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Ovarian cancer is a kind of gynecological malignancy with high mortality. Ferroptosis is a new type of iron-dependent cell death
characterized by the formation of lipid peroxides and excessive accumulation of reactive oxygen species. Studies have shown that
ferroptosis modulates tumor genesis, progression, and invasion, including ovarian cancer. Based on the mRNA expression data from
TCGA, we construct a scoring system using consensus clustering analysis, univariate Cox regression analysis, and least absolute
selection operator. (en, we systematically evaluate the relationship between score and clinical characteristics of ovarian cancer. (e
result from the prediction of biofunction pathways shows that score serves as an independent prognostic marker for ovarian cancer
and affects tumor progression by modulating tumor metastasis. Moreover, immunocytes such as activated CD4 Tcell, activated CD8
T cell, regulatory T cells, macrophage, and stromal cells, including adipocytes, epithelial cells, and fibroblast infiltrate more in the
tumor microenvironment in a high-score group, indicating ferroptosis can also affect tumor immune landscape. Critically, four
potentially sensitive drugs, including staurosporine, epothilone B, DMOG, and HG6-64-1 based on the scores, are predicted, and
DMOG is recognized as a novel targeted drug for ovarian cancer. In general, we construct the scoring system based on ferroptosis-
related genes that can predict the prognosis of ovarian cancer patients and propose that ferroptosis may affect ovarian cancer
progression by mediating tumor metastasis and immune landscape. Novel drugs to target ovarian cancer are also predicted.

1. Introduction

Ovarian cancer is the most lethal malignancy among gy-
necological tumors, killing about 150,000 women each year
[1]. According to the statistical results of cancer incidence
and mortality in the United States in 2020, ovarian cancer
mortality ranked fifth in female cancer mortality and ranked
first in gynecologic tumor mortality in North America [2].
Due to the lack of typical clinical symptoms in the early
stage, 75% of ovarian cancer patients have reached the
advanced stage when diagnosed, and 70%–80% of patients
relapse after treatment [3]. (e 5-year survival rate is about
25%–35%, and the survival rate in most countries has not
changed much in the past 20 years [4]. Most of the patients
with advanced ovarian cancer develop into relapse and
multi-drug resistant stages finally [5]. It has been previously

reported that ovarian cancer is divided into four subtypes
including differentiated, immunoreactive, proliferative, and
mesenchymal subtypes, based on gene expression [6].
Mesenchymal has the highest degree of malignancy, and its
invasion ability is the strongest among these four subtypes
[7]. In the mesenchymal subtype, the sample has more
infiltrating stromal cells [7].

In 2012, Dixon et al. defined an iron-dependent, non-
apoptotic cell death induced by erastin as ferroptosis for the
first time [8]. Ferroptosis is a novel cell death with char-
acteristics including the production of lipid peroxides and
excessive accumulation of lethal reactive oxygen species
(ROS) [9]. (e key factors of regulating ferroptosis are
cysteine-glutamate reverse transporter system (System XC-)
and glutathione-dependant peroxidase 4 (GPX4) [10].
System XC- transfers intracellular glutamate to the
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extracellular matrix and extracellular cysteine to the cyto-
plasm, where cysteine synthesizes glutathione in the sulfur
transduction pathway [11]. Inhibition of System XC- in-
duces ferroptosis [12]. Glutathione is an essential cofactor
for GPX4 activation, and its production and maintenance
are key to protecting cells from oxidative stress. GPX4 is an
enzyme that decomposes H2O2 and organic H2O2 into water
or corresponding alcohols [13]. Decreased intracellular
GPX4 activity or direct degradation of GPX4 can lead to
increased iron-dependent reactive oxygen species, then
induce ferroptosis [14, 15]. Ferroptosis is also different from
apoptosis, autophagy, and necrosis in morphology, meta-
bolism, and biochemistry. Apoptosis is characterized by cell
shrinkage, nucleolysis, chromatin agglutination and mar-
ginalization, membrane blistering, and the formation of the
apoptotic body [16, 17].(emorphological characteristics of
autophagy include the formation of autophagosomes in the
cytoplasm, a kind of double-membrane vesicle [18, 19]. (e
cytoplasm and organelles of necrotic cells are swollen, and
the cell membrane is ruptured [20]. In terms of the mor-
phological characteristics of ferroptosis, the mitochondrial
volume is decreased, but the density of mitochondrial
membrane density is increased; the mitochondrial cristae
decrease or disappear, but the nuclear size is normal; the
chromatin is not condensed; and the cell membrane is intact,
so it has the appearance of a complete spherical cell. (e
occurrence of ferroptosis is closely related to cysteine
metabolism [15], lipid metabolism [9], and iron metabolism
[21].

