ðcjÞ and cj 2 Ki

gð1� gÞ; if ‘ðciÞ 6¼ ‘ðcjÞ and cj 2 Ki

g; if ‘ðcjÞ ¼ 0 and cj 2 Ki

0; otherwise

8>>><
>>>:
argmin

ci2Sts

��Pð‘ðciÞ ¼ 1Þ � 0:5
��:

doi:10.1371/journal.pone.0159088.t002
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measures (Maximum Query Efficiency and Maximum Information Gain) to illustrate the
learning rates provided via an active learning approach as compared to a random sampling
approach. These two measures are described below.

4.5.1 Evaluation of Maximum Query Efficiency (ϕMQE)
While Raghavan Efficiency is useful as an overall measure, there remain important insights
that cannot be surmised by the global measure. One example is the cost savings associated with
using active learning based dimensionality reduction compared to with traditional SSDR using
random sampling. Maximum Query Efficiency is the ratio between the maximum difference in
the number of labels necessary to achieve the same classification performance and the number
of potential queries such that

�MQE ¼ max
�Acc

lSS � lAd

N

� �
; ð7Þ

where lSS and lAd refer to the mean number of labels queried by SSAGE and AdDReSS, respec-
tively, to achieve a classification performance ϕAcc. N refers to the number of total samples
ci 2 E . A larger ϕMQE is indicative of greater savings in terms of labels queried.

4.5.2 Evaluation of Maximum Information Gain (ϕMIG)
Another useful measure of active learning performance is the maximum information gain
from using a particular algorithm of choice. We define maximum information gain as the max-
imum difference in classification performance ϕAcc at a given label query amount l, such that

�MIG ¼ max
l
½ ��AccðYAd

l Þ � ��AccðYSS
l Þ�: ð8Þ

Table 3. Summary of Evaluation Measures.

EvaluationMeasure Description

Classification Accuracy (ϕAcc) [57] Classifier accuracy (Acc) is calculated to evaluate class
separability within the embedding

Silhouette Index (ϕSI) [58] Silhouette Index (SI) offers an independent measure to quantify
the separation of multiple classes in the embedding. SI can
detect more subtle changes in the embedding with regards to
overall class separation compared to classification accuracy.

Embedding Variance via Classification
Accuracy (ρAcc) [57]

It is anticipated that active learning will be able to consistently
identify training instances, Sa, which will lead to improved

classification, whereas random sampling will show more varied
improvement due to the variance in the specific training

instances chosen.

Embedding Variance via Silhouette
Index (ρSI) [58]

Similar to ρAcc, we also aim to quantify the variance of the
embedding with regards to the Silhouette Index, which reflects

the separability of the two object classes in terms of the
Euclidean distance between data points in the embedding Y.

Raghavan Efficiency (ϕEff) [59] Raghavan Efficiency describes the rate of learning among active
learning algorithms. We use ϕEff to compare the overall learning

rate between 1) AdDReSS vs GE, 2) SSAGE vs GE and 3)
AdDReSS vs SSAGE.

MaximumQuery Efficiency (ϕMQE) MaximumQuery Efficiency is the ratio between the maximum
difference in the number of labels necessary to achieve the
same classification performance and the number of potential

queries.

Maximum Information Gain (ϕMIG) We define maximum information gain as the maximum
difference in classification performance ϕAcc at a given label

query amount l

doi:10.1371/journal.pone.0159088.t003
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A larger ϕMIG refers to a larger difference between the classification performance between
embeddings constructed by AdDReSS and embeddings generated by SSAGE.

