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ABSTRACT
Objective  The predictors of in-hospital mortality for 
intensive care units (ICUs)-admitted heart failure (HF) 
patients remain poorly characterised. We aimed to develop 
and validate a prediction model for all-cause in-hospital 
mortality among ICU-admitted HF patients.
Design  A retrospective cohort study.
Setting and participants  Data were extracted from 
the Medical Information Mart for Intensive Care (MIMIC-
III) database. Data on 1177 heart failure patients were 
analysed.
Methods  Patients meeting the inclusion criteria were 
identified from the MIMIC-III database and randomly 
divided into derivation (n=825, 70%) and a validation 
(n=352, 30%) group. Independent risk factors for in-
hospital mortality were screened using the extreme 
gradient boosting (XGBoost) and the least absolute 
shrinkage and selection operator (LASSO) regression 
models in the derivation sample. Multivariate logistic 
regression analysis was used to build prediction models 
in derivation group, and then validated in validation 
cohort. Discrimination, calibration and clinical usefulness 
of the predicting model were assessed using the C-
index, calibration plot and decision curve analysis. After 
pairwise comparison, the best performing model was 
chosen to build a nomogram according to the regression 
coefficients.
Results  Among the 1177 admissions, in-hospital 
mortality was 13.52%. In both groups, the XGBoost, 
LASSO regression and Get With the Guidelines-Heart 
Failure (GWTG-HF) risk score models showed acceptable 
discrimination. The XGBoost and LASSO regression models 
also showed good calibration. In pairwise comparison, the 
prediction effectiveness was higher with the XGBoost and 
LASSO regression models than with the GWTG-HF risk 
score model (p<0.05). The XGBoost model was chosen as 
our final model for its more concise and wider net benefit 
threshold probability range and was presented as the 
nomogram.
Conclusions  Our nomogram enabled good prediction of 
in-hospital mortality in ICU-admitted HF patients, which 
may help clinical decision-making for such patients.

INTRODUCTION
Heart failure (HF), a syndrome due to a heart 
function disorder, is the terminal phase of all 
heart diseases. As a major cause of cardiovas-
cular morbidity and mortality, HF has become 
an overwhelming threat to human health and 
social development.1 Despite the recent prog-
ress in diagnosis and evidence-based manage-
ment, the outcomes concerning HF remain 
unsatisfactory.2

As a life-threatening disease, especially 
concerning combined advanced organ 
dysfunction or other severe complications, a 
large proportion of HF patients may imme-
diately require advanced, high-technology, 
life-saving care that is available only in inten-
sive care units (ICUs), characterised with 
high-intensity staffing in terms of nurse and 
physician-to-patient ratios. Approximately 
10%–51% of patients hospitalised with HF in 
the USA have been reported to be admitted 
to an ICU.3 4 ICU-admitted patients have been 
reported to have significantly higher adjusted 

Strengths and limitations of this study

►► We developed the first in-hospital mortality predic-
tion nomogram using logistic regression with in-
cluded variables selected by the extreme gradient 
boosting algorithm.

►► The area under the receiver operating characteristic 
curve, calibration curves, decision curve analysis 
and survival curves were enrolled to evaluate the 
performance of this novel nomogram model in both 
the primary cohort and validation cohort.

►► Least absolute shrinkage and selection operator 
regression and machine learning were applied to 
screen independent risk factors.

►► Data were collected from patient medical records 
and we relied on the accuracy of the records.
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in-hospital mortality compared with those admitted to 
hospital wards only.5 The in-hospital mortality rate for 
patients who have received treatment in an ICU has been 
reported to be 10.6%, whereas the in-hospital mortality 
rate for all HF patients has been reported to be 4.0%.6 
Given the considerably higher in-hospital mortality rate, 
accurately predicting prognosis and receiving intensive 
treatment with closer follow-up may be of greater benefit 
to ICU-admitted HF patients. Although several in-hos-
pital mortality prediction models are available,7–10 the 
accuracies of these methods are unsatisfactory (the C-sta-
tistic of these models range from 0.75 to 0.776）and have 
not been widely implemented. Moreover, limited data are 
available on prediction models concerning ICU-admitted 
HF patients.

Identifying patients at the highest risk of poor outcomes 
following hospital discharge can improve outcomes for 
ICU-admitted HF patients. Machine-learning algorithms 
can automatically reconstruct relationships between vari-
ables and response values from big data and improve 
the performance of traditional methods, such as logistic 
regression analyses, in identifying critical predictors.11 
This study aimed to develop and validate a predictive 
model for in-hospital mortality among ICU-admitted HF 
patients using data from the Medical Information Mart 
for Intensive Care (MIMIC-III) database.

Materials and methods

Data source
The MIMIC-III database (V.1.4, 2016) is a publicly avail-
able critical care database containing de-identified data 
on 46 520 patients and 58 976 admissions to the ICU 
of the Beth Israel Deaconess Medical Center, Boston, 
USA, between 1 June 2001 and 31 October 2012. These 

data include comprehensive information, such as demo-
graphics, admitting notes, International Classification 
of Diseases-9th revision (ICD-9) diagnoses, laboratory 
tests, medications, procedures, fluid balance, discharge 
summaries, vital sign measurements undertaken at the 
bedside, caregivers notes, radiology reports and survival 
data.12 After successful completion of the National Insti-
tutes of Health Protecting Human Research Participants 
web-based training course, we obtained approval to 
extract data from MIMIC-III for research purposes (Certi-
fication Number: 28860101).