Several research works have reported that the acti-
vation of ferroptosis is closely associated with tumor
progression. Basuli et al. [22] reported significantly more
abnormal iron accumulation in high-grade serous ovarian
cancer tissues than normal ovarian tissues. Moreover, iron
transportation-related genes including TFR1, FPN, and
TF were also dysregulated in the ovarian cancer protocell
genetic model. Together, ferroptosis may be related to
ovarian cancer progression considering the relationship
between iron accumulation and ferroptosis. (e mutation
of p53 and the activation of K-ras have been confirmed as
a key regulator of ovarian cancer, including tumorigenesis
and tumor migration [23]. P53 targets SLC7A11, the
subunit of the System XC-, and inhibits the uptake of
cystine to inhibit ferroptosis [24]. According to recent
literature reports, PARP inhibition decreases glutathione
biosynthesis by downregulating the expression of
SLC7A11, thus promotes lipid peroxidation and ferrop-
tosis, and plays a therapeutic role on BRCA-mutant
cancer [25]. (e above researches suggest that the in-
duction of ferroptosis in ovarian cancer has a therapeutic
effect. A multicenter randomized controlled trial that uses
sorafenib in combination with topotecan for maintenance
therapy reported that a significant improvement in pro-
gression-free survival of patients with platinum-resistant
ovarian cancer [26] by inducing ferroptosis [27]. (ese
studies indicate that ferroptosis plays an important role in
the occurrence, development, and migration of ovarian
cancer and that targeting ferroptosis may be a novel
strategy for ovarian cancer treatment.

In this study, we aim to investigate the prognostic value
of the expression profile of ferroptosis-associated genes
(FRGs) in ovarian cancer. We construct a score risk sig-
nature model based on FRGs from the TCGA data set,
including one RNA sequencing data set and two RNA array
data sets, to evaluate the association between ferroptosis
and ovarian cancer progression. (e workflow was affili-
ated as Supplementary Figure 1. (e score risk signature
includes 13 genes such as TGM2, ASAH1, STK3, RIN2,
HERC3, FTH1, FMO2, EHD2, COL8A2, C5AR1, AXL,
ADORA3, and ADAM9. We find that lymph nodes in-
vasion and venous invasion are more common in the high-
score group, and the score is positively correlated with
invasion. Moreover, the score is related to immune infil-
tration. Our results show that the infiltration of immune
cells and stromal cells is more in the high-score group. (e
results of GO and KEGG enrichment analyses indicate that
ferroptosis-related biological pathways like cell–cell ad-
hesion mediated by integrin and regulation of extracellular
matrix disassembly are activated in the high-score group.
(e immune cell analysis shows that the expression level of
activated CD4+ T cell, activated CD8+ T cell, regulatory
T cells, and macrophage is higher in the high-score group.
Critically, we predict staurosporine, epothilone B, DMOG,
and HG6-64-1 as potential targeted drugs for ovarian
cancer patients.

2. Materials and Methods

2.1. Data Processing. (e expression data of mRNA of
ovarian cancer were downloaded from the TCGA websites
(https://xenabrowser.net/). All data were transformed into
TPM before analyzing. (e RNA-microarray Agi-
lentG4502A_07_3 data was set as a training cohort while the
RNA-seq data and the RNA-microarray AffyU133a data
were applied as a validation cohort.

