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ABSTRACT 
International Journal of Exercise Science 11(1): 717-729, 2018. Barefoot running is considered to 
decrease injury risk, but is not always practical, particularly while running on a fitness center treadmill.  The 
purpose of this study was to compare the kinematics of shod, barefoot, and simulated barefoot running.  Twelve 
subjects (age = 21.1 ± 1.2 years) who regularly run on a treadmill for fitness participated in the study.  After a warm 
up, each runner ran on a Biodex RTM 400 treadmill set at 7.4 mph (approximately 3.3 m/s) in their own shoes, 
barefoot, and while running “like they were barefoot” in their own shoes.  Sixteen reflective markers were affixed 
to each subject to use PlugInGait (Vicon) to determine three-dimensional body landmark coordinates and to 
compute lower extremity joint angles.  Values at touchdown and during stance were averaged over ten strides for 
analysis. Repeated measures ANOVA was implemented to determine differences based on running condition (p < 
0.05) and post hoc testing was performed with an adjustment for multiple comparisons (p<0.05/3).  At touchdown, 
ankle angle values significantly differed based on condition (6.2 ± 5.9° vs. -4.0 ± 12.0° vs, -0.2 ± 13.3°; p = 0.004 for 
shod, barefoot and simulated barefoot running, respectively) indicating that when simulating barefoot running the 
subjects altered their foot strike pattern. Stride frequency differed between shod and barefoot running (1.415±0.068 
Hz vs. 1.457±0.065 Hz; p = 0.001) but the simulated barefoot condition did not differ from the shod condition. The 
runners were able to simulate an important element of barefoot running, but they did not completely mimic their 
barefoot running pattern.   
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INTRODUCTION 
 
Arguments have been made that our bodies are not meant to run shod and that the invention of 
the well cushioned running shoe has been detrimental to runners’ bodies (21, 22, 28).  Barefoot 
running is thought to encourage mechanics that lessen injury risk which has been reported to 
range from 19 – 79% and does not appear to be decreasing over time (17, 36).  According to the 
National Sporting Goods Association, approximately 45 million people in the United States run 
on a regular basis (26).  Due to the large numbers of individuals potentially affected, it is 
important to better understand what may be done to decrease the high injury occurrence. 
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The magnitude and loading rate of vertical ground reaction forces have been related to several 
common running injuries.  Large loading rates, both maximum instantaneous and average, have 
been associated with lower-limb stress fractures (10, 25) and plantar fasciitis (29). Cheung and 
Davis (2) performed a training intervention in runners with patellofemoral pain and reported 
that a decrease in pain values and an increase in functionality scores were linked with decreases 
in instantaneous and average loading rates and vertical impact peak forces. Research related to 
the relationship between injury and the maximum vertical ground reaction force exerted on the 
body during running are mixed.  Zadpoor and Nikooyan (39) reported that for runners who 
have experienced stress fractures, the maximum vertical ground reaction force has been found 
to be significantly larger, nonsignificantly larger, or smaller than those who have not.  Pohl et 
al. (29) reported a trend towards the force being larger in subjects who had previously had 
plantar fasciitis.   
 
Running barefoot has been reported to decrease these force magnitudes and loading rates by 
some researchers (8, 14, 22).  However, some of these results indicate that the footstrike pattern 
determines whether or not these forces are diminished by running barefoot (3, 22).  In particular, 
Shih et al. (31) instructed runners to use a rearfoot striking pattern or a forefoot striking pattern 
while running barefoot and while running shod. They concluded that using a forefoot striking 
pattern decreased the loading rate for both shod and barefoot conditions, but that based on the 
loading rate, that the combination of rearfoot striking and barefoot running increased injury 
risk.  Similarly, Tam et al. (33) noted that the loading rate for barefoot running was actually 
greater than the loading rate while shod for some of their subjects. They further noted that this 
subset of runners had a larger dorsiflexion angle at touchdown and thus were likely using a 
rearfoot striking pattern.   
 
Force magnitudes or loading rates have also been found to decrease when a shorter stride length 
(or inversely a greater stride frequency if the velocity is constant) is used (16, 35).  Edwards et 
al. (9) concluded that a 10% reduction in stride length would result in a decrease in stress fracture 
risk, despite the increase in the number of impacts.  Barefoot running has been found to induce 
a shorter stride length which may decrease shock attenuation forces, and therefore injury risk 
(24). 
 