Patient and public involvement
Patients and/or the public were not directly involved in 
this study.

Study patients
Patients with a diagnosis of HF, identified by manual 
review of ICD-9 codes, and who were ≥15 years old at the 
time of ICU admission were included in the study; two 
researchers conducted the ICD-9 code review. Patients 
without an ICU record or data missing for left ventric-
ular ejection fraction (LVEF) or N-terminal pro-brain 
natriuretic peptide (NT-proBNP) were excluded from 
the study. Figure  1A illustrates the flow chart showing 
the selection of patients into the study. A total of 13 389 
patients with a diagnosis of HF were screened and 1177 
adult patients were included in this study (figure 1A).

Data extraction
Using Structured Query Language queries (PostgreSQL, 
V.9.6), demographic characteristics, vital signs and labora-
tory values data were extracted from the following tables 
in the MIMIC-III dataset: ADMISSIONS, PATIENTS, 
ICUSTAYS, D_ICD DIAGNOSIS, DIAGNOSIS_ICD, 

Figure 1  (A) Flowchart of patient selection (n=1177). (B) Model development flowchart. ICD-9, 9th revision of the International 
Classification of Diseases; ICU, intensive care unit; LASSO, least absolute shrinkage and selection operator; MIMIC-III, 
Medical Information Mart for Intensive Care III; NT-proBNP, N-terminal pro-brain natriuretic peptide; XGBoost, extreme gradient 
boosting.
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LABEVENTS, D_LABIEVENTS, CHARTEVENTS, D_
ITEMS, NOTEEVENTS and OUTPUTEVENTS. Based 
on previous studies,7–9 13–15 clinical relevance, and general 
availability at the time of presentation, we extracted the 
following data: demographic characteristics (age at the 
time of hospital admission, sex, ethnicity, weight and 
height); vital signs (heart rate (HR), systolic blood pres-
sure (SBP), diastolic blood pressure (DBP), mean blood 
pressure, respiratory rate, body temperature, saturation 
pulse oxygen (SPO2), urine output (first 24 hours); 
comorbidities (hypertension, atrial fibrillation, ischaemic 
heart disease, diabetes mellitus, depression, hypoferric 
anaemia, hyperlipidaemia, chronic kidney disease (CKD) 
and chronic obstructive pulmonary disease (COPD)) 
and laboratory variables (haematocrit, red blood cells, 
mean corpuscular haemoglobin, mean corpuscular 
haemoglobin concentration, mean corpuscular volume 
(MCV), red blood cell distribution width (RDW), platelet 
count, white blood cells, neutrophils, basophils, lympho-
cytes, prothrombin time (PT), international normalised 
ratio (INR), NT-proBNP, creatine kinase, creatinine, 
blood urea nitrogen (BUN) glucose, potassium, sodium, 
calcium, chloride, magnesium, the anion gap, bicar-
bonate, lactate, hydrogen ion concentration (pH), partial 
pressure of CO2 in arterial blood and LVEF), using Struc-
tured Query Language (SQL) with PostgreSQL (V.9.6). 
Demographic characteristics and vital signs extracted 
were recorded during the first 24 hours of each admission 
and laboratory variables were measured during the entire 
ICU stay. Comorbidities were identified using ICD-9 
codes. For variable data with multiple measurements, 
the calculated mean value was included for analysis. The 
primary outcome of the study was in-hospital mortality, 
defined as the vital status at the time of hospital discharge 
in survivors and non-survivors.

Missing data handling
Variables with missing data are common in the MIMIC-III, 
however, eliminating patients with incomplete data can 
bias the study. Therefore, imputation is an important step 
in data preprocessing. All screening variables contained 
<25% missing values (online supplemental table 1). For 
normally distributed continuous variables, the missing 
values were replaced with the mean for the patient group. 
For skewed distributions related to continuous variables, 
missing values were replaced with their median. There 
were no missing dichotomous variables in our study.16

Statistical analysis
We present baseline patient characteristics in both samples 
using a percentage of the total for categorical variables 
and mean±SD or median and IQR for continuous vari-
ables, depending on the normality of distribution. For 
categorical variables, we used a two-sided Pearson’s χ2 test 
or Fisher’s exact tests to assess differences in proportions 
between the two groups. For all continuous variables, we 

used a two-sided one-way analysis of variance or Wilcoxon 
rank-sum tests when comparing the two groups.

Figure 1B illustrates the methodology used to develop 
the prediction model. A total of 52 demographic, clinical 
and biochemical variables were considered as candidate 
predictors based on existing literature, expert knowledge 
and availability in clinical practice. Table  1 summarises 
the predictor variables and summary statistics. Two 
methods were used to select the most important predic-
tors for the in-hospital mortality prediction model from 
the derivation group. First, we used extreme gradient 
boosting (XGBoost),17 a supervised machine-learning 
and data-mining tool, which involves a meta-algorithm, to 
construct a strong ensemble learner from weak learners, 
such as regression trees.18 The parameters of a regression 
tree consist of the tree structures and the weights of the 
leaf nodes. They are sequentially optimised to minimise 
an objective function, consisting of a fitting loss term plus 
a regularisation term, using gradient methods. XGBoost 
retrofits the tree-learning algorithm for handling sparse 
data by raising a weighted quantile sketch to approximate 
an optimisation calculation and design a column block 
structure for parallel learning. The XGBoost algorithm 
can indicate the contributions of each of the predictors, 
making it possible to choose the most relevant predictors. 
The 20 top-ranked variables were selected for further 
analysis. Second, we used the least absolute shrinkage and 
selection operator (LASSO) method,19 which involves 
regression analysis to perform both variable selection and 
regularisation. This enhances the prediction accuracy 
and interpretability of a statistical model and is suitable 
for reduction in high-dimensional data. Variables with 
non-zero coefficients in the LASSO regression model 
were selected for further analysis.