2.2. �e Clustering Model. (e ferroptosis-related gene was
collected from the previous study [28]. Consensus clustering
analysis was analyzed with the R package “Consensus
Cluster Plus,” and samples were classified into cluster 1 or 2.
(e survival analysis and the ROC curve were performed to
view the prognosis ability difference.

2.3. Construction of the Scoring System. Differential ex-
pressional genes (909 DEGs in total; the screen criteria was
0.677, which was automatically calculated by considering
the mean and standard deviation of logFC) between
clusters 1 and 2 were identified with P packages “limma”
[29, 30].

log FC � mean(|log FC|) + 2∗ sd(|log FC). (1)

Univariate Cox regression analysis and the LASSO al-
gorithm were applied to discover ovarian cancer prognosis
associated genes, and 13 genes were finally filtered out to
construct the scoring system.
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Score � DEGs(HR > 1)∗ (PC1 + PC2) − DEGs(HR < 1)∗ (PC1 + PC2). (2)

(e high- and low-score groups were classified based on
the median value of the scoring system. (e construction of
the scoring system was based on the previous study [31].

2.4. Ferroptosis-Associated Characteristic in the Scoring
System. Shrunken centroids classifier was performed to
identify ferroptosis-associated characteristics in the scoring
system with R package “pamr” as previously reported. (e
threshold was set as 2.8585337, which was based on the
lowest error rate in self-validation.

2.5. Potential Mechanisms Prediction. (e GO and KEGG
analyses were analyzed by conducting the GSVA and the
GSEA analysis, respectively [32, 33].

2.6. �e Immune Landscape Prediction. (e immune land-
scape of ovarian cancer with different subtypes was analyzed
with the ESTIMATE algorithm, the 28 immunocytes project,
and the 64× cell analysis as previously described [34].

2.7. Drug Prediction. Drug sensitivity data were acquired
from the PRISM drug repurposing resource (https://
depmap.org/repurposing/) and Cancer (erapeutics Re-
sponse Portal (CTRP, http://portals.broadinstitute.org/ctrp/
) data set. Cell line expression matrix for was downloaded
from the Broad-Novartis Cancer Cell Line Encyclopedia
(CCLE, https://portals.broadinstitute.org/ccle). (e lower
AUC value of samples indicated higher sensitivity to this
kind of drugs. (e AUC value was calculated with R package
“pRRophetic” as previous work [35].

2.8. Statistical Analysis. (e student t-test and ANOVA test
were applied to verify the difference between two com-
parisons and multiple comparisons, respectively. Kaplan-
Meier curves were generated for overall survival analysis,
while the Log-rank test was introduced to test the survival
analysis. (e value p< 0.05 was considered significant. All
analyses were performed by using R (version 3.6.2).

3. Results

3.1. Ferroptosis Activation May Affect Ovarian Cancer Pro-
gression and Invasion Ability. According to the expression
level of ferroptosis-related genes, ovarian cancer patients in
the TCGA array-Agilent training data set were divided into
different clusters using the consistent cluster analysis, and
the cluster model was constructed (Figures 1(a)–1(c)).

(e significant difference in overall survival outcome
was identified between clusters 1 and 2. Compared with
cluster 1, samples from cluster 2 showed a lower overall
survival rate and worse prognosis (p � 0.022; Figure 1(d)).
(e results of heat map analysis of TCGA array-Agilent data
set showed the expression profiles of ferroptosis-related
genes in two clusters. We observed an elevated trend in the

expression of ferroptosis tolerance-related genes in cluster 2
(Figure 1(e)), suggesting that ferroptosis affects the prog-
nosis of ovarian cancer. Moreover, samples from cluster 2
also manifested stronger lymph node invasion and venous
invasion tendency, implying ferroptosis may affect tumor
progression by modulating tumor invasion. Previous studies
reported four subtypes of ovarian cancer based on gene
expression, including differentiated, immunoreactive, pro-
liferative, and mesenchymal subtypes [6]. (e literature
showed that mesenchymal had the worst survival outcome
and highest invasion ability than other subtypes [7], sug-
gesting its high malignancy. Meanwhile, we identified that
the proportion of mesenchymal subtypes in cluster 2 was
higher than that in cluster 1, which further supported the
conclusion that ferroptosis can affect ovarian cancer pro-
gression by regulating tumor invasion. In general, the
established cluster model based on ferroptosis-related genes
highlights the potential relationship among ferroptosis,
tumor invasion, and ovarian cancer progression.