Running in minimalist shoes has not been deemed a suitable substitution for either shod or 
barefoot running. Guiliani et al. (13) reported that minimalist shoes were associated with stress 
fractures in metatarsal bones of runners who changed from traditional running shoes to 
minimalist shoes.  Willy and Davis (38) compared shod to minimalist shoe running and reported 
peak vertical impact force and average loading rates were larger in the minimalist shoes. Along 
with these differences, they noted no changes in the stride length or stride rate which are often 
found to be altered when changing from shod to barefoot running. 
 
The combination of using a shorter stride length and a midfoot or forefoot striking pattern seems 
desirable for decreasing injury risk.  However, the two are not inextricably linked but do seem 
common when running barefoot. It may be easier to instruct subjects to run as if they were 
barefoot rather than give multiple instructions, especially if the subjects are not trained runners.  
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The sizable population of runners who run on treadmills solely for fitness is typically not 
considered in running research.  In 2015, approximately 44% of health club members in the 
United States (about 24.2 million people) indicated using a treadmill (18). Adopting barefoot 
running for these runners is not practical, even if it was advantageous. Fitness clubs and gyms 
are not going to allow barefoot running due to the possibility that their clientele might be injured 
more easily if running on a treadmill barefoot.  Along with the potential injury, there are 
hygienic reasons why it would be unwise to be barefoot in a fitness facility. Giving instruction 
on using a particular foot strike pattern and stride length may not be effective for this population 
due to them not being as tuned into their specific mechanics, unlike trained runners.  However, 
because many of the desired changes come about when running barefoot, it may be possible to 
simply instruct these individuals to simulate barefoot running.  The purpose of this study was 
to compare the kinematics of shod, barefoot and simulated barefoot running in recreational 
treadmill runners. 
 
METHODS 
 
Participants 
Twelve recreationally active college students (6 males and 6 females) participated in this study.  
Individuals were eligible for participation if they regularly ran on a treadmill for exercise.  
Additionally, they needed to be in good health and injury-free for the past year to be eligible.  
None of the participants wore orthotics or shoes designed to alter foot contact.  Participants did 
not wear minimalist shoes, shoes designed for runners with a particular foot strike (e.g. forefoot 
runners) or shoes that correct for undesired foot strike (e.g. over-pronating).  The mean age, 
height and body mass of the subjects were 21.1 ± 1.2 years, 1.66 ± 0.63 m, and 65.8 ± 10.0 kg, 
respectively.  Once each participant read and signed the consent form approved by the 
California Lutheran University Institutional Review Board, they filled out a health and activity 
questionnaire. The questionnaire ensured that they were injury-free and had not experienced 
any past injury that might alter their kinematics (e.g. ACL reconstruction).  Information 
regarding the range of typical training speeds for each participant was gathered to ensure that 
the running pace selected for the study was appropriate and comfortable for each participant.  
During testing, subjects were also asked to confirm that the chosen speed was comfortable for 
them. 
 
Protocol 
All participants performed a four-minute warm up on the Biodex RTM 400 treadmill (Biodex, 
Shirley, NY) at a self-selected pace.  After this, several anthropometric measurements were taken 
for the lower body PlugInGait model (Vicon, Oxford, United Kingdom) including the length of 
each leg (anterior superior iliac spine to medial malleolus), each knee width and each ankle 
width.  Then sixteen reflective markers were affixed to the following body landmarks on each 
side of the body: anterior superior iliac spine, posterior superior iliac spine, lateral thigh, lateral 
femoral epicondyle, lateral shank, lateral malleolus, posterior calcaneus (heel), and second 
metatarsal head (toe) (19).  For shod trials, the markers for the posterior calcaneus and second 
metatarsal were placed directly on the shoe, over the landmark.   
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Participants ran on the treadmill in three different conditions with a two-minute rest between 
the three conditions.  The first condition consisted of subjects running in their own shoes at 7.4 
mph (approximately 3.3 m/s).  Prior to any trials being collected, a static trial was collected.  
Participants then stepped onto the stationary treadmill and increased the speed until the desired 
speed of 7.4 mph was obtained.  Investigators waited until a consistent movement pattern was 
achieved and then asked the participant for confirmation that they were comfortable running at 
this speed.  Once this was confirmed, motion capture data were collected for one minute to 
obtain data for the shod condition.  After this trial, the participants took off their shoes and 
reflective markers were placed directly on their right and left posterior calcaneus and second 
metatarsal.  A second static trial was collected.  As before, once a consistent movement pattern 
was achieved and participant comfort confirmed, participants then ran barefoot for one minute 
to create the barefoot running condition.  Lastly, the two reflective markers directly on each foot 
were removed and the subjects’ running shoes were put back on for a third trial. The reflective 
markers on the shoes were not altered from the original shod trial.  A static trial was collected 
prior to this final running condition.  For this trial, the participants were asked to “run as if you 
were barefoot” to create a simulated barefoot running condition.  As with the other two 
conditions, motion capture data were collected for one minute after a consistent movement 
pattern was observed and participant comfort was confirmed. 
 