To investigate independent risk factors of in-hospital 
mortality, univariate logistic regression analysis was used 
to assess the significance of variables selected by each 
method in the derivation group. Variables significantly 
associated with in-hospital mortality were candidates for 
multivariate binary logistic regression. Potential non-
linearity relationships between candidate continuous 
variables and in-hospital mortality were explored using a 
smoothing plot, and nomograms were formulated based 
on the results of multivariate logistic regression analysis. 
The nomogram was based on proportionally converting 
each regression coefficient in multivariate logistic regres-
sion to a 0–100-point scale. The prediction models were 
evaluated in terms of discrimination and calibration. Cali-
bration curves were plotted to assess the calibration of 
the in-hospital mortality nomogram. Discrimination was 
assessed by calculating the area under the curve (AUC) 
of the receiver operating characteristic (ROC) curve and 
C-statistic testing. The 95% CI was calculated using 500 
bootstrap resamples. Decision curve analysis (DCA)20 
was used to compare the clinical net benefit associated 
with the use of these models. The model with the highest 

https://dx.doi.org/10.1136/bmjopen-2020-044779
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AUC and highest clinical net benefit was used to develop 
a nomogram predicting in-hospital mortality.

The American Heart Association Get With The 
Guidelines-Heart Failure (GWTG-HF) risk score is a well-
validated, widely accepted scoring system for risk strati-
fication regarding in-hospital mortality.9 This prediction 
model was validated in our study groups and compared 
with our developed model. Because the final published 
version was a risk score, the calculated GWTG-HF risk 
score for each of the study patients was used for further 
analysis. A non-parametric approach, using generalised U 
statistical theorising to generate an estimated covariance 
matrix,21 was used to analyse areas under the ROC curves 
and estimate differences in the discriminatory power 
between the models.

A two-tailed p value of <0.05 indicated statistical signif-
icance in all analyses. All analyses were performed using 
EmpowerStats (V.2.17.8; http://www.​empowerstats.​com) 
and R software (V.3.1.4; https://www.​R-​project.​org).

RESULTS
Patient characteristics
The MIMIC-III database contained 58 976 ICU admissions. 
As shown in the data extraction flowchart (figure  1A), 
a total of 13 389 patients with a diagnosis of HF were 
screened. Patients without an ICU record or those with 
missing LVEF or NT-proBNP data were excluded, and 
1177 adult patients were included in this study. According 
to the grouping method of a previous study,9 all patients 
were randomly divided into a derivation (n=825, 70%) 
and a validation (n=352, 30%) group.

In our study population of severely ill ICU-admitted 
patients, the in-hospital mortality rate was higher than 
that of other HF patients previously reported. There were 

159 (13.52%) in-hospital patient deaths. Table  1 shows 
comparisons of demographics and variables between 
the derivation and validation groups, and between those 
who died and survived during hospitalisation. SBP and 
pH values were lower in the validation group. There 
were no significant differences in other selected variables 
between the derivation and validation groups. Consistent 
with previous reports, the in-hospital mortality rate for 
African American patients was significantly lower, while 
that of older patients was considerably higher. A high 
number of patients who died during their hospital stay 
had atrial fibrillation, but were found to be less likely 
to have hypertension, hypoferric anaemia, depression 
or CKD compared with patients who survived hospital-
isation. Patients who died also had lower serum bicar-
bonate, calcium, sodium, lymphocyte, basophil, platelet 
count, and body mass index (BMI) levels, and lower pH 
values. However, HR, RDW, white blood cells, neutro-
phils, PT, INR, NT-proBNP, creatinine, BUN, potassium, 
chloride, the anion gap, magnesium and lactate levels in 
patients who died during their hospital stay were signifi-
cantly increased. Additionally, urine output in the first 24 
hours, SPO2, temperature and blood pressure levels were 
decreased in patients who died during their hospital stay. 
There was no significant difference in LVEF between the 
surviving and non-surviving patients.

Selected variables
Figure 1B illustrates the methodology that we followed to 
develop the model.

The LASSO regularisation process resulted in 20 
potential predictors on the basis of 825 patients in the 
derivation group (figure 2A,B). Using XGBoost, the 52 
selected variables were used to identify patients who 
had died during their hospital stay in the derivation 

Figure 2  Demographic and clinical feature selection using the least absolute shrinkage and selection operator (LASSO) binary 
logistic regression model. (A) Tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via minimum 
criteria. The partial likelihood deviance (binomial deviance) curve was plotted versus log(λ). Dotted vertical lines were drawn at 
the optimal values by using the minimum criteria and the one SE of the minimum criteria (the 1-SE criteria). λ value of 0.0192, 
with log (λ), −3.9545 was chosen (1-SE criteria) according to 10-fold cross-validation. (B) LASSO coefficient profiles of the 52 
features. A coefficient profile plot was produced against the log (λ) sequence. The vertical line was drawn at the value selected 
using 10-fold cross-validation, where optimal resulted in 20 features with non-zero coefficients.

http://www.empowerstats.com
https://www.R-project.org
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group. The proportional importance of the 20 top-
ranked input variables in the XGBoost model is shown in 
figure 3A. Figure 3B shows the LASSO-selected predictors 
(shrinkage parameter, λ=0.0192).