3.2. Build a Score Risk Signature Model Based on LASSO
Algorithm. To further quantify the clustering model, we first
identified 909 differential expression genes between clusters
1 and 2 (Supplementary Table 1); then univariate Cox re-
gression analysis and LASSO regression algorithm were
applied to excavate cancer-progression-associated genes
successively in the TCGA array-Agilent training data set.
(irteen genes were filtered out as the potential mecha-
nisms-associated genes between clusters 1 and 2 eventually,
including TGM2, ASAH1, STK3, RIN2, HERC3, FTH1,
FMO2, EHD2, COL8A2, C5AR1, AXL, ADORA3 and
ADAM9, and a score risk signature model was constructed
(Supplementary Figures 2(a)–2(c)). (e ROC result illus-
trated that the score signature model was more precise in
predicting survival outcome of ovarian cancer patients than
the cluster model (Supplementary Figure 3(b)). (en we
identified ferroptosis-related genetic characteristics between
high- and low-score groups that further strengthened the
link (Figures 2(a) and 2(b)). Similarly, the heat map also
mapped more lymph node and venous invasion samples and
more mesenchymal subtype tumor in the high-score group,
which supported the accuracy of the cluster model
(Figure 2(c)). Similar results were also obtained in the TCGA
array-u133a data set (Figure 2(d)) and TCGA seq data set
(Supplementary Figure 3(a)). Survival analysis (Figure 2(e))
showed that samples with higher scores had shorter median
survival times than low-score samples both in the training
cohort (p< 0.0001) and the TCGA array-u133a validation
data set (p � 0.0058, Figure 2(f)). However, in the TCGA seq
validation data set, samples with higher scores seemed to
have a worse clinical outcome, but there was no significant
difference according to the log-rank test (p � 0.055; Sup-
plementary Figure 3(c)), which may be due to the
small sample size of the TCGA seq data set. Notably, fer-
roptosis tolerance-related genes were also upregulated in the
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high-score group. In conclusion, the scoring system was not
only able to predict ovarian cancer progression but also
associated with ferroptosis.

3.3. High-Score Samples Are Associated with Malignancy
Clinical Characteristics. As illustrated, high-score samples
mostly belonged to cluster 2 (Figure 3(a)), which indicated
the potential relationship between the cluster model and the
scoring system. Moreover, high-score samples were more
likely to be classified as mesenchymal subtype, the more
malignant subtype than other three subtypes, such as dif-
ferentiated, immunoreactive, and proliferative subtypes
(Figures 3(b) and 3(c)).

Critically, the average score of samples in the lymph
node invasive tumors is higher than non-invasive tumors
(Figure 3(d)). Similar results were obtained in the validation

cohorts (Figure 3(f)). (e venous invasive tumors also had a
higher score than non-invasive tumors (Figures 3(g) and
3(i)). In the TCGA seq data set, the average score had no
significant difference between invasive and non-invasive
tumors (Figure 3(e)), although more high-score samples
were enriched in invasive tumor groups than non-invasive
tumor groups (Figure 3(h)). (is contradictory result may
result from the number of samples in the TCGA seq data set.
To sum up, high-score samples were associated with ma-
lignant clinical characteristics.