During each data collection, a system of six Vicon MX40 cameras were used to capture three-
dimensional coordinates of the markers (Vicon, Oxford, United Kingdom) at 120 Hz.  Marker 
data were filtered using a 4th order Butterworth filter with a cutoff frequency of 10 Hz.  Joint 
angle data were computed using Nexus 1.8.5.   The instants of foot touchdown and takeoff were 
determined using the methodologies recommended by Leitch et al. (20) for runners with both 
rear foot and midfoot striking patterns.  The method for identifying foot touchdown was based 
on O’Connor et al. (27) and used the average of the heel and toe markers to represent the foot.  
Touchdown corresponded to a local minimum of the vertical velocity of the foot within a 
window around the minimum foot position.  The method for identifying foot takeoff was based 
on De Witt (6).  Foot takeoff was determined to be the local maximum of the vertical acceleration 
of the toe between the time of touchdown and the maximum vertical position for the toe.   
 
Joint angles were calculated using PlugInGait.  Positive angles in the sagittal plane indicated 
that the hip was flexed, the knee was flexed, and the ankle was dorsiflexed.  Positive angles in 
the frontal plane indicated that the hip was adducted, the knee was adducted (varus), and the 
ankle was inverted. Values analyzed included the sagittal and frontal plane hip, knee and ankle 
angles at right foot touchdown.  During stance, the extreme angle values were determined for 
each joint in both planes and the corresponding joint range of motion (ROM) was computed.  
Stride frequency and stride length were computed using the frame numbers and the relationship 
between the fixed treadmill velocity and the computed stride time.  Stance time (contact time) 
and swing phase time (both absolute and as a percentage of a stride) were also determined.  All 
data values for analysis were computed for the right leg for ten consecutive strides and averaged 
over the ten strides.   
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Statistical analysis 
Repeated measures ANOVA was used to determine if there was a difference in means between 
the three running conditions (shod, barefoot, and simulated barefoot) with significance set with 
p < 0.05.  Partial eta squared (hp2) was calculated to determine effect size.  If a significant main 
effect was identified, post hoc analysis was performed using Least Significant Difference (LSD). 
To correct for the multiple comparisons being made between pairs of conditions, a Bonferroni 
adjustment was made and an adjusted alpha level of 0.05/3 was used to determine significance 
for any pairwise comparison. SPSS for IBM Version 25 (Chicago, IL) was used for all statistical 
analysis.   
 
RESULTS 
 
Table 1 provides sagittal and frontal plane values for the hip, knee and ankle joints at touchdown 
(TD).  There was not a significant main effect of running condition on the hip joint and knee joint 
flexion angles at touchdown.  However, there was a significant main effect of running condition 
on the sagittal plane ankle angle at touchdown (p = 0.004; hp2 = 0.399).  In particular, the angle 
was significantly different between the shod and barefoot conditions (p = 0.007) with the ankle 
being dorsiflexed in the shod condition and plantarflexed in the barefoot condition.  There was 
no significant difference between the ankle angle values at touchdown between simulated 
barefoot and barefoot conditions.  In the frontal plane, there were no main effects of running 
condition on the hip, knee or ankle joints at touchdown. 
 
Table 1.  Mean and standard deviation joint angle values in the sagittal and frontal planes for the three conditions 
at touchdown and the p-value for any significant main effect identified with repeated measures ANOVA (p < 0.05). 

