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A B S T R A C T   

Recent research emphasised the indispensable role of histone lactylation in the activation of 
hepatic stellate cells. The VHL mutation is extremely common in clear cell renal cell carcinoma, 
which normally causes a metabolic shift in cancer cells and increases lactate production, even-
tually creating a lactate-enriched tumour microenvironment. Cancer-associated fibroblasts (CAFs) 
promote tumour progression, which is also vital in clear cell renal cell carcinoma. Therefore, this 
study investigated histone lactylation in CAFs and its impact on patient survival. Multiomics 
technology was employed to determine the role of histone lactylation-related genes in the evo-
lution of CAFs which correlated with the function and molecular signatures of CAFs. The results 
suggested that TIMP1 was the hub gene of histone lactylation-related genes in clear cell renal cell 
carcinoma.   

1. Introduction 

In 2022, kidney and renal pelvis cancer comprised 5 per cent of estimated new cases, ranking sixth among all cancer types [1]. Clear 
cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, accounting for more than 70 per cent of RCC. VHL 
mutations occur in most ccRCC cases and induce cancer cells to undergo metabolic reprogramming to an aerobic glycolysis phenotype 
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[2,3], generating a lactate-enriched tumour microenvironment (TME). 
A recent study disclosed the significance of histone lactylation in hepatic stellate cell activation and identified 1126 H3K18la- 

marked genes [4]. In addition, Yang et al. elucidated that the coupling of inactive VHL and histone lactylation induced 
platelet-derived growth factor receptor β (PDGFRβ)promoting tumour progression, and inhibition of histone lactylation and PDGFRβ 
impeded tumour growth and improved therapeutic efficacy in ccRCC [5]. Since the concept of histone lactylation was proposed [6], its 
importance has been corroborated in numerous cancer types including ocular melanoma [7], prostate cancer [8], liver cancer [9] and 
ccRCC [10]. However, few studies have investigated the role of histone lactylation in cancer-associated fibroblasts (CAFs) in ccRCC. 
Considering their great value in shaping the TME [11,12] and assisting tumour resistance to immunotherapy [13,14], it is necessary to 
investigate the plasticity of CAFs to histone lactylation. 

This study employed multiomic technologies to investigate the significant role of histone lactylation-related genes in the evolution 
of CAFs. The evolutionary process of CAFs with histone lactylation-related genes was explored using single-cell RNA sequencing 
(scRNA-seq) data and three stages were defined based on the gene expression trajectories. The distribution modalities and gene 
expression patterns were explored in different molecular clusters, where common patterns of histone lactylation-related genes were 
observed in the high myoCAF infiltrated region. Moreover, patients in the TCGA-KIRC cohort were clustered into high and low histone 
lactylation subgroups with significant differences in clinical status and immune signatures. Finally, TIMP1 was identified as the hub 
gene, and it alone or together with its receptors had significant value in predicting patient overall survival which was gender-related. 

2. Methods 

2.1. Data acquisition 

The bulk RNA sequencing results and clinical data of TCGA-KIRC (tumour: 541, normal: 72) were downloaded from the Cancer 
Genome Atlas (TCGA) database (https://www.cancer.gov/tcga) with the E-MTAB-1980 cohort containing 101 ccRCC samples utilised 
for validation. Notably, the raw count format data of TCGA-KIRC was used for the detection of differentially expressed genes (DEGs), 
while the transcripts per kilobase million (TPM) format data was utilised for other analyses. For genes with multiple sequencing re-
sults, the highest RNA expression was utilised. 

The single-cell RNA sequencing (scRNA-seq) data, single-cell Assay for Transposase-Accessible Chromatin using sequencing 
(scATAC-seq) data and Spatial Transcriptomics (ST) data can be accessed in GSE207493 [15], GSE210042 [10] and GSE175540 [16]. 
The immunomodulatory genes were generated and revised from previous research [17]. 

2.2. Differentially expressed gene extraction 

The Wilcoxon test and R package Limma [18] were used to detect differentially expressed histone lactylation-related genes in 
tumour and normal tissues, with the criteria set as the absolute logFC greater or equal to 0.2 and a false discovery rate (FDR) lower than 
0.05. Random forest was performed using the R package randomForest [19], and the uniCox and Least absolute shrinkage and selection 
operator (LASSO) was based on the R package glmnet [20–22]. 