3.4. High-Score GroupMay Affect Tumor Progression through
Regulating Tumor Invasion and Immune Infiltration. In
order to explore the potential mechanism of how ferroptosis
activation affects tumor progression, we used the scoring
system for subsequent analysis. GO and KEGG enrichment
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analyses based on GSEA and GSVA analyses were per-
formed. In the training cohort, GO analysis results based on
GSEA analysis showed that pathways like cell-cell adhesion
mediated by integrin and regulation of extracellular matrix
disassembly were activated in the high-score group. Besides,
immunocytes infiltration was also different between high-
and low-score groups. Immune invasion-related pathways
including regulation of macrophage cytokine production,
regulation of T-helper 2 cell differentiation, and other bi-
ological pathways (Figure 4(a)) were also enriched in the
high-score group. A similar conclusion can also be obtained
from the KEGG analysis (Figure 3(d)). (erefore, high-score
samples may promote tumor progression by regulating
tumor invasion ability and immune infiltration. Moreover,
the results of GO and KEGG enrichment analyses based on
the GSVA algorithm also suggested high-score samples
promoted tumor invasion through activating multiple
pathways, including negative regulation of cell motility, cell
adhesion mediated by integrin, regulation of macrophage
migration, regulation of T-helper 2 cell differentiation, TGF-
β signaling pathway, and so on (Figure 4(g)). Similar results
were obtained in the validation data sets (Figures 4(b), 4(c),
4(e), 4(f ), 4(h), and 4(i)). In conclusion, the high-score

group promoted tumor progression by affecting tumor
invasion ability and immune infiltration.

3.5. �e Immune Infiltration of High-Score Group.
Immunocytes such as invasive immune cells and stromal
cells infiltrating the tumor microenvironment are thought to
play an important role in tumor growth, progression, and
drug resistance [33, 34]. In the TCGA array-Agilent training
data set, we used the estimate algorithm to calculate estimate
score, immune score, purity score, and stromal score to
explain immune cell and stromal cell infiltration situation.
(e score prognostic model was positively correlated with
estimate score (correlation coefficient r� 0.75 and p � 0;
Figure 5(a)), immune score (correlation coefficient r� 0.6
and p � 0; Figure 5(b)), and stromal score (correlation
coefficient r� 0.8 and p � 0; Figure 5(d)). Correspondingly,
the negative correlation between the purity score and the
score prognostic model (correlation coefficient r� −0.73 and
p � 0; Figure 5(c)) indicated that there was a difference in
immune infiltration between the high- and the low-score
groups. (e same tendency was explored both in TCGA seq
and TCGA array-u133a data sets.
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Figure 2: (e ferroptosis-related genetic characteristics were identified, and the clinical features and prognosis of the two subgroups were
compared. (a) PAMR used the Shrunken Centroids classifier to identify ferroptosis-related genetic characteristics between high- and low-
score groups. (b) ferroptosis-related genetic characteristics between high- and low-score groups. (c, d) Heat map analysis of the TCGA
array-Agilent data set showed a higher degree of clinical characteristic malignancy in the group with the higher score, and similar results
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Figure 4: Continued.
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(enwe analyzed the distribution proportion of 28 kinds
of immune cells and 64 kinds of cells (including immune
cells and stromal cells). Results of 28 kinds of immune cells
analysis showed that the activated CD4 Tcell, activated CD8
T cell, regulatory T cells, and macrophage were positively
correlated with score (Figure 5(e)). In the meantime, those
cells were statistically increased in the high-score group
(Figure 5(f )). (e analysis results of 64 kinds of cells showed
that macrophages, CD8+ Tcm, NK cell, dendritic cells,
regulatory T cell (Tregs), adipocytes, endothelial cells, epi-
thelial cells, keratinocytes, fibroblast, and other non-tumor
cells were positively correlated with scores (Figure 5(g))
while Pro B cells, CD8+ naive T cells, CD4+ Tcm, Eryth-
rocytes, basophils, and so on were negatively correlated
with score. Except for B cells, CD4+ T cells, CMP, MSC,
naive B cells, NKT, and other 11 types of cells, the
remaining cells were statistically different between high-
and low-score groups (Figure 5(h)). Similar results were
also identified in TCGA seq (Supplementary Figures 4(a)–
4(h)) and TCGA array-u133a (Supplementary
Figures 5(a)–5(h)) validation data sets. (e analysis results
of 28 kinds of immune cells and 64 kinds of cells showed
that macrophages and regulatory T cells were statistically
elevated in the high-score group. According to our pre-
vious results, the high-score group had lower overall
survival and more lymph node and venous invasion. A
previous study reported that tumor-associated macro-
phages (TAMs), and regulatory T cells (Tregs) facilitated
ovarian cancer immune surveillance evasive and tumor
metastasis [36], which is consistent with our results. Taken
together, these results suggest that samples with high

expression of ferroptosis-related genes can recruit multiple
immune cells and stromal cells in the tumor microenvi-
ronment to facilitate tumor invasive and metastasis.