Variable Shod Barefoot Simulated 
barefoot 

p-value 
Hip Flexion (°) at TD 33.0±5.2 31.9±5.7 31.8±5.9 NS 
Knee Flexion (°) at TD  14.4±4.0 14.4±3.7 14.8±3.8 NS 
Ankle Dorsiflexion(+) /Plantarflexion (-)  at TD (°)a 6.2±5.9 -4.0±12.0 -0.2±13.3 0.004 
Hip Adduction at TD (°) 5.1±5.1 3.8±5.4 4.5±6.1 NS 
Knee Varus(+)/Valgus (-) at TD (°) -1.4±3.5 -0.9±3.3 -0.7±3.4 NS 
Ankle Inversion(+)/Eversion (-)  at TD (°)  -1.2±1.7 1.5±5.1 0.5±5.1 NS 

Note:  a Significant difference between shod and barefoot, b Significant difference between shod and simulated 
barefoot, c Significant difference between barefoot and simulated barefoot, NS indicates no significant difference.  
Significance was set at p < 0.05/3 to correct for multiple comparisons. 
 
Extreme values during stance for each joint in the sagittal and frontal planes are given in Table 
2. There was a main effect of running condition on the maximum hip flexion angle during stance 
(p = 0.024; hp2 = 0.287).  The maximum hip flexion angle was significantly larger when running 
shod compared to both the running barefoot condition (p = 0.010) and the simulating barefoot 
running condition (p = 0.014).  There was also a main effect of running condition on the 
maximum hip extension angle during stance (p = 0.002; hp2 = 0.424).  The maximum hip 
extension angle was significantly smaller when running shod compared to both running 
barefoot (p = 0.015) and simulating barefoot running (p = 0.006).  There was no main effect of 
running condition on the hip’s ROM during stance.   
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There was a main effect of running condition on the maximum knee flexion angle during stance 
(p < 0.001; hp2 = 0.799).  In particular, subjects’ maximum knee flexion angles were significantly 
smaller when running barefoot when compared to both running shod (p = 0.001) and simulating 
barefoot running (p < 0.001).  Additionally, the subjects’ maximum knee flexion angle was 
significantly smaller when simulating barefoot running when compared to running shod (p = 
0.013).  There was no main effect of running condition on the minimum knee flexion angle 
during stance.  There was a main effect of running condition on the corresponding knee ROM 
value (p < 0.001; hp2 = 0.704).  The knee flexion ROM was significantly smaller for the barefoot 
running condition when compared to the shod condition (p < 0.001) and the simulated barefoot 
running condition (p < 0.001).  
 
There was a main effect of running condition on the maximum dorsiflexion angle during stance 
(p = 0.040; hp2 = 0.254).   The barefoot running condition had a significantly larger maximum 
dorsiflexion angle than the simulated barefoot running condition (p = 0.016).  There was a main 
effect of running condition on the maximum plantarflexion angle during stance (p = 0.001; hp2 
= 0.450).  The barefoot running condition had a significantly larger maximum plantarflexion 
angle than both the shod running condition (p = 0.006) and the simulated barefoot running 
condition (p = 0.006).  There was a main effect of running condition on the corresponding ankle 
ROM (p < 0.001; hp2 = 0.651).  The barefoot running condition had a significantly larger ROM 
than both the shod condition (p = 0.001) and the simulated barefoot running condition (p < 
0.001). 
 
There were no significant main effects of running condition on the frontal plane angles 
(maximum, minimum, and ROM) for the hip, knee or ankle joints. 
 
Table 2. Mean and standard deviation extreme joint angle values in the sagittal and frontal planes for the three 
conditions during stance and the p-value for any significant main effect identified with repeated measures ANOVA 
(p < 0.05). 

Variable Shod Barefoot Simulated 
barefoot 

p-value 
Maximum Hip Flexion (°)a,b 33.6±5.6 32.1±5.8 32.2±6.3 0.024 
Maximum Hip Extension (°)a,b  -13.1±5.7 -14.0±6.0 -14.4±5.6 0.002 
Hip Flexion ROM (°) 46.7±4.2 46.1±3.8 46.7±5.0 NS 
Maximum Knee Flexion (°)a,b,c 43.6±3.9 40.1±4.6 42.5±4.1 <0.001 
Minimum Knee Flexion (°) 8.9±5.9 9.0±4.6 8.7±5.8 NS 
Knee Flexion ROM (°)a,c 34.6±6.0 31.1±5.4 33.8±6.3 <0.001 
Maximum Ankle Dorsiflexion (°)c 22.7±3.7 23.1±4.8 21.2±5.1 0.040 
Maximum Ankle Plantarflexion (°)a,c -30.8±10.2 -36.1±9.4 -32.5±9.1 0.001 
Ankle Dorsiflexion ROM (°)a,c 53.6±9.7 59.1±10.7 53.8±8.9 <0.001 
Maximum Hip Adduction (°) 10.7±6.3 10.5±6.4 10.2±6.6 NS 
Maximum Hip Abduction (°) -3.0±4.0 -3.0±4.5 -3.2±4.5 NS 
Hip Adduction ROM (°) 13.7±3.6 13.5±3.3 13.4±3.5 NS 
Maximum Knee Varus (°) 1.5±4.3       1.6±4.4      1.7±4.4  NS 
Maximum Knee Valgus (°) -6.4±4.3        -6.0±4.3    -7.5±5.3                 NS 
Knee Varus ROM (°) 7.9±2.1          7.5±2.7     9.1±3.4                 NS 
Maximum Ankle Inversion (°) 14.8±8.8        17.0±9.3   14.5±8.9                 NS 
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Maximum Ankle Eversion (°) -2.0±2.3   -1.6±2.3    -2.2±2.1  NS 
Ankle Inversion ROM (°) 16.8±10.4 18.6±11.0 16.7±10.6  NS 