2.3. Calculation of enrichment scores 

Genes used to calculate the histone lactylation score were obtained from the study by Rho et al. [4] which identified 1126 genes 
marked by H3K18la in the activation of hepatic stellate cells. These gene symbols were transformed to yield 1118 genes with cor-
responding gene symbols, referred to as the histone lactylation-related gene (HLRG) list, which was used to calculate the histone 
lactylation score (see Supplemental materials). The normal fibroblast and CAF-related signatures were generated from R package IOBR 
[23] including Normal.Fibroblast, ecm.myCAF, TGFb.myCAF, wound.myCAF, detox.iCAF, IL.iCAF and IFNG.iCAF. The histone lac-
tylation scores and CAF-related signature scores in scRNA-seq and ST data were calculated using AddModuleScore based on R package 
Seurat [24–27], while the histone lactylation scores were calculated using Gene Set Variation Analysis (GSVA) in the bulk RNA 
sequencing data based on the 380 upregulated genes in tumour tissue according to the R package GSVA [28]. The estimated 
CAF-related signature scores in bulk RNA sequencing data were obtained using R package IOBR based on the single sample gene set 
enrichment analysis (ssGSEA) algorithm. 

2.4. Survival analysis 

The prognostic analysis was implemented using the R packages survival and survminer [29]. The statistically significant criterion 
was set as p-value <0.05 and the surv_cutpoint was used to calculate the optimal cutoff value. A nomogram was constructed based on 
the R package nomogramFormula which was drawn using DynNom [30]. 

2.5. Correlation analysis 

The correlation analysis was conducted using the R package ggplot2 [31] based on spearman correlation method, and the statis-
tically significant criterion was set as p-value <0.05. 
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2.6. Processing of the single-cell RNA sequencing data 

The R package Seurat [24–27] was used to filter out low-quality cells in GSE210038, retaining cells with feature counts <3500 and a 
percentage of mitochondrial reads <20 %. Then, FindIntegrationAnchors (with the reduction parameter set as “rpca”) and the Inte-
grateData command were used for data integration and batch effect removal before the RunPCA and RunUMAP commands were used 
for dimensionality reduction. The 30 most remarkable principal components and the top 2000 highly variable genes were filtered and 
clustered using the FindNeighbors and FindClusters commands with a resolution of 0.8. The canonical marker genes to identify clusters 
were obtained from the literature. For the re-clustering of MSCs, the resolution parameter was set to 0.1 to avoid excessive distinction. 

Notably, for scRNA-seq data of GSE207493, the raw data was first filtered with the following criteria: 1) after clustering, the space 
between each cell cluster should be distinct; 2) the absolute cell number of ACTA2 positive clusters should be greater than 200; 3) the 
cell proportion of ACTA2 positive clusters should be greater than 0.07. Finally, 9 of 19 samples were selected with a comparatively 
sufficient number of MSCs for further study (Fig. S1). The filtering criteria were set as a feature count <7500, a unique molecular 
identifier (UMI) count ranging from 1500 to 10000 and a percentage of mitochondrial reads <10 %. The integration and dimen-
sionality reduction methods were consistent with GSE210038 and the resolution parameter was set to 0.6. 

2.7. Evaluation of tissue distribution preferences 

The Ro/e value was calculated in different tissues to evaluate the distribution preferences of each cell type based on the chi-squared 
test, as previous research had introduced [32]. A Ro/e value greater than 1 represented high infiltration of one cell type. And the Ro/e 
index was defined to show the cell type preference in a specific tissue (+++: Ro/e > 3; ++: 1 < Ro/e ≤ 3; +: 0.2 ≤ Ro/e ≤ 1; +/− : 0 <
Ro/e < 0.2; and − : Ro/e = 0). 

2.8. Processing of the ST data 

The ST data was processed using Python scanpy 1.9.3 and the top 5000 variable genes with the parameters of scanpy.pp.neighbors 
set to n_neighbors equal to 40 and n_pcs equal to 40. The clustering results were generated with the Leiden algorithm and exported for 
further study in R. 