Model development
For the derivation group, tables  2 and 3 show the vari-
ables selected using XGBoost and LASSO regression 
that was significantly associated with in-hospital death in 
the univariate analysis. Statistically significant variables 
screened from the univariate analysis were included in 
the non-conditional binary multivariate logistic regres-
sion. Among the XGBoost-selected variables, multivariate 
logistic regression identified anion gap; lactate, calcium, 
BUN and DBP levels and the presence of CKD as the most 
significant mortality risk predictors. Among the variables 
screened using LASSO regression, in addition to the 
six variables above, hypoferric anaemia and MCV were 
also identified as statistically significant variables using 
multivariate likelihood ratio (LR). For continuous vari-
ables entered into the multivariate LR model mentioned 
previously, potential non-linearity in the prediction of 
in-hospital mortality was explored using a smoothing 
plot. Hence, the associations of the anion gap and lactate 
levels with mortality risk were confined to an anion gap of 
>14.73 mEq/L and a lactate level of >1.5 mmol/L, respec-
tively (figure 4A,B, table 4). A non-linearity relationship 
was not found in relation to calcium, BUN, DBP and MCV 
levels (figure 4C-F).

We established an in-hospital mortality prediction algo-
rithm (PA) using XGBoost-selected variables as follows: log 

odds of mortality=4.62536+0.24559×anion gap+0.61542×-
lactate−1.04993×calcium+0.02687×BUN−1.76330×CK-
D−0.05633×DBP.

The variance inflation factors (VIFs) for these variables 
were 1.3, 1.2, 1.1, 1.4, 1.2 and 1.1, respectively.

Based on LASSO regression, the selected variables for 
the in-hospital mortality PA were as follows: log odds 
of mortality=3.75020+0.31313×anion gap+0.55440×-
lactate−1.18119×calcium+0.02857×BUN−1.764666 
CKD−0.06122×DBP−1.16783×hypoferric anaemia 
presence+0.01596×MCV.

The VIFs for these variables were 1.3, 1.2, 1.1, 1.4, 1.2, 
1.1, 1.1 and 1, respectively.

Model validation
The discrimination and calibration of the XGBoost-based 
model and the LASSO regression-based model in the deri-
vation and validation groups are shown in figure 5A–D and 
figure 6A–D, respectively. Using bootstrapping validation, 
the area under the ROC curve values for the XGBoost 
model and the LASSO regression model were found to 
be 0.8515 (95% CI 0.7749 to 0.9115) and 0.8646 (95% 
CI 0.7971 to 0.9201) in the derivation group, respectively, 
and 0.8029 (95% CI 0.6849 to 0.9030) and 0.8194 (95% 
CI 0.7201 to 0.9205) in the validation group, respectively. 
The 95% CIs of the calibration belt in both the derivation 
and validation groups did not cross the diagonal bisector 
line, suggesting that the prediction models had a strong 
concordance performance in both groups; this indicates 
the two models performed well in both groups.

Figure 3  Predictor variables selection. (A) Importance of the predictor variables selected by XGBoost algorithm scaled to a 
maximum of 1.0. (B) Predictor variables selected by LASSO. LASSO, least absolute shrinkage and selection operator; MCH, 
mean corpuscular haemoglobin; MCV, mean corpuscular volume; NT-proBNP, N-terminal pro-brain natriuretic peptide; PaCO2, 
partial pressure of carbon dioxide in the artery; RDW, red blood cell distribution width; SPO2, saturation pulse oxygen; XGBoost, 
extreme gradient boosting.
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The GWTG-HF risk score is based on information 
concerning patient age, SBP, BUN, HR, serum sodium, 
COPD and non-African American ethnicity to predict 
the risk of in-hospital mortality for patients hospitalised 
with HF We calculated the GWTG-HF score for all study 
patients. The discrimination and calibration perfor-
mance were also validated in our study groups. The ROC 
curve and the calibration curve of the GWTG-HF risk 
score in the derivation and validation groups are shown 
in figure 7A–D. The area under the ROC curve values in 
the derivation and validation groups were 0.7856 (95% CI 
0.7183 to 0.8470) and 0.7510 (95% CI 0.6207 to 0.8813), 
respectively. Bootstrapping validation was also used. 
The calibration curve demonstrated that the agreement 
between prediction and observation in both groups did 
not present as well as the models above. The DCA showed 
that a threshold probability within a range from 0 to 0.46 
added more net benefit (figure 8A).

The DCA for XGBoost-based model and the LASSO 
regression-based model are presented in figure  8A. 
Analysis showed that when the threshold probability for 
a doctor or a patient was >0 in the XGBoost model, or 
within a range from 0 to 0.89 in the LASSO model, the 

models added more net benefit than the ‘treat all’ or 
‘treat none’ scheme.

