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Abstract

Population size estimation is relevant to social and ecological sciences. Exhaustive manual

counting, the density method and automated computer vision are some of the estimation

methods that are currently used. Some of these methods may work in concrete cases but

they do not provide a fast, efficient and unbiased estimation in general. Recently, the Coun-

tEm method, based on systematic sampling with a grid of quadrats, was proposed. It offers

an unbiased estimation that can be applied to any population. However, choosing suitable

grid parameters is sometimes cumbersome. Here we define a more intuitive grid parametri-

zation, using initial number of quadrats and sampling fraction. A crowd counting dataset with

51 images and their corresponding, manually annotated position point patterns, are used to

analyze the variation of the coefficient of error with respect to different parameter choices.

Our Monte Carlo resampling results show that the error depends on the sample size and the

number of nonempty quadrats, but not on the size of the target population. A procedure to

choose suitable parameter values is described, and the expected coefficients of error are

given. Counting about 100 particles in 30 nonempty quadrats usually yields coefficients of

error below 10%.

Introduction

Population sizing is a longstanding problem with a wide range of applications such as security,

social sciences and ecology. A population is a finite set of N separate items or “particles” of

interest, e.g. humans, birds, etc. Several approaches have been taken to address the problem.

The traditional density method [1, 2] is widely used by media, police and convention organiz-

ers for crowd size estimation, but the estimation usually ignores sampling and relies on impre-

cise visual estimation. Frequently, bird censuses also lean on visual estimation [3–6] or

exhaustive manual counting [7, 8] that is slow, tedious and difficult to verify. Automated com-

puter vision can work in some particular cases with regular patterns on homogeneous back-

grounds and non-overlapping particles [9–15]. However, automatic algorithms are generally

biased and may show a poor performance [16].

An unbiased population size estimation method (hereafter CountEm method) was recently

proposed [17]. CountEm can be applied to any kind of particle irrespective of population size
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and pattern (see for instance Figs 1 and 5 in [17]). The only practical limitation is the basic

requirement that all the particles in the population should be unambiguously identifiable for

manual counting in the considered image. It is based on well known principles of geometric

sampling for stereology which have been previously applied to quantitative microscopy [18,

19]. The main idea is to properly sample and count between 50 and 200 particles in order to

estimate populations of any size and spatial distribution. Systematic sampling is performed

with a uniform random (UR) grid of quadrats, see Fig 1. The forbidden line rule [20] is used to

avoid bias due to edge effects: a particle is counted only if it touches the quadrat but it does not

hit the extended forbidden line of the quadrat (see Fig 1C). The population size estimator, bN ,

is the total number of sampled particles, times the sampling period. The precision of the

method was tested [17] on two images with manually annotated particle positions, yielding

planar point patterns e.g. Fig 2A. As the method is unbiased, the only source of error comes

from sampling variance which can be estimated empirically via Monte Carlo resampling

under identical conditions (see Section Simulation procedure). The empirical variance of the

population size estimator was computed among 322 = 1024 Monte Carlo replications of the

estimator for each given grid of quadrats. The empirical coefficient of error was in the 5%

− 10% range, counting about 50 − 100 sampled particles for both point patterns of sizes 1120

and 4633 respectively.

Fig 1. The CountEm method. (A): Spectators in a football match (Reprinted from [17] under a CC BY license, with

permission from Raúl Cancio, Bilbao, 1966). A square grid of quadrats was superimposed uniformly at random to

estimate the total number of spectators in the image. The quadrat marked with a yellow arrowhead is magnified in (C).

(B): Square grid of quadrats with parameters t, T. (C): Forbidden line rule to remove edge effects in manual counting

[20]. Only heads marked with yellow arrowheads are counted in the quadrat, the rest are not because they hit the

extended forbidden edge (in red).

https://doi.org/10.1371/journal.pone.0206091.g001
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Fig 2. Parameter selection. (A): Point pattern of the N = 1120 manually annotated crowd positions corresponding to

Fig 1A. The bounding box is plotted in blue. (B): Relation between parameters {f, n0} and {t, T}. Box size T is the area of

the bounding box divided by the initial number of quadrats, n0. Quadrat size, t, is the box size times the square root of

the sampling fraction, f. (C): Random superimposition of the grid of quadrats (B) on point pattern (A). The grid was

tilted 30˚ with respect to the x axis.

https://doi.org/10.1371/journal.pone.0206091.g002
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Some practical criteria were given [17] to choose the grid parameters. However, in practice,

the choice of starting values for these parameters may not be obvious to every user. Moreover,

note that these practical criteria were only checked to be valid on two pictures.