2.9. Estimation of cell composition in the ST analyses 

The multimodal intersection analysis (MIA) method was used to calculate the composition of cells in distinct clusters [33] (Fig. 3B). 
The single-cell RNA cluster marker detection was set as a logFC >0.25 and should be expressed in a minimum fraction of 25 % cells in 
the specific cluster with the FindAllMarkers command. The ST cluster marker detection was set as a logFC >0.1 and should be expressed 
in a minimum fraction of 10 % spots in the specific cluster (see Supplemental materials). With the gene sets extracted from the 
scRNA-seq and ST, the MIA method performed a hypergeometric test to assess significant enrichment or depletion based on the 
computed results of the overlapping genes between each pair of cell type-specific and region-specific gene sets. To better visualise the 
spatial distribution, an enrichment score greater than 20 represented high infiltration of mesangial cells and the highest histone 
lactylation stage enrichment score represented the overall status of mesangial cells in the specific cell clusters. 

2.10. Processing of the single-cell ATAC sequencing data 

The processing for single-cell ATAC data was based on the R package Signac [34]. The combined peaks were generated using the 
reduce function in the R package GenomicRanges to merge the selected 9 single-cell ATAC data [35] and the detailed method for 
integration can be accessed in the “Merging objects” tutorial of the Signac website (https://stuartlab.org/signac/articles/merging. 
html). For quality control, the peak region fragments ranged from 2000 to 20000, the percentage of reads in peaks was >15, the 
nucleosome signal was <4 and a transcription start sites (TSS) enrichment value was >1. The minimum cutoff value for the Find-
TopFeatures function was set to q5 and the second to 30th dims were concluded for the RunUMAP and FindNeighbors commands. The 
resolution was set to 0.4 for the identification of cell clusters with the FindClusters command. Both RNA values as inferred by the R 
package ChIPseeker [36] and the chromatin accessibility results (Fig. S2) were incorporated to identify the cell types in the scATAC-seq. 

2.11. Cell trajectory analysis 

The pseudotime of cell trajectory was computed based on the R package monocle, version 2.22.0 [37,38]. First, the differ-
entialGeneTest command was utilised with an adjusted p-value ≤0.05 as criteria to obtain differentially expressed genes based on 
re-clustering results and then the genes intersecting the histone lactylation gene list were selected (Fig. 2A–D). 

2.12. Gene expression patterns and interaction density of ST analysis 

The R package SpaGene [39] was used to generate the expression patterns of different ST samples with the nPattern set to 6 and the 
interaction scores and p-value were obtained using the SpaGene_LR command using the Earth mover’s distance which was based on the 
degree distribution of the subnetwork. 
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Fig. 1. Single-cell RNA sequencing data analysis. (A) Workflow of discovery, (B) summary of the number of cells in each sample. (C) Canonical cell 
markers for cell identification. (D) Umap plot showing the annotated cell types from two normal adjacent tissue (left) and seven tumour tissue 
samples (right). (E) The percentage of annotated major cell types in each sample. (F) Tissue preference of each major type in normal and tumour 
samples estimated by Ro/e. (G) Expression features of each cell type. (Genes were randomly distributed in the X-axis). 
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2.13. Estimation of immune cell infiltration and TME 

The predicted TME signatures were generated by R package Estimate [40] and IPS. In IPS, the suppresser cells represented the 
general level of infiltrated myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), while effector cells included 
activated CD4 T cells, activated CD8 T cells, effector memory CD4 T cells and effector memory CD8 T cells. The predicted infiltration of 
immune cells was calculated with the MCPcounter, EPIC, quantiseq and xCell algorithm using the R package IOBR. 

2.14. Pathway enrichment analysis 

The Gene Ontology (GO) and the hallmark gene set enrichment analysis were conducted using the R package clusterProfiler [41,42] 
and gene sets downloaded from the R package org.Hs.eg.db and the Molecular Signatures Database (MSigDB) with the aid of R package 
msigdbr [43]. Pathways with a p-value <0.05 and false discovery rate (FDR) < 0.05 were considered significant. 