3.6. Identification of Potential Targeted Drugs to High-Score
Group. Considering that the score signature can predict the
prognosis of ovarian cancer and it is related to tumor in-
vasion, then we predicted potential drugs for high-score
group. (ree drug data sets, Prism, CTRP1, and CTRP2,
were collected and used to predict potential sensitive drugs
(Figure 6(a)). (e AUC value of each drug to each sample
was calculated, and a lower AUC value indicated higher
sensitivity. (e selection criteria of potential sensitive drugs
were that drugs should meet both statistical difference in
AUC value between high- and low-score groups and the
correlation coefficient r of Spearman correlation was greater
than 0.3 (Figure 6(b)). Finally, four potential sensitive drugs,
including staurosporine, epothilone B, DMOG, and HG6-
64-1, were screened out (Figures 6(c)–6(e)). It has been
previously reported that staurosporine [37], epothilone B
[38, 39], and HG6-64-1 have a therapeutic effect on ovarian
cancer [40]. Critically, we identified that a novel potential
sensitive drug is dimethyloxallyl glycine (DMOG), a kind of
prolyl hydroxylase inhibitor (PHI), may be able to treat
invasive ovarian cancer. In terms of the association between
DMOG and lipid metabolism, studies have found that
DMOG can increase lipid accumulation in human primary
renal tubular epithelial cells [41] and lipid absorption in
macrophages [42]. (erefore, DMOG may serve as a novel
potential targeted drug for ovarian cancer.
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Figure 4:(e results of Go and KEGG analyses based on GSEA and GEVA analyses were used for functional studies. (a–c)(e result of GO
analysis based on GSEA analysis. (d–f) (e result of KEGG analysis based on GSEA analysis. (g–i) (e results of GO and KEGG analyses
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Figure 5: Continued.
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Figure 5: Immune infiltration analysis based on score risk signature in TCGA array-Agilent data set. (a) Estimate score was positively
correlated with score (correlation coefficient r� 0.75and p � 0). (b) Immune score (correlation coefficient r� 0.6 and p � 0) was positively
correlated with score. (c) Stromal score (correlation coefficient r� 0.8 and p � 0) was positively correlated with score. (d) Purity score
(correlation coefficient r� -0.73 andp � 0) was negatively correlated with score. (e and f)(e correlation between 28 immune cells and score
signature and their expression levels. (g and h) (e correlation and expression levels of 64 cells (including immune cells and stromal cells)
with score signature. NS: no significance, ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.

12 Journal of Oncology



1292

14

4

26

141

20

131

PRISM CTRP1

CTRP2

(a)

Compounds candidates

Score vs. AUC

Wilcox rank
sum test

Spearman
correlation

Potential compounds 

(b)

Group

CTRP1

CTRP2

HG6−64−1

DMOG

Epothilone B

Staurosporine

−0.4 −0.2 0.0

r

(c)

Drug

AU
C

∗∗∗ ∗∗∗∗∗∗

0

1

2

3

Risk group

High

Low

D
M

O
G

Ep
ot

hi
lo

ne
 B

H
G

6−
64

−1

(d)

∗∗∗

0

1

2

3

AU
C

Risk group

High

Low

Staurosporine

Drug

(e)

Figure 6: Clinical drug prediction. (a–c) Drug selection process. (d) (e relationship between AUC and score signature of 3 drugs from
CTRP1. (e) (e relationship between AUC and score signature for 1 drug of CTRP2. NS: no significance, ∗p< 0.05, ∗∗p< 0.01, and
∗∗∗p< 0.001.