Here we propose to simplify these practical guidelines, by using a more convenient parame-

trization of the grid. The new estimation protocol is presented and justified in section Materi-

als and Methods. The protocol and the parameter values are tested on the 51 images of the

crowd counting dataset, which is described in The crowd counting dataset. The Monte Carlo

resampling procedure used to compute the empirical coefficients of error is described in Sec-

tion Simulation procedure. The results and conclusions are presented in Sections Results and

Conclusions respectively.

Materials and methods

Definitions and notation

We recall the necessary notation [17]:

• N: Population size, i.e. number of particles in the target population.

• bN : Population size estimator.

bN ¼
T2

t2
� Q: ð1Þ

• Q: Total number of particles sampled by the quadrats.

• T: Separation between quadrat centers, T> 0.

• t: Quadrat side length t, (0 < t� T<1).

• n: Number of nonempty quadrats.

• CEeð
bNÞ: Empirical coefficient of error of bN , calculated via Monte Carlo replications (Eq 7).

Here we propose two alternative grid parameters, f and n0, which are related to t and T as

shown in Fig 2B:

• f: Sampling fraction, f = t2/T2.

• n0: Initial number of quadrats, n0 = BxBy/T2 where Bx, By represent image width and height

in pixels, respectively.

Next we present an outline of the “standard” CountEm method [17] and of the simplified

protocol which we propose here.

Outline of the CountEm method

The main steps of the standard CountEm method [17] are:

1. Crop the image, excluding empty regions as in Fig 2A. This step is optional but highly rec-

ommended to increase efficiency.

2. Choose suitable values of t and T in pixels.

3. Superimpose the grid uniformly at random on the image, e.g. Fig 1A. Optionally, the grid

might be tilted at will by a given fixed angle in order to avoid alignments of quadrat and

particle rows which would increase the variance [21].
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4. Manually count the total number, Q, of particles captured by the quadrats. Use the for-

bidden line rule to ensure unbiasedness: only particles intersecting the quadrat, and not

touching the extended forbidden line (in red in Fig 1C), are counted.

5. Use Eq 1 to obtain the estimated population size, bN .

6. Use Eq 3 of our previous paper [17] to predict CEeð
bNÞ.

Outline of the simplified CountEm protocol

The simplified CountEm protocol proposed here consists of the following steps:

1. Apply standard CountEm step 1).

2. Choose suitable values of f and n0. Tentatively one may start with n0 = 100 and f = 0.04.

3. Apply standard CountEm step 3).

4. By cursory inspection, check that Q and the number of nonempty quadrats are approxi-

mately in the following ranges depending on the desired coefficient of error:

• Q≳ 50 and n ≳ 20 ¼) CEeð
bNÞ ≲ 15%.

• Q≳ 100 and n ≳ 30 ¼) CEeð
bNÞ ≲ 10%.

• Q� 200 and n � 50 ¼) CEeð
bNÞ � 5%.

If Q looks too low, then go back to step 2) and increase f. On the other hand if n is too low,

go back to step 2) and increase n0.

5. Apply standard CountEm steps 4), 5) and 6).

The corresponding software is freely available at http://countem.unican.es). The whole esti-

mation process can be made in a few minutes.

Justification of the protocol

Choosing suitable parameters t and T in pixels, as suggested in our previous paper [17], can

sometimes be laborious. Two practical criteria were given [17], namely aim at (i) having Q in

the 50 − 150 range, and (ii) counting no more than 4 or 5 particles per quadrat. These two rec-

ommendations imply that the number of nonempty quadrats, n, may lie between 20 and 50.

The resulting coefficient of error should be in the 5% − 10% range.

Consider an example in which the preceding criteria are fulfilled. The goal would be to esti-

mate the number of particles N in the image, with coefficient of error below 10% using the old

parametrization t, T. After choosing some initial parameters t and T, suppose that we count

Q = 40 in n = 18 nonempty quadrats, with an estimated coefficient of error ceðbNÞ ¼ 15%. In

order to reduce the error, we should increase Q and n since both are below the suggested

ranges. But how should we proceed? Increasing t to get larger quadrats? Decreasing T to obtain

more quadrats? Or both? To what extent?