2.15. Random forest analysis 

Random forest (RF) analysis was performed using the R package randomForest with 80 per cent of the samples randomly included in 
the training cohort and the remaining 20 per cent in the validation cohort. The ntree parameter was set to 100 in the randomForest 
command and the gene importance in the model was calculated using the importance command with the type parameter set to 2, 
namely the Gini Impurity method. 

2.16. Multiplex immunofluorescence (mIF) assay 

CA9, COL1A1 and TIMP1 antibodies were obtained for mIF assay. Briefly, cells were fixed by 4 % PFA, permeabilized via 0.1 % 
Triton X-100, and cultured with primary antibody. After visualization through secondary antibodies, cell nuclei underwent coun-
terstaining by utilizing DAPI staining. Images were captured using a fluorescence microscope (XSP-63B, Shanghai Optical Instrument 
Factory). 

2.17. Application of R 

The expression patterns of ST data were analysed using scanpy in Python and other analyses were conducted utilizing R 4.1.3 and R 
4.3.1. Independent t-tests were used to compare continuous variables with a normal distribution for inter-group comparison, while 
Mann-Whitney U-tests were used to compare continuous variables with a skewed distribution. 

3. Results 

3.1. Identification of cell types in the single-cell RNA sequencing data 

As shown in Fig. 1A, nine scRNA-seq data were generated including seven primary tumour and two adjacent normal tissues 
(Fig. 1B), and the paired spatial transcriptomics for T1 and T7 and one external ST data for the discovery of histone lactylation in 
fibroblasts in ccRCC (see Supplemental materials). 

According to the cell markers (Fig. 1C) (PTPRC: immune cells, CD3E: T cells, GNLY: NK cells, CD79A: B or Plasma cells, LYZ: 
Myeloid cells, KIT: Mast cells, EPCAM: Epithelial cells, EMCN: endothelial cells, ACTA2: Mesangial cells, PODXL: Podocytes), the 
integrated samples were clustered and annotated into eight cell types (Fig. 1D). The distribution of each major cell type differed among 
samples (Fig. 1E), and the mesangial cells (referred to as MSCs) occurred in all samples and were slightly more likely to occur in the 
tumour samples, as was revealed by the ratio of observed to expected cell numbers (Ro/e) (Fig. 1F). The clustering results were 
validated in Fig. 1G of the gene expression marker of each cell type such as CD79A for B or plasma cells, ACTA2 and RGS5 for 
mesangial cells. 

3.2. Expression of histone lactylation-related genes distinguished the state of MSCs 

The mesangial cells were extracted and grouped into three main sub-clusters with cluster 2 MSCs mainly concentrated in the 
normal sample (Fig. 2A). To elucidate the role of histone lactylation-related genes (HLRGs) in the transformation of MSCs, the 
differentially expressed genes were identified in the three sub-clusters and compared to the HLRG list, selecting 489 HLRGs to illustrate 

Fig. 2. Cell trajectory analysis of mesangial cells (MSC). (A) Umap plot of re-clustered MSCs (left); the proportion of re-clustered MSCs in each 
sample (right). (B) Venn plot displaying the overlapping genes. (C) Pseudo cell trajectory of MSCs using overlapping genes, (D) cell states deter-
mined by the cell branch, (E) density plot showing the distribution of pseudotime in different cell states, and (F) violin plot displaying the lactylation 
score in the distinct histone lactylation stages (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). (G) Umap plot showing the distribution of histone lactylation 
stages (left); the proportion of histone lactylation stages in each sample (right), (H) heatmap showing the gene signatures of three histone lactylation 
stages, (I) GO cell component results of top 15 late histone lactylation stage DEGs, and (J) a comparison of the specific markers in the three histone 
lactylation stages (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). 
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Fig. 3. Integrated scRNA-seq and ST revealed the distribution of CAFs in ccRCC. (A) Spatial plot showing the molecular clusters in each sample, (B) 
the MIA results displaying the spatial distribution of cells in each molecular cluster, (C) spatial plots visualising the distribution patterns based on 
MIA results. (D) The signature scores in each spot, and (E) Spearman correlation of the late histone lactylation score with three myoCAF signa-
ture scores. 