5 Results and Discussion

5.1 Evaluation via Classifier Accuracy (ϕAcc)
Fig 4 shows the classification performance of AdDReSS against SSAGE and GE on four bio-
medical datasets (D1—D4), where different amounts of labeled data l are revealed to the classi-
fier. We notice greater ϕAcc for AdDReSS across all amounts of revealed labels l. The accuracy
curve corresponding to AdDReSS also approaches the empirical maximum ϕAcc at a faster rate
compared to SSAGE. GE is also shown for each case as a comparison. The use of sufficient
labeled instances suggests a clear advantage in employing semi-supervision for DR. Further-
more, the improved performance of AdDReSS over SSAGE across all labeled instances reveals
a measurable difference in ϕAcc at a point between the minimum l = 10% and the maximum
number of revealed labels l = 50%. This is due to the fact that for small training size, l = 10%,
there is a significant overlap in Str for AdDReSS and SSAGE due to the identical initialization
Str. Similarly at l = 50%, training samples are exhausted from the pool E tr, such that Str ¼ E tr

for both AdDReSS and SSAGE. Therefore, the greatest measurable difference between

�AccðYAd
l Þ and �AccðYSS

l Þ can be seen where 10%<l< 50%, reflecting the difference in the active
learning and random sampling strategies towards the composition of ci 2 Str, and subsequently,
towards the resulting embeddings YAd

l and YSS
l .

5.2 Evaluation via Silhouette Index (ϕSI)
In Fig 5, we compared AdDReSS against SSAGE and GE in terms of ϕSI on datasets (D1—D4) by
revealing different amounts of labeled data l. Compared to ϕAcc, there appears to be greater sepa-
ration for ϕSI between the semi-supervised methods compared to GE. This in turn seems to sug-
gest that the separation of the object classes in the embedding space is more pronounced.
Furthermore, ϕSI(YAd) outperforms ϕSI(YSS) across all l. In contrast to ϕAcc, the improvement in
ϕSI tends to continue with increasing numbers of revealed labeled information l. Only when the
revealed labeled information is nearly l = 50% does ϕSI approach its empirical maximum ϕSI.

5.3 Evaluation of Variance (ρAcc, ρSI)
In Fig 6, we compare variance ϕAcc across varied amounts of revealed labels l for YAd, YSS and
YGE. InD4, we notice very small differences in ϕAcc, as ρAcc is found to be on average less than

Fig 4. Evaluation of Classification Accuracy.Number of instances for which labels were revealed versus mean ϕAcc for AdDReSS, SSAGE, GE, and the
maximum empirically derived ϕAcc across all runs is shown for (a)D1, (b)D2, (c)D3 and (d)D4. Standard deviation of ϕAcc shown as error bounds at each l.

doi:10.1371/journal.pone.0159088.g004
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0.0003 for all values of l. Nevertheless, we can view significant differences between ρAcc of
AdDReSS and SSAGE, with AdDReSS showing ρAcc < 0.0001 in all but one instance, and most
instances of SSAGE showing ρAcc > 0.0001. We notice greater differences in ρAcc forD1 andD2

in Fig 6(a) and 6(b) respectively, as both AdDReSS and SSAGE are more sensitive to the com-
position of initial training ci 2 Str, reflected in the higher ρAcc when l< 10%. ρAcc is subse-
quently seen to decrease with increasing l as more training samples are queried by the active
learner. For all experiments inD1, AdDReSS shows more consistency in ϕAcc as demonstrated
by lower ρAcc compared to SSAGE. Furthermore, AdDReSS shows similar ρAcc values when
compared to the unsupervised GE method, which is reflective of the precision of the classifier.
The same trends can be seen inD2 for l> 28% (Fig 6(b)), where over 29 revealed labeled
instances were used and AdDReSS shows lower ρAcc compared to SSAGE. Similar toD4, there
are very small differences in ϕAcc (less than 0.00005) across all l. However, AdDReSS shown to
have a lower ϕAcc than SSAGE in all but 1 case, where the difference between AdDReSS and
SSAGE is extremely small.

