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Background: Targeted therapeutic strategies for advanced colorectal cancer (CRC) have been limited. 
STING is crucial to the antitumor immunotherapy, for it stimulates IFN signaling to mediate the crosstalk 
between innate and adaptive immune responses. Emerging evidence suggests that STING also contributes 
to the prognosis of CRC. However, prognostic models relating to STING have not yet been explored.
Methods: A total of 431 CRC samples from the TCGA database were analyzed to explore the prognostic 
value of STING-related genes. We trained prognostic models using the multivariate Cox regression. A 
STING-related prognostic score (SPS) was calculated as the gene expression multiplied by the corresponding 
coefficients of the final model. A backward stepAIC strategy was adopted to select the optimal model. A 
nomogram was used to personalize medical decisions for CRC.
Results: The expression level of STING was upregulated in the CMS1 subtype (P=0.036). Among 
STING-related genes, DHX9 (HR =0.72, P=0.01), IRF2 (HR =1.34, P=0.022), and POLR1D (HR =1.23, 
P=0.038) showed significant prognostic value. The SPS was proven to be an independent risk factor (training: 
HR =2.9, P=0.00013; validation: HR =3.02, P=0.01), and outperformed random classifiers in identifying 
high-risk CRC. The high SPS group was characterized by less genomic aberrations, upregulated IL6-
JAK-STAT3 and IL2-STAT5 signaling pathways, increased expression of TIM-3, increased infiltration 
of regulatory T (Treg) cells and T helper 17 (Th17) cells, and decreased infiltration of M0 macrophages. 
Finally, the nomogram based on the SPS and clinical factors showed good performance in CRC.
Conclusions: SPS is an independent risk factor that could identify high-risk CRC. While ICBs may 
benefit patients of the CMS1 subtype, for the CMS2, CMS3, and CMS4 subtypes in the high SPS group, 
STING agonists and immunotherapies targeting the Th17 axis may be beneficial. Finally, the SPS-based 
nomogram could help advance personalized medical decisions for CRC.
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Introduction

Colorectal cancer (CRC) is the second deadliest cancer 
worldwide (1) that has multiple etiologies (2). Promoted 
by improved knowledge of the interaction between tumor 
cells and the immune system, significant roles of adaptive 
and innate immune factors in the development and 
progression of human cancers have been recognized (3,4). 
Immune checkpoint blockades (ICBs) have been shown 
applicable for several tumors, including CRC. However, 
ICBs could benefit only a small fraction of patients with 
high microsatellite instability (MSI-high) markers (5). New 
biomarkers and treatment strategies for CRC patients are 
still urgently needed. 

STING (stimulator of interferon genes), one of the 
most intensively studied nucleic acid-sensing pattern 
recognition receptors (PRRs), is crucial in controlling 
antiviral responses (6) and detecting tumor formation (7,8). 
After sensing the tumor-derived DNA in the cytoplasm, 
the cytoplasmic nucleotide transferase cGAS in dendritic 
cells (DCs) catalyzes cyclic GmP-AmP (GAmP) formation 
to bind and activate STING, which successively stimulates 
the type I IFN response to initiate antitumor responses (9). 
Emerging studies have shown that STING was involved 
in tumorigenesis and treatment resistance, and could serve 
as a promising treatment target for CRC patients (10-15). 
For example, Xia et al. revealed recurrently suppressed 
STING signaling in CRC, and the loss of STING signaling 
impaired the DNA damage response (13). Yang et al. 
reported disrupted cGAS-STING-IFNB signaling and the 
prognostic value of cGAS, RNASEH2B, RNASEH2C, 
and SAMHD1 in CRC (14). Chon et al. also elucidated 
the independent prognostic value of STING, which could 
be harnessed as a potential therapeutic target to enhance 
anticancer immune responses in CRC (15). Moreover, 
STING has also been associated with tumor progression, 
metastasis, and radiotherapy resistance in CRC (10-12).

For CRC, targeted therapeutic strategies have long 
been limited and biomarkers mostly functioned as negative 
indicators (2). The consensus molecular subtype (CMS) of 
CRC is currently the best descriptor of the heterogeneity 
at the gene expression level (16). The CMS1 subtype is 
characterized by hypermutation, MSI, and robust immune 
activation with a notably enhanced infiltration of CD8+ 
T cells, whereas the other three subtypes are primarily 
immune-inert (16). The activation of the STING signaling 
pathway is related to better prognosis in CRC (17).  
By contrast, an impaired STING pathway could lead 
to the failure to recognize tumor-associated antigens 

and jeopardize T cell priming. Therefore, repairing or 
strengthening the STING pathway provides a niche for 
the antitumor immunotherapy. Early-phase clinical trials 
employing human STING agonists are currently underway 
in patients with advanced and/or metastatic solid tumors 
or lymphomas (NCT02675439, NCT03010176, and 
NCT03172936) (18). 