Fig. 4. The molecular patterns in the high-CAF infiltrated area. (A) Molecular patterns of three ST samples as defined by SpaGene. (B) Gene 
expression signatures of different patterns. (C) GO results of the overlapping up-regulated genes in all the selected patterns. (D) Venn plot showing 
the intersecting genes of the selected patterns in three ST samples and the HLRG list. (E) Heatmap showing the known ligand-receptor interacting 
score (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). 
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the trajectory of MSCs (Fig. 2B) with a total of eight trajectory states generated (Fig. 2C and D). As the pseudotime increased, these cell 
states displayed three main modalities defined as the early, middle and late histone lactylation stage (HLS) based on the calculated 
pseudotime, with 25 per cent and 75 per cent of pseudotime as the dividing line (Fig. 2E). The histone lactylation score was calculated, 
showing a steady increase in the lactylation score as the histone lactylation stage advanced (Fig. 2F). 

As illustrated in Fig. 2G, cells in the early HLS mostly overlapped with cluster 2 MSCs, while cells in the late stage were enriched in 
the tumour tissue. Notably, considering the differentially expressed genes, around 25 per cent of these early-stage MSCs had elevated 
expression of antigen-presenting markers including CD74 and HLA-DRA referred to as antigen-presenting CAFs (apCAFs), while in the 
late-stage cells, gene signatures such as the markers for myofibroblastic CAFs (myoCAFs) COL1A1, COL3A1 and COL1A2 were 
dominant (Fig. 2H and Supplemental materials). As further validation, these elevated genes in the late-stage MSCs were enriched in GO 
cell component terms related to the extracellular space and extracellular matrix (Fig. 2I). As shown in Fig. 2J, the signature score for 
normal fibroblasts decreased steadily as the HLS increased and three myoCAF signature scores increased stepwise in advanced HLS, 
indicating their myoCAF-resembling signatures in these late HLS MSCs. 

3.3. Spatial transcriptomics data validated the infiltration of CAFs and their distribution patterns 

The ST samples T1 and T7 were paired with the scRNA-seq data, and the external sample was generated from GSE175540 for 
validation. Based on the gene expression patterns, spots in the ST data were divided into distinct molecular clusters (Fig. 3A) and the 
MIA method [44] was applied to estimate the composition of each cell cluster with the scRNA-seq annotation results from seven 
tumour samples with the differentially expressed genes among HLSs as the reference data. Regions with both high mesangial cell and 
late-stage enrichment scores were located close to cancer cell regions, while regions with high early- and middle-stage enrichment 
scores were rather distant from the tumour tissue, indicating the spatial dependency of myoCAF and cancer cells (Fig. 3B and C). As 
illustrated in Fig. 3D, spots with high myoCAF-related signature scores were mostly located in the late-stage MSC-infiltrated region, 
with the histone lactylation score correlating with the myoCAF signature scores (Fig. 3E). These results suggest the close spatial 
distribution of CAFs, especially myoCAFs, with cancer cells to promote tumour progression. 

3.4. The high CAF infiltrated region had specific gene expression patterns 

To elucidate the possible role of CAFs in promoting cancer, the molecular signatures and their cell-cell communication patterns 
were evaluated. Each sample was divided into six patterns to identify the high CAF-infiltrated patterns by referring to the MIA and gene 
signature clustering results (Fig. 4A and B). The selected patterns were composed mostly of clusters with high middle-stage and late- 
stage enrichment scores (Fig. 3C). The GO results of commonly up-regulated genes in the selected patterns indicated similar func-
tioning modalities, especially in sample T1 and the external sample (Fig. 4C). Combined with the MIA results, patterns 3, 4 and 6 in 
sample T1 comprised mostly of molecular clusters 3, 4, 5 and 7, clusters 4, 5 and 7 also had high NK cell and T cell infiltration and 
cluster 5 had an extremely high enrichment score of myeloid cells. Similarly, clusters 6, 9 and 10 in the external sample had high 
infiltration of NK cells and T cells and clusters 0, 7 and 10 had an abundance of infiltrated myeloid cells. The elevated genes in sample 
T7 were enriched in extracellular matrix formation, with pattern 3 contributing most to these results (Fig. 4C). Based on the MIA 
results, patterns 3 and 4 in sample T7 mainly included clusters 2, 3 and 7, with clusters 2 and 7 containing mostly late-stage MSCs and 
myeloid cells, while cluster 3 also had high NK cell and T cell infiltration. As shown in the heatmap, the expression of immune-related 
gene signatures such as CD74 and HLA-DRA was mildly elevated. The overall intersection of gene signatures, despite different relative 
expression levels, suggested the common distribution of CAFs, cancer cells and immune cells, providing evidence for the common TME 
in ccRCC. There were nine intersecting genes of samples T1, T7, the external sample and the HLRG list, five of which had known 
receptors (Fig. 4D). The estimated interaction score is shown in Fig. 4E indicating their indispensable role in the TME. 