Note: a Significant difference between shod and barefoot, b Significant difference between shod and simulated 
barefoot, c Significant difference between barefoot and simulated barefoot, NS indicates no significant difference.  
Significance was set at p < 0.05/3 to correct for multiple comparisons  
 
Table 3 provides values associated with stride frequency and length, as well as contact and 
swing times.  There was a main effect of running condition on the stride frequency (p < 0.001; 
hp2 = 0.619) with the barefoot condition having a significantly greater stride frequency than both 
the shod condition (p < 0.001) and the simulated barefoot condition (p = 0.001).  There was a 
main effect of running condition on the stride length (p < 0.001; hp2 = 0.624) with the barefoot 
condition having a significantly shorter stride length than both the shod condition (p < 0.001) 
and the simulated barefoot condition (p = 0.001).  There was a main effect of running condition 
on the ground contact time (p = 0.012; hp2 = 0.329).  However, post hoc testing did not reveal 
any significant pairwise differences.  There were no main effects of running condition on the 
percent contact time, swing time, or percent swing time. 
 
Table 3.  Mean and standard deviation stride frequency and timing values for the three conditions and the p-value 
for the ANOVA comparing the three conditions. 

Variable Shod Barefoot Simulated 
barefoot 

p-value 
Stride frequency (Hz) a,c 1.415±0.067 1.457±0.066 1.428±0.060 < 0.001 
Stride length (m) a,c 2.343±0.112 2.275±0.105 2.320±0.100 < 0.001 
Contact time (s)* 0.255±0.015 0.244±0.015 0.252±0.016 0.012 
Swing time (s) 0.453±0.040 0.444±0.031 0.450±0.032 NS 
Percent contact time (%) 36.17±3.17 35.52±2.32 35.93±2.64 NS 
Percent swing time (%) 63.83±3.17 64.48±2.32 64.07±2.64 NS 

Note:  a Significant difference between shod and barefoot, b Significant difference between shod and simulated 
barefoot, c Significant difference between barefoot and simulated barefoot, NS indicates no significant difference. 
*Indicates that while the ANOVA found significant differences, the post hoc testing did not identify a pair that was 
significantly different. Significance was set at p < 0.05/3 to correct for multiple comparisons.  
 
DISCUSSION 
 
The aim of this study was to compare the kinematics of shod, barefoot and simulated barefoot 
running.  In particular, the goal was to determine how the mechanics of simulated barefoot 
running compared to both shod and barefoot running.  The subjects were successful in making 
changes in their mechanics when asked to simulate barefoot running.  While not completely 
changing their shod running style to fully mimic barefoot running, they did make some 
significant changes that are frequently associated with barefoot running.  The most meaningful 
differences seen in the kinematics between the three running conditions were in the ankle 
angles.  Other studies have reported a marked difference in ankle angle at touchdown when 
running barefoot compared to running shod on a treadmill (3, 11, 12, 31) and over ground (14, 
22, 23, 33, 34). The current study found that at touchdown, the subjects had a plantarflexed ankle 
when barefoot and a dorsiflexed ankle when shod.  When simulating barefoot running, subjects 
did not differ from barefoot running and had an ankle position that was fairly neutral at 
touchdown.  
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Interestingly, there were no other sagittal angle differences at touchdown found when 
comparing the three running conditions.  Previous studies have found mixed results in the knee 
flexion angle at touchdown.  Some studies have reported no difference (22, 35, 37) while others 
have reported differences (11, 31, 33).  Those who reported differences found that the knee was 
more flexed at touchdown when running barefoot.  The lack of hip angle differences at 
touchdown is not surprising and is consistent with other studies (11, 31, 34, 37).  Because there 
was no hip or knee angle difference between shod and barefoot running, it is not surprising that 
when simulating barefoot running the subjects made no alterations to their hip or knee position 
at touchdown. 
 