In Fig 7, we demonstrate more consistent embeddings YAd compared to YSS as demon-
strated by a lower ρSI. However, unlike with ρAcc, ρSI tends to increase with increasing l. In all
three of four datasetsD1-D4, we notice SSAGE to have greater ρSI than AdDReSS and up to 3
or 4 times greater forD2 andD4. In the final datasetD3, ρ

SI of AdDReSS steadily decreases

Fig 6. Evaluation of Variance for Classification Accuracy. Variance of ϕAcc at selected numbers of instances for which labels were revealed for
AdDReSS, SSAGE, GE are shown for (a)D1, (b)D2, (c)D3, and (d)D4.

doi:10.1371/journal.pone.0159088.g006

Fig 5. Evaluation of Silhouette Index.Number of instances for which labels were revealed versus mean ϕSI for AdDReSS, SSAGE, GE, and the maximum
empirically derived ϕSI across all runs is shown for (a)D1, (b)D2, (c)D3 and (d)D4. Standard deviation in ϕSI shown as error bounds at each l.

doi:10.1371/journal.pone.0159088.g005
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with increasing l, whereas ρSI of SSAGE experiences a slight increase with ascending l. These
trends in Figs 5 and 7 are reflective of the ability of the embedding to converge more quickly
with increasing l for AdDReSS compared to SSAGE. The embedding for GE does not change
with respect to l, therefore, there is no change in ϕSI, and ρSI = 0 in any of the cases. These
results are suggestive of a embedding representation YAd which is more stable than YSS, and is
robust to the specific ci 2 Str used to initialize AdDReSS.

5.4 Evaluation via Raghavan Efficiency (ϕEff)
In Fig 8, we show the overall differences in efficiency between each pair of methods (1)
AdDReSS vs SSAGE, 2) AdDReSS vs GE, and 3) SSAGE vs GE) employed for this study via
ϕEff. In all cases, AdDReSS outperforms SSAGE in terms of ϕEff. Furthermore, the large positive
ϕEff(YAd|YSS) values are consistent to what is seen in Fig 4, where AdDReSS shows greater ϕAcc

for varying proportions of revealed labels l.
In investigating dimensionality, ϕEff(YAd|YSS) is slightly higher overall when k = 2 forD1

andD2 compared to when k = 3, but show similar ϕEff(YAd|YSS) for the imaging datasetsD3

andD4. While the imaging datasets do not show much of a difference in ϕEff(YAd|YSS) between
dimensionalities, AdDReSS appears to show a pronounced difference in efficiency with fewer

Fig 8. Evaluation of Raghavan Efficiency. ϕEff for k 2 {2, 3} shows the comparative efficiency between AdDReSS and GE, SSAGE and GE, and AdDReSS
and SSAGE for (a)D1, (b)D2, (c)D3, and (d)D4.

doi:10.1371/journal.pone.0159088.g008

Fig 7. Evaluation of Variance for Silhouette Index. Variance of ϕSI at selected numbers of instances for which labels were revealed for AdDReSS,
SSAGE, GE are shown for (a)D1, (b)D2, (c)D3, and (d)D4. GE shows zero variance as labeled information does not affect the embedding for GE.

doi:10.1371/journal.pone.0159088.g007
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dimensions when evaluating the gene and protein expression datasets. While it is unclear why
this difference is pronounced in the gene expression and proteomic datasets, overall, the results
suggest that utilizing active learning could be used to represent the data with fewer features
compared to random sampling.

The improvement in efficiency afforded by AdDReSS compared to SSAGE is summarized in
Table 4 using GE as the baseline. Table 4 shows the percentage increase between ϕEff(YAd|YGE)
and ϕEff(YSS|YGE) for all datasetsD1-D4. Overall, the mean percentage improvement in ϕEff across
all datasets was found to be +10.52% for k = 2 and +60.05% for k = 3 from using AdDReSS
instead of SSAGE, suggesting that AdDReSS appears to outperform SSAGE as the number of
dimensions begins to increase.