Journal of Oncology 13



4. Discussion

In this work, we first analyzed the subtype of ovarian cancer
based on ferroptosis-related genes expression. Two clusters,
clusters 1 and 2, were further identified. Meanwhile, higher
ferroptosis-resistant-associated genes were noticed in cluster
2. Moreover, the median survival time of cluster 2 was
shorter than cluster 1. Previous studies reported that MAP30
can prevent ovarian cancer progression through modulating
ferroptosis [43]. Superparamagnetic iron oxide nano-
particles can induce ferroptosis to inhibit the progression of
ovarian cancer stem cells [44]. (erefore, the sensitivity of
ovarian cancer cells to ferroptosis may affect tumor pro-
gression [22].

In order to further depict the difference between clusters
1 and 2, the scoring system was constructed. As illustrated,
samples from cluster 2 were more likely been calculated with
a higher score. Interestingly, higher ferroptosis-resistant
genes expression and worse tumor prognosis were also
noticed in high-score samples. Critically, high-score samples
also showed aggressive growth patterns, including venous
invasion and lymph node invasion suggesting ferroptosis
may affect ovarian cancer progression by modulating tumor
invasion ability. (e potential mechanisms analysis also
supported that more tumor metastasis-associated pathways
were activated in high-score samples. Previous studies also
proved that ferroptosis can affect tumor migration and
invasion including colorectal cancer [45], melanoma [46],
breast cancer [47], prostate tumor [48], and so on. Col-
lectively, this work proposed that the activation of ferrop-
tosis may affect ovarian cancer progression by modulating
tumor metastasis.

(e immune landscape was further depicted between
high- and low-score samples. Immune score and stromal
score were positively correlated with the scoring system.
Besides, the infiltration ratio of tumor progression-associ-
ated immunocytes such as macrophages, CD8+ Tcm, NK
cell, and dendritic cells regulatory T cell (Tregs) were
upregulated in high-score samples. Previous study suggested
that higher stromal signature and M2 macrophages can
affect ovarian cancer sensitivity to immunotherapy [49].
Cisplatin can facilitate ovarian cancer migration by stimu-
lating macrophage [50]. (e infiltration ratio of immuno-
cytes can also modulate tumor response to immunotherapy
[51, 52]. Moreover, ferroptosis can also regulate tumor
immune landscape and tumor response to chemotherapy
[28, 53–55]. (erefore, ferroptosis can also affect tumor
immune landscape by regulating tumor progression.

Four potential drugs were identified according to the
scoring system, including staurosporine, epothilone B,
DMOG, and HG6-64-1. Critically, DMOG was identified as
novel potential targeted drugs for ovarian cancer. DMOG
induced chemical hypoxia and stabilized hypoxia-inducible
factor-1 alpha. Hypoxia is associated with increased resis-
tance to chemotherapy and poor overall prognosis in many
cancers [56]. Hypoxia has been reported to promote the
proliferation, migration, and invasion in prostate cancer
[57]. In glioblastoma, hypoxia-inducible factor 1α inhibited
the expression of tryptophan-2, 3-dioxygenase and

modulates antitumor immunity [58]. Meanwhile, loss of
hypoxia-inducible factor-1 in malignant epithelial cells and
myeloid cells limited tumor growth [59, 60]. All these
studies indicated that hypoxia and hypoxic-inducing fac-
tors promote tumor progression and metastasis. Another
research reported that DMOG can significantly reduce
tumor metastasis by inactivating fibroblasts in liver and
lung [61]. However, the relationship between DMOG and
ovarian cancer is still elusive and require further
exploration.

5. Conclusions

In summary, we constructed a scoring system in ovarian
cancer based on the expression of ferroptosis-related genes.
(is scoring system was not only able to predict tumor
progression but also suggest the potential association among
ferroptosis, ovarian cancer, and tumor metastasis. Besides,
we also verified that ferroptosis can also modulate the
component of tumor immune landscape. Critically, DMOG
was identified as a novel potential drug to treat ovarian
cancer progression.
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