Model comparison
To assess the predictive effectiveness of the XGBoost, 
LASSO regression and GWTG-HF risk score models, we 
compared the ROC curves of the three models using 
generalised U statistics to generate an estimated cova-
riance matrix in our total study population. Figure  8B 
shows that the area under the ROC curve values for the 
XGBoost, LASSO regression and GWTG-HF risk score 
models were 0.8416 (95% CI 0.7864 to 0.8967), 0.8562 
(95% CI 0.8052 to 0.9073) and 0.7747 (95% CI 0.7161 to 
0.8332), respectively, which were confirmed to be 0.8378, 
0.8518 and 0.7743 via bootstrapping validation.

The predictive effectiveness of the XGBoost model 
and the LASSO regression model were both consider-
ably better than the GWTG-HF risk score model (p<0.05) 
(table 5). There was no statistical significance difference 
between the XGBoost model and the LASSO regression 
model discrimination performance (p=0.1961) (table 5). 
However, the XGBoost model was more concise because 
only six variables were included, whereas the LASSO 

Table 2  Univariate and multivariate logistic regression analyse variables screened by extreme gradient boosting in the 
development group

Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Anion gap, mEq/L 1.23 1.15 to 1.32 <0.0001 1.15 1.04 to 1.27 0.0083

Lactate, mmol/L 1.78 1.48 to 2.14 <0.0001 1.51 1.20 to 1.90 0.0004

Calcium, mg/dL 0.39 0.27 to 0.55 <0.0001 0.38 0.26 to 0.56 <0.0001

Lymphocytes, % 0.92 0.88 to 0.95 <0.0001 NA

White cells, ×10∧9/L 1.11 1.06 to 1.16 <0.0001 NA

Heart rate, bpm 1.03 1.02 to 1.04 <0.0001 NA

Sodium, mEq/L 0.95 0.91 to 0.99 0.0197 NA

Urine-output (first 24 hours), mL 1.00 1.00 to 1.00 <0.0001 NA

Platelet count, ×10∧9/L 1.00 0.99 to 1.00 0.0028 NA

Blood urea nitrogen, mg/dL 1.02 1.01 to 1.03 <0.0001 1.03 1.01, 1.04 <0.0001

Age, years 1.02 1.00 to 1.04 0.0197 NA

MCH, pg 1.07 0.99 to 1.16 0.0981 NA

Red cells, ×10∧12/L 0.82 0.58 to 1.14 0.233 NA

Creatine kinase (CK), IU/L 1.00 1.00 to 1.00 0.1528 NA

PaCO2, mm Hg 0.98 0.96 to 1.00 0.0398 NA

Potassium, mEq/L 1.92 1.23 to 2.99 0.0042 NA

Diastolic blood pressure, mm Hg 0.97 0.95 to 0.99 0.0056 0.97 0.95 to 0.99 0.0203

Respiratory rate, bpm 1.10 1.04 to 1.15 0.0002 NA

Chronic renal insufficiency No 1

Yes 0.48 0.30 to 0.76 0.0016 0.24 0.14 to 0.43 <0.0001

NT-proBNP, pg/mL 1.00 1.00 to 1.00 0.0047 NA

MCH, mean corpuscular haemoglobin; NA, not available; NT-proBNP, N-terminal pro-brain natriuretic peptide; PaCO2, partial pressure of 
carbon dioxide in the artery.
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regression model comprised eight variables. Further-
more, as shown in figure  8A, the XGBoost model had 
a wider net benefit threshold probability range. There-
fore, the XGBoost-based model generated in the deri-
vation group was chosen as our final model and is 
presented as the nomogram in figure  9. In the nomo-
gram, each predictor corresponds to a specific point 
through drawing a line straight upward to the points 
axis. The sum of the points located on the total points 
axis represents the probability of in-hospital mortality 
when drawing a line directly down to the risk identified 
on the in-hospital mortality axis.

Sensitivity and specificity for predicting in-hospital 
mortality at different cut-off values are summarised in 
table  6. At a cut-off value of ≥0.50, specificity was 95% 
and sensitivity was 53%. Although higher cut-off values 
resulted in higher specificity, sensitivity rapidly fell to 
a point at which the model identified that only 50% of 
patients in-hospital mortality may have been omitted.

DISCUSSION
Using data derived from the MIMIC-III database, we 
developed the first in-hospital mortality prediction nomo-
gram with variables selected by XGBoost model using 
logistic regression analysis. By using XGBoost and LASSO 
regression, we screened out independent risk factors for 
in-hospital mortality of ICU-admitted HF patients. The 
nomogram may facilitate clinical decision-making for 
advanced management of ICU-admitted HF patients.