5.5 Evaluation via Maximum Information Gain (ϕMIG)
In Fig 9, we show the maximum amount of information gain that can be achieved via AdDReSS
compared to SSAGE for each dataset. ForD4, ϕ

MIG = 0.0208, which means there is a maximum
improvement in ϕAcc of over 2% (from 0.8340 to 0.8548) due to AdDReSS compared to
SSAGE. This improvement in ϕAcc via YAd is equivalent to 60 additional correctly classified
samples forD4 compared to YSS. In Fig 9(a), when l = 46% (47 labels revealed),D1 shows ϕ

MIG

= 0.0608, with over an 8% improvement in ϕAcc when using AdDReSS compared to SSAGE.
ForD2, ϕ

MIG = 0.0465, with an improvement from 0.8764 to 0.9228 in terms of ϕAcc and the
best improvement is found when l< 30% (less than 72 labels revealed). Lastly, forD3, ϕ

MIG =
0.0079, which is significant given the high overall classification performance in the dataset. The
maximum information gain also occurs when l< 30% forD3. The results for ϕ

MIG suggest a
faster rate of learning when using AdDReSS compared to SSAGE.

Table 4. Percent improvement in Raghavan efficiency via AdDReSS over SSAGE.

D1 D2 D3 D4 Mean

k = 2 +18.09% +11.53% +15.79% +1.94% +11.84%

k = 3 +172.41% +40.95% +15.38% +11.49% +60.05%

Mean +95.25% +26.24% +15.59% +6.71% +35.95%

doi:10.1371/journal.pone.0159088.t004

Fig 9. Evaluation of Maximum Information Gain. ϕMIG shows areas of maximum information gain (shown as a dashed black line) in terms of the difference
in ϕAcc between AdDReSS and SSAGE for (a)D1, (b)D2, (c)D3, and (d)D4.

doi:10.1371/journal.pone.0159088.g009
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5.6 Evaluation via MaximumQuery Efficiency (ϕMQE)
Fig 10 illustrates the number of fewer labels required for AdDReSS to achieve the same classifi-
cation performance ϕAcc as SSAGE. ForD4, ϕ

MQE = 0.0698, which reflects the fact that
AdDReSS requires an average of 417 fewer labels than SSAGE to achieve ϕAcc = 0.8462. Stated
another way, SSAGE required the use of an additional 6.98% of the labels lðciÞ; ci 2 E , to
achieve the same performance as AdDReSS. ForD1, ϕ

MQE = 0.1748. While an average of 25
revealed labeled instances were used to achieve ϕAcc = 0.74 for AdDReSS, SSAGE required an
average of 43 revealed labeled instances in order to achieve the same ϕAcc. Similarly, forD2,
ϕMQE = 0.1730, such that AdDReSS required, on average, 74 labels to achieve ϕAcc = 0.9244
while SSAGE required nearly the entire training pool, E tr , of 126 labels, as shown in Fig 10(c).
AlthoughD3 showed a relatively small ϕMIG, the ϕMQE = 0.2817, which results in 2509 fewer
training cases for YAd to achieve the same classification accuracy of YSS at l = 4178. Put another
way, YSS required 2.503 times as many training samples to achieve the classification perfor-
mance of YAd at l = 1669. Overall, forD1 �D4, AdDReSS was able to achieve the same classifi-
cation accuracy as SSAGE while utilizing a mean of 48.8% (and up to 60%) fewer labels.

6 Concluding Remarks
In this work, we presented a novel nonlinear dimensionality reduction methodology, Adaptive
Dimensionality Reduction with Semi-Supervision (AdDReSS), which attempts to seamlessly
integrate active learning into semi-supervised dimensionality reduction (SSDR) to yield low
dimensional data representations of high dimensional data. To date, no methods that we are
aware of, have demonstrated the utility of active learning for improving low dimensional data
representations. These representations yield greater classification accuracy and class separabil-
ity while using fewer class labels. AdDReSS attempts to address the problems of classifying ‘big
data’ and the very real problem of often not having class labels or annotations with which to
train a classifier. Our scheme employs the use of active learning to query fewer labels which
contribute the most towards building low dimensional embeddings with high object class sepa-
rability and classification performance. We quantified the differences between AdDReSS and
SSAGE on problems involving imaging and non-imaging channels from 4 distinct biomedical
datasets (MR brain imaging, prostate gene expression, ovarian proteomic spectra, and breast
histology images). Based on the results assessed over 8000 experiments, we make the following
observations:

Fig 10. Evaluation of MaximumQuery Efficiency. ϕMQE describes the maximum efficiency in terms of queried labels given the same ϕAcc (shown as a
dashed black line) between AdDReSS and SSAGE for (a)D1, (b)D2, (c)D3, and (d)D4.

doi:10.1371/journal.pone.0159088.g010

Adaptive Dimensionality Reduction with Semi-Supervision (AdDReSS)

PLOS ONE | DOI:10.1371/journal.pone.0159088 July 15, 2016 17 / 23



• AdDReSS has a greater predictive potential compared to SSAGE and GE based on classifica-
tion accuracy when different numbers of instances have their labels revealed.

• AdDReSS achieved a higher Silhouette Index compared to SSAGE and GE, suggestive of an
embedding with greater separation between the object classes.

• In comparisons of overall efficiency, AdDReSS learns at a faster rate of convergence to the
maximum possible accuracy compared to SSAGE and GE, measured by a mean 35.95%
increase in Ragahavan efficiency.

• The potential savings in terms of the number of labels to be queried to achieve the same clas-
sification accuracy was shown to be up to 56% for AdDReSS compared to SSAGE across the
datasets considered.

• AdDReSS was also found to be more robust to randomized training set initialization, in that
it appeared to have a lower variance in terms of classification accuracy and Silhouette Index
compared to SSAGE in the datasets considered.

Our findings suggest that active learning has a measurable effect compared to random sam-
pling on SSAGE for embedding construction and that AdDReSS could be a powerful data anal-
ysis and classification tool for high dimensional biomedical data, especially in scenarios where
partial or incomplete annotations and class labels are available. Future work will involve further
evaluation of the effects of AL on SSDR methods beyond the ones considered in this paper.

Appendix

Evaluation of Classification Accuracy (ϕAcc)
Classifier accuracy (Acc) is calculated to evaluate class separability within the embedding.

�Acc ¼ TP þ TN
TP þ TN þ FP þ FN

: ð9Þ

where TP is the number of true positives, TN is the number of true negatives, FP is the number
of false positives, and FN is the number of false negatives.

Specifically, a Random Forest classifier (or bagged decision tree classifiers) [57] has been
used due to its robustness and to reduce bias by selecting a different classifier than the one used
for query ambiguous samples (in our case, an SVM classifier). The Random Forest classifier is
constructed using 50 decision tree classifiers each trained on a random third of the training
pool E tr. Classification accuracy ϕAcc is subsequently calculated based on the consensus of pre-
dicted labels ℓ(ci) of the Random Forest classifier on the independent testing pool ci 2 E ts.

Evaluation of Object Class Separation via Silhouette Index (ϕSI)
Silhouette Index (SI) offers an independent measure to quantify the separation of multiple clas-
ses in the embedding. SI can detect more subtle changes in the embedding with regards to over-
all class separation compared to classification accuracy. The Silhouette Index (ϕSI) [58] is a
cluster validity measure which jointly takes into account (1) the compactness of samples
belonging to the same object class (ℓ(ci) = ℓ(cj)) and (2) the separation of samples belonging to
different object classes (ℓ(ci)6¼ℓ(cj)). The intra-cluster compactness is measured by Ai = ∑j,ℓ(cj) =
ℓ(ci)kyi − yjk2, which represents the average distance of a sample ci from other samples cj of the
same class in Y. Whereas, inter-cluster separation is measured by Bi = ∑j,ℓ(cj)6¼ℓ(ci)kyi − yjk2, the
minimum of the average distances of a sample ci from other samples in different classes. Thus,
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the formulation for ϕSI is as follows,

�SI ¼
XN

i

Bi � Ai

max½Ai;Bi�
: ð10Þ

ϕSI ranges from -1 to 1, where -1 demonstrates the worst, and 1 is the best possible embedding.
For each experiment, ϕSI is calculated using all labels ℓ(ci), ci 2 E tr in Y.