3.5. The overall histone lactylation level in ccRCC had robust clinical significance 

The histone lactylation score was calculated using GSVA with a GSVA score >0 considered as high lactylation and then the samples 
in the TCGA-KIRC and E-MTAB-1980 cohorts were divided into high and low lactylation subgroups for further analyses (Fig. 5A and B). 
The high lactylation subgroups of TCGA-KIRC cohort had significantly poorer overall survival (OS) and progression-free survival (PFS), 
while the high lactylation subgroup represented relatively worse OS in the E-MTAB-1980 cohort (p = 0.056) (Fig. 5C–E). Furthermore, 
the high lactylation subgroup in the TCGA-KIRC cohort had a significantly larger proportion of advanced ccRCC samples including 
higher histologic tumour grading, clinical staging and detailed TNM stages (Fig. 5F). The lactylation score increased steadily with 
tumour progression, which was especially significant between G1/G2 and G3/G4, Stage I/II and Stage III/IV, and T1/T2 and T3/T4, 
and was significantly higher in M1 and N1 patients (Fig. 5G). The overall status of samples in the TCGA-KIRC cohort was summarised 

Fig. 5. Histone lactylation has clinical implications in ccRCC. (A) Workflow of discovery. (B) Heatmap displaying the expression signatures in 
tumour and normal tissues (left), volcano plot displaying the distribution of differentially expressed genes (right). (C–E) Kaplan-Meier plots of 
TCGA-KIRC and E-MTAB-1980 overall survival (OS) and progression-free survival (PFS). (F) The proportion of patients with distinct histologic 
tumour grades, clinical stages and TNM stages in the TCGA-KIRC cohort, (G) the differences in lactylation score in detailed histologic tumour grades, 
clinical stages and TNM stages (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001), and (H) a heatmap summarising the general clinical status of patients in the 
TCGA-KIRC cohort. 
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in Fig. 5H, indicating that the lactylation score is closely associated with patient outcomes and survival, where an increased lactylation 
score correlated with poorer clinical status. 

3.6. The high lactylation subgroup had more infiltrated immune cells and fibroblasts 

Considering the great heterogeneity in TME and the co-localisation of CAFs with immune cells, the immune landscape of samples in 
the lactylation subgroups was evaluated based on numerous immunity-related algorithms. The high lactylation subgroup had 
significantly more MHC molecules and effector cells (EC) but fewer suppressor cells (SC) and checkpoint molecules (CM) (Fig. 6A), as 
well as higher immune scores (Fig. 6B). There were also significantly more T cells, especially CD8 T cells, macrophages and fibroblasts, 
as well as significantly higher myoCAF signature scores (Fig. 6C and D). Additionally, there were more stimulatory molecules and 
antigen-presenting molecules, as well as inhibitory molecules such as LAG3, PDCD1, TIGIT and CD276 in the high lactylation subgroup 
(Fig. 6E). 