Patients hospitalised with HF often require admission 
to the ICU. Data from 341 hospitals in the United States 
showed that the median ICU admission rate concerning 
hospitalised HF patients was 10% (IQR, 6%–16%).3 
ICU admission rates have been reported to be 11.9% in 
the FINN-AKVA (Finish Acute Heart Failure Study),22 
10.7% in the RO-AHFS registry study23 and 45% in the 
ALARM-HF study.24 Many studies have shown that ICU-
admitted patients with advanced HF have considerably 
higher in-hospital mortality rates than HF patients who 

Table 3  Univariate and multivariate logistic regression analyse variables screened by least absolute shrinkage and selection 
operator regression in the development group

Univariate analysis Multivariate analysis

OR 95% CI P value OR 95% CI P value

Age, years 1.02 1.00 to 1.04 0.0197 NA

Hypertension No 1

Yes 0.45 0.30 to 0.68 0.0001 NA

Diabetes mellitus No 1

Yes 0.62 0.41 to 0.95 0.0269 NA

Hypoferric anaemia No 1 1

Yes 0.50 0.31 to 0.79 0.0033 0.49 0.29 to 0.83 0.0076

Chronic renal insufficiency No 1 1

Yes 0.48 0.30 to 0.76 0.0016 0.27 0.15 to 0.48 <0.0001

Chronic obstructive pulmonary disease No 1

Yes 0.39 0.14 to 1.08 0.0708 NA

Heart rate, bpm 1.03 1.02 to 1.04 <0.0001

Diastolic blood pressure, mm Hg 0.97 0.95 to 0.99 0.0056 0.97 0.95 to 0.99 0.0153

Respiratory rate, bpm 1.10 1.04 to 1.15 0.0002 NA

SPO2, % 0.91 0.84 to 0.98 0.0151 NA

Urine-output (first 24 hours), mL 1.00 1.00 to 1.00 <0.0001 NA

MCV, fL 1.04 1.01 to 1.07 0.0188 1.05 1.01 to 1.09 0.0066

RDW, % 1.18 1.09 to 1.27 <0.0001 NA

White cells, ×10∧9/L 1.11 1.06 to 1.16 <0.0001 NA

Platelet count, ×10∧9/L 1.00 0.99 to 1.00 0.0028 NA

Lymphocytes, % 0.92 0.88 to 0.95 <0.0001 NA

Blood urea nitrogen, mg/dL 1.02 1.01 to 1.03 <0.0001 1.03 1.01 to 1.04 <0.0001

Calcium, mg/dL 0.39 0.27 to 0.55 <0.0001 0.37 0.25 to 0.55 <0.0001

Anion gap, mEq/L 1.23 1.15 to 1.32 <0.0001 1.15 1.03 to 1.27 0.0092

Lactate, mmol/L 1.78 1.48 to 2.14 <0.0001 1.53 1.21 to 1.95 0.0005

MCV, mean corpuscular volume; NA, not available; RDW, red blood cell distribution width; SPO2, saturation pulse oxygen.
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have been admitted to hospital wards only. The all-cause 
in-hospital mortality rates for ICU-admitted HF patients 
and for all study HF patients were 10.6% versus 4.0% in 
the ADHERE study,6 17.3% versus 6.5% in the RO-AHFS 
study23 and 17.8% versus 4.5% in the ALARM-HF study, 
respectively.24 A decision to admit to intensive care varies 
depending on both clinician expectations and resource 
availability, so both factors will add unmeasured variance 
to outcome studies.

Our study population comprised ICU-admitted 
patients with advanced HF, and the in-hospital mortality 
rate was 13.52% (n=159 patients). This rate was consider-
ably higher than that with other HF in-hospital mortality 
prediction models based on all HF patients, regardless of 
ICU admission. In the ADHERE in-hospital mortality risk 
stratification models, their study population in-hospital 
mortality rate was 4.2%7; in the OPTIMIZE-HF(Optimize 

Heart Failure) prediction models, it was 3.8%.8 In the 
GWTG-HF risk score model, the rate was 2.86%,9 and in 
the risk prediction score system, a single-centre elderly 
Chinese patient-based model established by Jia et al,13 it 
was 5.58%.

Although the higher in-hospital mortality rate among 
ICU-admitted HF patients is mainly due to underlying 
severity of illness, an accurate prognosis is fundamental 
to many clinical decisions concerning ICU-admitted 
HF patients. To avoid shortcomings such as over-fitting, 
and predictor variables with skewed distributions using 
conventional LR analysis, the XGBoost algorithm and 
LASSO regression analysis were used to screen inde-
pendent risk factors of in-hospital mortality using data 
on demographic characteristics, vital signs, comorbidi-
ties and laboratory variables. The anion gap and lactate, 
calcium, BUN, CKD and DBP levels were included in the 

Figure 4  Unadjusted relationship between anion gap (A), calcium (B), blood urea nitrogen (C), lactate (D), diastolic blood 
pressure (E), MCV (F) and the risk of in-hospital mortality by using Lowess smoothing technique. The y-axis represents the risk 
of in-hospital mortality. The x-axis spans the range of the variable of interest. MCV, mean corpuscular volume.

Table 4  Threshold effect analysis of two non-linearity variables

Exposure Anion gap Lactate

Turning point (K) 14.73 1.5

<K slope 1 1.01 (0.88, 1.17) 0.8475 0.41 (0.16, 1.05) 0.0619

>K slope 2 1.40 (1.24, 1.57) <0.0001 2.09 (1.67, 2.61) <0.0001

Slope 2–slope 1 1.38 (1.10, 1.72) 0.0053 5.08 (1.80, 14.30) 0.0021

Predicted at K −2.11 (−2.45, –1.78) −2.35 (−2.65, –2.04)

LRT 0.006 0.003

95% CI of TP (K) 10.33 to 18.12125 0.86 to 3.33

Two-piece-wise regression was used to examine the threshold effect of the risk factor on the outcome.
LRT, likelihood ratio test; TP, turning point.
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XGBoost-based and LASSO-based multiple regression 
equations. The presence of hypoferric anaemia and MCV 
were included in the LASSO-based multiple regression 
equation.