Evaluation of Embedding Variance via Classification Accuracy (ρAcc)
The rate of learning is affected by the initial training examples Str provided to the algorithm. It
is anticipated that active learning will be able to consistently identify training instances, Sa,
which will lead to improved classification, whereas random sampling will show more varied
improvement due to the variance in the specific training instances chosen. We test the variance
in ϕAcc of our algorithm (AdDReSS) compared to SSAGE across all runs, each with a unique
random initializations Str. Classification Variance is computed as

rAcc ¼
Pn

i ð�Acc
i � ��AccÞ2
n� 1

; ð11Þ

where n = 20, representing the number of random initializations, and ��Acc refers to the mean

across n values of �Acc
i , ��Acc ¼ 1

n

Pn
i �

Acc
i . A lower ρAcc suggests greater robustness to initializa-

tion via a more consistent ϕAcc.

Evaluation of Embedding Variance via Silhouette Index (ρSI)
Similar to ρAcc, we also aim to quantify the variance of the embedding with regards to the Sil-
houette Index, which reflects the separability of the two object classes in terms of the Euclidean
distance between data points in the embedding Y. ρSI captures the variance in the embedding Y
across all runs, each with unique, random initializations, such that Silhouette Variance is com-
puted as

rSI ¼
Pn

i ð�SI
i � ��SIÞ2

n� 1
; ð12Þ

where N = 20, the number of random initializations, and ��SI refers to the mean across n values

of �SI
i , ��

SI ¼ 1
n

Pn
i �

SI
i . A lower ρSI suggests greater robustness to initialization in terms of a

more consistent ϕSI.

Evaluation of Overall Embedding Learning Rate via Raghavan
Efficiency (ϕEff)
Raghavan Efficiency [59] describes the rate of learning among active learning algorithms. Fig
11 [46] provides a visual interpretation of Raghavan Efficiency, where the region identified by
A represents the area between the the Active Learning curve and the maximum achievable per-
formance, and the region defined by B represents the area between the the Active Learning
curve and the Random Sampling curve. Raghavan Efficiency is defined by a subtraction of the
ratio A/B such that ϕEff ranges between 0 and 1 and larger values of ϕEff are indicative of a faster
learning rate. We use ϕEff to compare the overall learning rate between 1) AdDReSS vs GE, 2)
SSAGE vs GE and 3) AdDReSS vs SSAGE.
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To compare the efficiency of an active learner YAc against random sampling YRd, ϕEff may
be expressed as

�Eff ðYAcjYRdÞ ¼ 1� A
Aþ B

¼ 1�
Ptf

t¼t0
�AccðYRd

l¼tf
Þ � �AccðYAc

l¼tÞPtf
t¼t0

�AccðYRd
l¼tf

Þ � �AccðYRd
l¼tÞ

;

ð13Þ

where t0 and tf represent the number of initial training samples used to learn Y, and the final
number of training samples used to learn Y, respectively. The empirical maximum accuracy
refers to the highest ϕAcc obtained for any single iteration of Y such that

�EM ¼ maxi;l½�Acc
i ðYAc

l Þ�, where i 2 {1, 2, . . ., n} denotes specific run of YAc with a unique initial

training set Sts.
Additionally, to compare AdDReSS and SSAGE against the same baseline comparison, GE,

we summarized these results using percentage comparison between for 1) ϕEff (YAd|YGE) and 2)
ϕEff(YSS|YGE). The percentage change in ϕEff for AdDReSS from SSAGE can be expressed as

D�Eff ¼ 1� �Eff ðYAdjYGEÞ
�Eff ðYSSjYGEÞ

� �
� 100%: ð14Þ
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Fig 11. Illustration describing Raghavan efficiency. A refers to the area between the Active Learning curve
and the empirically-derived maximum accuracy, and B refers to the area between the Random Sampling curve
and the Active Learning curve.
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