It should be noted that the lack of difference in hip and knee angles coupled with the change in 
ankle angle likely indicates a change in foot orientation with the ground.  The change from 
dorsiflexed ankle when shod to plantarflexed ankle or neutral ankle when barefoot or 
simulating barefoot running suggests that the foot strike at touchdown was midfoot or forefoot 
striking when barefoot or when simulating barefoot running.  Adopting a midfoot or forefoot 
striking pattern may be the key to injury prevention. Shih et al. (31) compared different foot 
strike position when subjects were shod and barefoot.  They reported larger peak and average 
loading rates when subjects used rear foot strike when compared to forefoot strike.  This larger 
peak and average rate is speculated to be responsible for tibial and lower extremity injury (22).  
Daoud et al. (4) performed a retrospective study and found that 74% of middle and long distance 
collegiate runners experienced a moderate or severe injury each year.  Of these, those habitually 
using a rearfoot strike pattern were over twice as likely to experience a repetitive stress injury. 
It appears that avoiding a rearfoot strike pattern could be beneficial to avoiding large vertical 
force or large rates of force loading. Diebal et al. (7) determined that for some individuals with 
chronic exertion compartment syndrome who had run using a rearfoot striking pattern could 
decrease compartment pressures by utilizing a forefoot striking pattern.  Additionally, they 
decreased their peak vertical force and vertical impulse.  This might indicate that the current 
subjects decreased their risk for tibial and lower extremity injuries when running barefoot and 
when simulating barefoot running. When instructed to “run like they were barefoot” the 
subjects were successful in adopting the preferred foot strike used in barefoot running. 
 
The ankle continued to be a source of differences between the conditions during stance.  When 
barefoot, the maximum dorsiflexion angle was larger when compared to the simulated barefoot 
condition while the shod value was not different from either condition. The maximum 
plantarflexion angle was largest for the barefoot condition with the shod running condition 
having the smallest maximum and the simulated barefoot condition value being between the 
two other conditions’ values.  The barefoot condition had the largest ankle range of motion 
during stance with the shod and simulated barefoot conditions being smaller and comparable.  
The greater range of motion for the barefoot condition was not related to the foot strike position, 
but rather the larger maximum dorsiflexion angle which was obtained during stance and the 
larger plantarflexion angle obtained near or at toe off. Larger ROM values when barefoot have 
been reported by other authors (32, 33). Additionally, Shih et al. (31) reported larger values for 
both barefoot runners instructed to land with a heel strike and those instructed to land with a 
forefoot strike.  It appears that the range of motion is not dictated by the landing condition, 
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rather subjects appear to absorb more with their ankle when running barefoot.  In particular, if 
the range of motion between touchdown and the maximum dorsiflexion angle is considered, 
there were large differences in the values across conditions.  Specifically, when considering that 
the ankle was dorsiflexed at touchdown when runners were shod, the dorsiflexion range of 
motion was, on average, 16.5°.  This average value was 27.1° when barefoot due to the ankle 
being plantarflexed at touchdown and dorsiflexed a greater amount.  The average simulated 
barefoot condition was 21.4° which was between the shod and barefoot values.  It seems that the 
runners made changes in their foot strike position and then absorbed the early impact forces 
more greatly when barefoot and when simulating barefoot than when shod. 
 
The maximum knee flexion angle during stance differed between all three running conditions.  
It was significantly smaller when running barefoot when compared to both shod and simulated 
barefoot running with the value during simulated barefoot running trials being between the two 
other running conditions. Several other studies have found that the knee is less flexed when 
running barefoot (1, 5, 11, 31).  The minimum knee angle did not differ between running 
conditions.  The knee range of motion was smaller when running barefoot than when shod or 
when simulating barefoot running.  A smaller ROM finding is consistent with many other 
studies (11, 31, 32, 33).  
 