A lot of variables were reported to correlate with 
mortality in heart failure patients, such as gender, age, 
BMI, smoking, LVEF, NYHA (New York Heart Associa-
tion) classification, diabetes mellitus, chronic obstruc-
tive lung disease, low SBP, serum creatinine levels, not 
receiving beta-blockers and not receiving ACEIs/ARBs 
(Angiotensin-Converting Enzyme Inhibitors/Angio-
tensin II Receptor Blockers).25 Whereas, our study showed 
that LVEF was not a predictor of in-hospital mortality 
of ICU-admitted HF patients. This was also observed 
in previous small number HF cohorts.26–29 This may be 
partly attributed to our relatively small sample size of 
participants and the duration of hospitalisation is a rela-
tively shorter time. Our study found that the HF patient 
who had comorbidity of atrial fibrillation had higher 

in-hospital mortality. Whereas atrial fibrillation is not an 
independent impact factor that strong enough to affects 
the outcome after adjusting for other covariates. This is 
consistent with the previous reports.7–9

Whether HR was a predictor, the heart failure mortality 
prediction models showed differently. Some models 
believe that it affects prognosis strongly8 10 and some 
models disagree.7 30 31 In our model, the HR did not 
appear in the final model. BMI also encountered the 
same situation. Our study failed to prove that BMI was 
a predictor of in-hospital mortality of ICU-admitted HF 
patients. This may be due to the different populations 
studied and our relatively small sample size. Whether ‘the 
obesity paradox’ bias our result is hard to say, because 
critical care-related outcome32 and heart failure33 both 
have ‘the obesity paradox’, respectively. We would there-
fore like to explore these confusions in future studies.

Both hypocalcaemia and hypercalcaemia were reported 
to associated with an increased short-term mortality risk 
in heart failure patient.34 Our study showed that hyper-
calcaemia indicated an adverse outcome. Free serum 
calcium ions, a very important electrolyte, play a major 
role in excitation, contraction and relaxation coupling 
of the myocardium. The alterations of serum calcium 
homeostasis may adversely affect the prognosis of heart 

Figure 5  The discrimination and calibration performance of 
XGBoost model. Plots (A) and (C) show the ROC curves of 
the XGBoost model in the derivation and validation groups, 
respectively (AUC=0.8515 versus 0.8029). The light yellow 
area represents the 95% CIs. 500 bootstrap resamples was 
used to calculate a relatively corrected AUC and 95% CI. The 
light yellow area represents the 95% CIs. Calibration curves 
of the XGBoost model in the derivation (B) and validation 
(D) groups. Calibration curves depicted the calibration of 
the XGBoost model in terms of the agreement between 
the predicted risk of in-hospital mortality and observed 
in-hospital mortality. The 45° red line represents a perfect 
prediction, and the green lines represent the predictive 
performance of the XGBoost model. The closer the green line 
fit is to the ideal line, the better the predictive accuracy of the 
XGBoost model is. The light yellow area represents the 95% 
CIs. AUC, area under the curve; ROC, receiver operating 
characteristic; XGBoost, extreme gradient boosting.

Figure 6  The discrimination and calibration performance 
of the LASSO model. Plots (A) and (C) show the ROC curves 
of the LASSO model in the derivation and validation groups, 
respectively (AUC=0.8646 versus 0.8194). 500 bootstrap 
resamples used to calculate a relatively corrected AUC 
and 95% CI. The light yellow area represents the 95% CIs. 
Calibration curves of the LASSO model in the derivation (B) 
and validation (D) groups. The light yellow area represents the 
95% CIs. AUC, area under the curve; LASSO, least absolute 
shrinkage and selection operator; ROC, receiver operating 
characteristic.
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failure patients. Besides, the amount of calcium-binding 
proteins are significantly altered in end-stage heart 
failure.35

Given the varying characteristics of the study patients 
involved, our multivariate logistic regression models 
did not consider age and HR as independent predictive 
factors, which have otherwise both been independently 
identified as associated with an increased risk of mortality 
in the GWTG-HF risk score model9 and the OPTI-
MIZE-HF prediction model.8 BUN levels also substantially 
contributed to the overall point score in our model, and 
an elevated BUN level has been associated with increased 
in-hospital mortality.7–9 Contrary to previous studies,7–9 
ICU-admitted patients with advanced HF and with CKD as 
a comorbidity had a lower in-hospital mortality rate in our 
study. This finding may be due to the ability of patients 
with CKD to better compensate for changes in cardiac 
function and to have an earlier chance of receiving 
continuous renal replacement therapy, which is a thera-
peutic scheme also recommended in HF management. 
One study showed that early creatinine changes, 48–72 
hours after hospital admission, significantly affected the 
prognosis in HF patients.36 Given the 12-year date range 
of MIMIC-III, there may also be unmeasured outcome 
variance over time.

Consistent with previous studies,13 37 our study also 
identified an acid–base balance as a strong prognostic 
predictor. Using the Lowess smoothing technique, a non-
linearity relationship was found between the anion gap 
and lactate levels (figure 4). After two-piece-wise regres-
sion analysis, with the anion gap at >4.73 mEq/L and the 

Figure 7  The discrimination and calibration performance 
of GWTG-HF risk score model. Plots (A) and (C) show 
the ROC curves of the GWTG-HF risk score model in the 
derivation and validation groups, respectively (AUC=0.7856 
versus 0.7510). 500 bootstrap resamples used to calculate 
a relatively corrected AUC and 95% CI. Calibration curves 
of the GWTG-HF risk score model in the derivation (B) and 
validation (D) groups. The area between two green dotted 
lines represents the 95% CIs. AUC, area under the curve; 
GWTG-HF, Get With The Guidelines-Heart Failure; ROC, 
receiver operating characteristic.