We propose to replace the parameters t and T with the sampling fraction, f, and the initial

number of quadrats, n0 as shown in the preceding subsection. This parametrization is more

intuitive and even inexperienced users should find it easy to implement. Reducing the error is

straightforward following the simplified procedure with the new parameters as described above.

The validity of the protocol has been checked on 51 images, studying in detail the error

ranges corresponding to different sets of parameters.
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The empirical squared coefficient of error, CE2

eð
bNÞ, was computed by Monte Carlo resam-

pling for each of the 51 point patterns in the crowd counting dataset. The dataset is described

in Section The crowd counting dataset, whereas the details on the calculation of CE2

eð
bNÞ are

shown in Section Simulation procedure.

The crowd counting dataset

A total of 51 images were used for two purposes, namely checking the validity of the practical cri-

teria discussed above, and analyzing the optimal f and n0 values to ensure efficient estimation.

The crowd sizes, N, vary from 96 to 4633. 50 of the images and their corresponding point pat-

terns (see Fig 3) were borrowed from the UCF dataset [12]. The additional image is the spectators

image countem.unican.es shown in Figs 1 and 2, which was already analyzed in our previous

paper [17] together with the image corresponding to the largest crowd of the dataset (N = 4633).

Simulation procedure

The empirical squared coefficient of error CE2

eð
bNÞ was computed by Monte Carlo resampling

on the 51 point sets for different choices of parameters {f, n0}. The corresponding parameters

{t, T} were calculated as follows (Fig 2B):

T ¼

ffiffiffiffiffiffiffiffiffi
BxBy

n0

s

;

t ¼ T
ffiffiffi
f

p
:

ð2Þ

Fig 3. Crowd counting dataset. 15 manually annotated point patterns selected at random from the crowd counting dataset. The total

number of point patterns in the dataset is 51.

https://doi.org/10.1371/journal.pone.0206091.g003
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The resulting grid was tilted an arbitrary fixed angle of 30˚ with respect to the x axis, before

applying the resampling procedure described in our previous paper [17]. Ideally the angle

should be suitably selected for each image in order to avoid alignments of quadrat rows with

particle patterns. However, visual inspection (Fig 3) reveals that most of the images have either

horizontal spectator rows (= 0˚) or no concrete particle alignments. Therefore choosing 30˚

for the whole dataset was judged to be reasonable. This problem was addressed in [21], Fig 11.

Next we recall the necessary notation to describe the resampling procedure:

• Y = {y1, y2, . . ., yN}: finite set of N point particles in a bounded area. We studied 51 such sets

(Fig 3).

• yi 2 Y: ith point particle of the set.

• J0: fundamental square tile or box of side length T.

• z 2 J0: UR point in the fundamental tile.

• Λz: UR systematic grid of quadrats, generated by shifting the lower left corner of a quadrat

from an arbitrary initial position in J0 into the UR point z, thus dragging the whole quadrat

grid together.

• Q = Q(Y \ Λz): random sample size, namely the total number of particles captured by the

quadrats.

For each pair {t, T} a total of K2 = 322 = 1024 replicated superimpositions of the grid Λz

onto Y were generated, corresponding to K2 systematic replications {zk, k = 1, 2, . . ., K2} of

the point z within J0. These K2 positions were arranged in a random subgrid within J0 which

should be expected to be more efficient than independent random replications [17]. For each

k, the corresponding sample total,

Qk ¼ QðY \ Lzk
Þ; ð3Þ

was computed automatically from Eq 1 using the spatstat package [22]:

bNk ¼ ðT=tÞ
2
� Qk: ð4Þ

The empirical mean, variance and squared coefficient of error of bN were computed respec-

tively as follows,

Ee

�
bN
�
¼ K � 2

XK2

k¼1

bNk; ð5Þ

Vare
�
bN
�
¼ K � 2

XK2

k¼1

h
bNk � Ee

�
bN
�i2

; ð6Þ

CE2

e

�
bN
�
¼ Vare

�
bN
�
=N2: ð7Þ

Results: Justification of the recommended parameter values

Figs 4 and 5 allow us to justify the tentative values for parameters {f, n0} (step 2) and the practi-

cal criteria related to sample size, Q, and number of nonempty quadrats, n, (step 4) given in

the simplified estimation protocol proposed above.
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With reference to Fig 4, six different parameter pairs {f, n0} were considered by combining

two initial number of quadrats values, namely n0 = 50, 100 and three sampling fraction values,

namely f = 0.02, 0.04, 0.06. The empirical squared coefficient of error, CE2

eð
bNÞ, (top row) and

nonempty quadrats, n, (bottom row) are represented versus real population size, N, and sam-

ple size, Q. Note that we considered fixed parameter values for all the 51 images, which is not

efficient since the resulting Q and n values depend on population size N and spatial distribu-

tion of the particles. For instance setting f = 0.06 yields Q* 6 (too low) for N = 96, and