3.7. TIMP1 was the hub gene in the HLRGs in CAFs and predicted patient prognosis 

The gene most contributing to histone lactylation in ccRCC (Fig. 7A) was identified as TIMP1 (Fig. 7B). TIMP1 expression was 
validated in samples T1, T7 and the external sample with ST data, showing that it was particularly concentrated in the high myoCAF 
infiltrated regions (Fig. 7C–E). And the multiplex immunofluorescence(mIF) results of ccRCC validated that TIMP1 co-localized with 
COL1A1, which was a representing marker of late-stage CAFs and myoCAFs, indicating that myoCAFs were the main source of TIMP1 
(Fig. 7F). Moreover, the relatively high chromatin accessibility of TIMP1 was demonstrated (Fig. 7G), providing evidence for the 
correlation between gene expression and histone lactylation from another perspective (Figs. S1 and S2). 

A nomogram was constructed for the prediction of patient prognosis, where TIMP1, M stage and age were the most dominant 
factors (Fig. 7H). The calibration plot showed that the nomogram accurately predicted long-term survival, especially 5-year survival 
status (Fig. 7I–K). 

TIMP1 is associated with inflammatory diseases, acts as a potent cytokine, and binds to several cell-surface receptors [45] including 
CD63, CD74, CD44, LRP1, and CD82. CD63 was highly expressed in the tumour tissue and co-localised with CD74 along the cancer cell 
border. CD44 and LRP1 were expressed in the high CAF-infiltrated regions, with relatively low expression of CD82 (Fig. 8A–C). The 
expression of TIMP1 and its receptors had robust clinical implications, with patients with low TIMP1 expression generally having 
longer overall survival (Fig. 8D). Patients with a combined high expression of TIMP1 with CD44, CD82 had the worst clinical outcomes 
among other groups. For CD63, it distinguished the differences in OS in both TIMP1 high and TIMP1 low subgroups, where higher 
expression of CD63 represented better survival (Fig. 8E–I). 

Considering the position of the TIMP1 gene on the X chromosome, TIMP1 was significantly more expressed in males compared to 
females in both the TCGA-KIRC and E-MTAB-1980 cohorts (Fig. 9A and B), and the CAFs in the late histone lactylation stage were more 
enriched in the male samples, as was revealed by higher Ro/e value in male compared with female (Fig. 9C). Moreover, the low TIMP1 
subgroup had significantly longer OS also in the E-MTAB-1980 cohort (Fig. 9D). Female patients with high TIMP1 levels had the worst 
prognosis (Fig. 9E), with high TIMP1 levels reflecting poorer overall survival in both female and male patients in the TCGA-KIRC 
cohort (Fig. 9F and G). In the E-MTAB-1980 cohort, male patients with high TIMP1 expression had poor OS (Fig. 9H), and the 
prognostic value of TIMP1 with the best cutoff value was only significant in males possibly due to the relatively small number of female 
patients (Fig. 9I and J). 

4. Discussion 

Metabolic reprogramming is a common signature in ccRCC [46], particularly glycolysis. VHL mutational loss or inactivation 
normally induces the accumulation of hypoxia-inducible factor (HIF), leading to lactate production in the TME [47,48]. HIF-1α is also 
the dominant glycolysis regulator [49]. Previous studies had mainly focused on the immune regulating function of lactate, a vital part 
of the establishment of the tumour immunosuppressive microenvironment [50–52]. Recently, lactate has been shown to be an 
important substrate in histone lactylation [6,53]. Rho et al. elucidated the indispensable role of histone lactylation in the activation of 
hepatic stellate cells and in promoting the secretory phenotype [4]. In this study, we utilised the HLRGs to investigate the evolution of 
CAFs, revealing the close relationship between HLRG expression and CAF molecular signatures and possible functioning modalities. 

Intra-tumoral CAFs are heterogeneous, thus impacting clinical outcomes and therapeutic effects [54]. Three histone lactylation 
states of MSCs were defined, namely the early, middle and late HLSs. Notably, the early HLS correlated with multiple immune-related 
genes which were also markers for apCAFs, indicating their role in the anti-tumoral response. The late HLS of MSCs were considered 
myoCAFs due to their enormous potential in organising the extracellular matrix and correlation with myoCAF signatures. 