Figure 8  (A) Pairwise comparison of ROC curves for XGBoost model, LASSO model and GWTG-HF risk score model. 
(B) Decision curve analysis for XGBoost model, LASSO model and GWTG-HF risk score model. The y-axis measures the 
net benefit. The red line represents the XGBoost model. The light green line represents the LASSO model. The purple line 
represents the GWTG-HF risk score model. The grey line represents the assumption that all patients die in the hospital. The 
black line represents the assumption that no patients die in the hospital. Plot (B) shows the net benefit threshold probability 
range of the three models respectively, between which using the models in the current study to predict in-hospital mortality 
adds more benefit than the die-all-patients scheme or the die-none scheme. GWTG-HF, Get With The Guidelines-Heart Failure; 
LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; XGBoost, extreme gradient 
boosting.
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lactate level at >1.5 mmol/L (table 4), these factors were 
found to be independently associated with increased 
risk of mortality. Altered calcium homeostasis has been 
reported to be associated with increased short-term 
mortality risk.34 Moreover, patients with HF and hypo-
calcaemia had an increased in-hospital mortality. Our 
analysis identified DBP as a prognostic predictor rather 
than SBP, which had been selected in previous predic-
tion models. Other studies have also found that low DBP 
increased the risks of adverse outcomes in HF patients.38 39

Compared with the GWTG-HF risk score, which has 
been reported to be a well-validated in-hospital mortality 
prediction tool for HF patients, both the XGBoost model 
and the LASSO regression model showed superiority in 
predictive effectiveness among our study population. 
Both models demonstrated good discrimination and cali-
bration power in the derivation and validation groups. To 
obtain a more concise and wider net benefit threshold 
probability range, we selected the XGBoost model to 
develop our prediction nomogram.

This study had some limitations. First, apart from the 
patients’ clinical status, the decision to admit patients 
to an ICU may be a result of multiple other factors, 
including practitioner discretion, institutional policies 
and procedures, and hospital capacity, which may bias 
our prediction scores. Second, the data extracted from 
MIMIC database is spread across a number of years 
(2001–2012), during which the treatment of heart failure 
had changed greatly, which may weaken the application 
of our model. Third, as a single-centre study, the popula-
tion was relatively small. Although the robustness of our 
nomogram was tested extensively with internal validation 
using bootstrap testing, it remains uncertain whether 
the results of this study can be applied to other popula-
tions, and further studies with larger numbers of patients 
in various clinical settings are required to confirm our 
results. Fourth, data were collected from patient medical 
records and we relied on the accuracy of the records. 
Fifth, as this was a retrospective study, we were unable to 
avoid selection bias. However, we strictly set the inclusion 
criteria so that the cases and the control patient groups 
could reflect actual conditions as accurately as possible. 
Finally, our model may only help to recognise critical clin-
ical situations at bedside quickly, do not provide any more 
information about potential life-threatening pathophysi-
ological mechanisms.

Figure 9  Developed risk of in-hospital mortality nomogram. 
Each predictor corresponds to a specific point by drawing 
a line straight upward to the Points axis. After sum of the 
scores is located on the Total Points axis, the sum represents 
the probability of in-hospital mortality by drawing straight 
down to the risk of in-hospital mortality axis. BUN, blood urea 
nitrogen.

Table 6  Values of sensitivity, specificity and predictive values of the nomogram scores at different cut-off values

Nomogram score/
predicted probability Specificity Sensitivity Accuracy PPV NPV

≥0.10 0.40 0.95 0.51 0.29 0.97

≥0.20 0.65 0.84 0.69 0.38 0.94

≥0.30 0.80 0.63 0.76 0.44 0.90

≥0.40 0.84 0.58 0.79 0.48 0.89

≥0.50 0.95 0.53 0.86 0.71 0.89

≥0.60 0.95 0.32 0.82 0.60 0.85

≥0.70 0.96 0.21 0.81 0.57 0.83

≥0.80 0.96 0.16 0.80 0.50 0.82

≥0.90 0.99 0.05 0.80 0.50 0.80

The predicted probability/nomogram score is a numeric value representing the prediction model score of the individual patient. The 
nomogram score can be used as a test parameter, and a positive test result can be defined as a score that is equal to or exceeds a specific 
cut-off value. A negative test result is defined as a score less than the cut-off value.
NPV, negative predictive value; PPV, positive predictive value.
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CONCLUSION
We developed the first in-hospital mortality prediction 
nomogram for ICU-admitted HF patients, which can be 
introduced and routinely be used in the ICUs monitoring 
techniques to automatically warn the ICU staff at any 
stage of the disease. With a high AUC of 0.8416 (95% CI 
0.7864 to 0.8967) and a wide net benefit threshold range 
(>0.1), this nomogram can be widely used to enhance 
more accurate clinical decision-making. Involving a small 
number of routinely collected variables, this tool can be 
easily used at the bedside.
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