Q* 278 (too high) for N = 4633.

In practice, suitable parameter values should be chosen for each image, but for the present

dataset n0 = 100 works rather well for all images, as shown in Fig 5, where the sampling frac-

tion was selected a posteriori as f = Q/N, with Q = 50, 100, 200 and N the number of manually

annotated points in each image. Obviously, this can not be done in practice since N is

unknown, but the results allow us to establish some tentative values for f depending on the

order of magnitude of population size N and the desired coefficient of error. For instance if we

aim at CEe

�
bN
�
≲ 10% the following starting values can be chosen depending on N, aiming at

Q ≳ 100:

Fig 4. Empirical squared coefficient of error for fixed parameter values. (A, B, C): Empirical squared coefficient of error of the 51 point patterns in the

crowd counting dataset, for fixed sampling fractions f = 0.02, 0.04, 0.06 respectively. Population and sample sizes are shown on the x axis. Blue and red color

represent initial number of quadrats n0 = 50, 100 respectively. Broken horizontal lines correspond to 5%, 10% and 15%, whereas the vertical broken is drawn

at sample size Q = 50. (D, E, F): Analogous plots for nonempty quadrats n. Broken horizontal lines correspond to 20, 30 and 50 quadrats.

https://doi.org/10.1371/journal.pone.0206091.g004
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• N ≲ 103 ¼) f ≳ 0:1. Note that for population sizes N ≲ 200 the use of CountEm is not very

helpful since Q* N. A suitable starting value for small populations is f = 0.1.

• 103 ≲ N ≲ 104 ¼) 0:1 ≲ f ≲ 0:01. Therefore f = 0.04 could be a reasonable starting value.

If the number of particles per quadrat looks higher than 5, a new run with lower f is recom-

mended. On the other hand if the resulting Q is low, f can be increased for a second run.

• N ≳ 104 ¼) f ≲ 0:01.

Fig 5. Empirical coefficient of error for optimal parameter values. (A): Empirical coefficient of error, obtained with

sampling fractions adapted to each of the 51 point patterns considered in Fig 4. Blue, red and green colors represent

sample sizes Q = 50, Q = 100 and Q = 200 respectively. Initial number of quadrats was set to n0 = 100 for all cases. (B):

Analogous plots for nonempty quadrats n. The broken horizontal lines are as in Fig 4.

https://doi.org/10.1371/journal.pone.0206091.g005
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There is no upper limit for N with CountEm, since only Q and n are relevant for the result-

ing coefficient of error. Fig 4 shows the approximately linear dependence of CE2

e

�
bN
�

with

respect to Q. Counting more than Q = 200 particles is not worthwhile in most cases. Fig 5

shows that doubling Q from 100 to 200 does only slightly reduce the error.

Conclusions

CountEm describes an unbiased and efficient population size estimation method. It can be

used irrespective of population size and pattern. It can be applied to humans, animals, or

indeed to any kind of distinguishable particles. We have proposed new parameters to charac-

terize the grid of quadrats, namely sampling fraction f, and initial number of quadrats, n0. A

crowd counting data set containing 51 images and corresponding position point patterns have

been used to analyze the suitable parameter values and the resulting coefficients of error. Pop-

ulation size has been shown to have no impact on the coefficient of error of the estimation,

only sample size, Q, and number of nonempty quadrats, n, are relevant. Usually Q ≳ 100 and

n ≳ 30, yield coefficients of error below 10%. The suitable parameter values depend on the

order of magnitude of population size and spatial distribution. For the sizes and spatial distri-

butions of our crowd counting dataset, n0 = 100 and f = 0.04 are reasonable initial values. We

believe that the reparametrization defined here allows a more intuitive and fast choice and/or

adjustment of the working parameters.
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