Fig. 6. A comparison of the immune landscape in the high and low lactylation subgroups in the TCGA-KIRC cohort. (A) Immune signatures 
calculated by the IPS algorithm. MHC, MHC molecules; EC, effector cells; SC, suppressor cells; CM, checkpoint molecules. (B) Immune signatures 
calculated by the ESTIMATE algorithm. (C) Deconvolution results of immune cells based on four algorithms of the lactylation subgroups. Cells in red 
represent a higher level of estimated infiltration in the high lactylation subgroup and cells in green represent a higher level in the low lactylation 
subgroup (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). (D) Violin plot showing the differences in ssGSEA results based on some known normal fibroblast 
and CAF-related gene sets, and (E) in immune-related molecules between the high and low lactylation subgroups. 
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The myoCAFs co-localised with immune cells including NK cells, T cells and myeloid cells in the tumour-bordering regions and the 
highly expressed genes in these areas were associated with T cell activation and mononuclear cell differentiation in sample T1 and the 
external sample. Nine HLRGs including COL1A1, COL1A2, COL4A2 and COL5A1 were vital in extracellular matrix organisation, 
demonstrating the significant role of histone lactylation in depicting the spatial distribution of CAFs. With its great potential in 
remodelling the extracellular matrix around tumour cells, these myoCAFs shaped an immune cell-exclusive TME, leading to immune 
escape in ccRCC. 

In addition, histone lactylation is associated with clinical outcomes, with patients in the high lactylation subgroup more likely to 
have worse clinical outcomes. The high lactylation subgroup also contained a significantly higher proportion of patients with advanced 
histologic grades, clinical stages and TNM stages, with an increasing lactylation level with tumour progression. Though with higher 
estimated infiltration of immune effector cells in the high lactylation subgroup, the distributional and functional characterizations of 
myoCAF concluded from ST analyses may finally lead to the anergy of immune cells. These results suggest that histone lactylation 
influences tumour progression. Indeed, histone lactylation in cancer cells also engenders tumour malignancies, promoting cancer 
proliferation and metastasis in hepatocellular carcinoma [55] and histone lactylation induced YTHDF2 expression leads to tumour 
initiation in ocular melanoma [7]. Therefore, the perturbation of histone lactylation could directly influence cancer cells and clinical 
outcomes. And our study extended the significances of histone lactylation in myoCAFs in ccRCC. 

TIMP1 was identified as the most vital histone lactylation-regulated gene in ccRCC. TIMP1 was expressed mostly in myoCAFs and 
had relatively higher chromatin accessibility among other cells. TIMP1 over-expression induced a more proliferative, migrative and 
invasive RCC cell phenotype [56] and the secretion of TIMP1 by fibroblasts could bind CD63 in cancer cells and induce cancer cell 
proliferation and invasiveness in lung adenocarcinoma [57]. The co-localisation of TIMP1 and its receptors in both intra-tumoral areas 
and tumour-neighbouring regions suggests the intricate functions of TIMP1 in ccRCC, thus inhibition of histone lactylation or TIMP1 in 
the TME may represent a possible therapeutic opportunity. The established nomogram to calculate the clinical significance of TIMP1 in 
ccRCC had a robust predicting value, especially for 5-year survival. 

The present study also revealed that males tended to have higher TIMP1 expression than female patients. Moreover, female patients 
in the TCGA-KIRC cohort with high TIMP1 levels exhibited poorer survival status with a shorter OS. Although this was not fully verified 
in the E-MTAB-1980 cohort possibly due to insufficient female patients, a low TIMP1 level was consistent with a longer OS. 

In conclusion, this study extends the knowledge regarding lactate and histone lactylation in ccRCC, highlighting the important role 
of myoCAF-derived TIMP1 in ccRCC which warrants further research. Based on ST data and mIF, we explore the distribution patterns 
of myoCAFs in ccRCC and emphasize their correlation with histone lactylation. 

This study has its limitations, more samples should be concluded and experimental validation is needed. Due to the inherent 
limitations with current ST technology, we fail to explore the RNA expression in a single-cell resolution. Moreover, the prognostic 
model requires external datasets to comprehensively assess its accuracy. 
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Fig. 9. Comparison of the expression and prognostic value of TIMP1 in male and female ccRCC patients. (A, B) Box plot showing the elevated TIMP1 
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