The subjects’ maximum hip joint flexion angle was larger when running shod than when 
running barefoot or when simulating barefoot running. Their maximum hip extension angle 
was smaller when running shod than when running barefoot or when simulating barefoot 
running. This combination led to running condition having no effect on the hip’s ROM during 
stance.  This finding agrees with results from Shih et al. (27) when considering comparisons 
made between runners using a heel strike and using a forefoot strike.   
 
Stride length was altered when running in different conditions.  The length was significantly 
less when running barefoot which agrees with previous research (1, 11, 30, 32, 34).  When 
simulating barefoot running, the subjects did not alter their stride length from what they used 
when shod.  Since the velocity was kept constant for all three running conditions, the stride 
length changes were coupled with inverse changes in stride frequency. There was a significantly 
greater frequency when running barefoot compared to both shod and simulated barefoot.  
Others have reported higher stride frequency with barefoot running including Shih et al. (31) 
who found a higher frequency when running barefoot, regardless of foot strike pattern.  Greater 
stride length or step frequency have been linked to smaller peak vertical ground reaction forces 
and a greater percent of time in stance (15).  The smaller forces may put the subjects at less risk 
of tibial stress fractures (25). 
 
The subjects in the current study were not successful in decreasing stride length when 
simulating barefoot running.  The significant decrease from shod to barefoot was only a 3% 
decrease.  The previous research investigating the effect of stride length on forces altered the 
stride length by a greater amount (5% and 10%).  It was noted that Hobara et al. (16) used a 
running velocity of 2.5 m/s because they stated that any faster and the subjects were unable to 
alter their stride frequency to the desired values (±15% and ±30%).  The running velocity in the 
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current study was approximately 3.3 m/s and so may not have presented the opportunity to 
decrease stride length while maintaining the velocity.  A decrease in stride length, coupled with 
a constant velocity means an increase in stride frequency.  Also, running on a treadmill may 
make challenging conditions for the runners to alter their stride length while staying on the 
treadmill.  
 
The contact time did not differ between conditions, but the barefoot condition did have a smaller 
contact time than the shod condition which has been a common finding by researchers 
comparing barefoot to shod running (5, 8, 23).  Other researchers have also reported no 
difference in contact time when running a comparable speed (11, 32).  The simulated barefoot 
contact time was, on average, less than shod but greater than barefoot.  This pattern of the 
simulated condition having values between the shod and barefoot conditions was continued 
with the swing times.    
 
It should be noted that while the subjects adjusted their running mechanics when running 
barefoot or when simulating barefoot running, many characteristics of their running mechanics 
were unchanged.  None of the twelve joint angle comparisons that were made in the frontal 
plane produced a main effect of running condition.  However, in the sagittal plane, eight of the 
twelve comparisons resulted in a main effect for running condition.  While post hoc testing made 
adjustments for multiple comparisons for a particular dependent variable, no adjustment was 
made for multiple dependent variable comparisons. If such an adjustment had been made, fewer 
statistical differences would have been noted and the subjects’ mechanics would have been 
observed to be even less changed.  The subjects maintained extremely consistent running 
patterns despite running conditions being changed.  Perhaps with subjects who were less 
experienced running on the treadmill this result would have been different or if data had been 
collected prior to subjects confirming that they were comfortable.           
 
Limitations of this study include the fact that forces were not directly collected during the 
running trials because an instrumented treadmill was not available.  If in-ground force plates 
had been used, the number of strides that could be analyzed would be diminished greatly and 
may not give an accurate picture of what alterations are being made.  Additionally, using in-
ground force plates for this study would not be appropriate since the population being 
considered run on fitness center treadmills.  Another limitation is that the results relate to 
changes that were made immediately after the subjects ran barefoot on the treadmill.  Different 
results may occur if they were asked to simulate barefoot running without experiencing barefoot 
running immediately prior to simulating barefoot running. Finally, the heel marker during the 
shod and simulated barefoot running trials was not directly on the heel and this could have 
influenced the ankle angle if the heel moved within the shoe.   
 
Future research should include giving subjects instructions on exactly what changes were 
desired.  In particular, it would be interesting to see what changes could be made by this 
population if subjects were asked to alter their foot strike pattern and to shorten their stride 
length.  The latter suggestion may require a slower velocity to be used to enable the subjects to 
adequately increase their stride frequency. A direct measurement of force over multiple strides 
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would be beneficial to determining directly if the vertical forces and rate of these forces 
decreased.  Finally, it would be interesting to determine if more experienced and competitive 
runners were able to also effectively simulate barefoot running.   
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