Large public databases and machine learning algorithms 
have significantly fueled medical research (19). In this 
study, we searched PubMed using the term “STING 
AND colorectal cancer” without other restrictions and 
did not find any related high-throughput research articles. 
Therefore, to our knowledge, this is the first study based 
on a high-throughput dataset to investigate the STING 
pathway in the setting of CRC. We present the following 
article in accordance with the TRIPOD reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-2430).

Methods

Clinicopathologic characteristics of the TCGA cohort

We analyzed 431 CRC samples with complete information 
from the TCGA database, of which 48 samples had paired 
normal tissues. Expression profiles (FPKM) and clinical 
information were downloaded using the “TCGAbiolinks” 
R package. We only kept genes with an average expression 
over 1 FPKM across all samples, and low-abundance 
sequencing data were removed. Additionally, duplicated 
genes were processed by the “avereps” function of the 
“limma” R package to obtain the average expression value. 
Other information, including the CMS molecular subtype, 
BRAF status, KRAS status, and MSI status, were obtained 
from a previous resource (16). All the clinicopathologic 
characteristics of CRC samples are listed in Table 1.

GEO dataset

The expression profile and the clinical information of the 
GSE87211 dataset were downloaded using the “getGEO” 
function of the “GEOquery” R package. We mapped each 
gene symbol to the corresponding probe, and the duplicated 
gene symbols were processed using the “avereps” function 
of the “limma” R package to calculate the mean value.

Construction of the STING-related prognostic score (SPS)

We adopted a previous calculating strategy to construct the 
STING-related prognostic model and calculated the SPS 
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Table 1 Demographic and characteristic of CRC patients in the TCGA cohort

Characteristic Sub characteristic No. of patients %

Age <60 135 31

≥60 296 69

Gender Female 199 46

Male 232 54

Location Right 155 37

Transverse 27 7

Left 160 39

Rectum 73 18

Stage I 74 18

II 152 36

III 132 32

IV 60 14

pT 1 17 4

2 72 17

3 292 68

4 48 11

pN 0 239 56

1 116 27

2 72 17

pM 0 316 84

1 60 16

MSI MSI 66 16

MSS 353 84

KRAS Mutation 146 34

Wild 285 66

BRAF Mutation 35 8

Wild 396 92

CMS CMS1 60 14

CMS2 160 37

CMS3 59 14

CMS4 109 25

NOLBL 43 10

CRC, colorectal cancer; MSI, microsatellite instability; CMS, consensuses molecular subtype of the colorectal cancer.
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for each sample (20). First, we evaluated the prognostic 
value of each of the 96 STING-related genes using 
univariate Cox regression analysis. Genes with a P-value 
lower than 0.05 were considered statistically significant. 
To construct the SPS model, we used the “scale” function 
in R software to calculate the Z-score of POLR1D, 
IRF2, and DHX9 for each sample, where the mean gene 
expression was 0 and the standard deviation (SD) was 1. 
Using the 3-gene panel, we performed multivariate Cox 
regression analyses, and the backward stepAIC strategy 
was adopted using the “MASS” R package. AIC stands for 
Akaike Information Criteria, and stepAIC is one of the 
most common methods for feature selection. The optimal 
model was defined as the model with the lowest stepAIC 
value. The SPS was then calculated as the gene expression 
multiplied by the corresponding coefficients of the final 
model:

SPS = POLR1D × 0.1973 + IRF2*0.2785 − DHX9 × 0.3104

We harnessed the “surv_cutpoint” function of the 
“survminer” R package to obtain a uniform cutoff value to 
stratify the patients. Samples with SPS ≥0.15 were assigned 
to the high SPS group, and samples with SPS <0.15 were 
assigned to the low SPS group. We used the log-rank test 
and Kaplan-Meier survival analysis to assess the predictive 
ability of the SPS. 

Estimation of immune cell infiltration

Immune cell infiltration was calculated using CIBERSORT 
to estimate both the relative and absolute abundances of 22 
immune cell types based on the gene expression profile (21). 
For relative abundances, the fractions of all 22 estimated 
immune cell subtypes are summed up to 1 for each sample. 
Evaluations of T helper 1, 2, and 17 cells (Th1, Th2, 
Th17 cells) were obtained from a previously published 
study (https://ars.els-cdn.com/content/image/1-s2.0-
S1074761318301213-mmc2.xlsx) (22).

Gene set enrichment analysis

First, the “limma” R package was applied to identify 
differentially expressed genes (DEGs) and calculate 
the log fold change (LFC) for each DEG to obtain a 
ranked gene list. Next, the gene set enrichment analysis 
(GSEA) was performed using the “GSEA” function in the 
“clusterProfiler” R package (23). We used the hallmark gene 

sets (h.all.v7.0.symbols.gmt) from the GSEA Molecular 
Signatures Database (MSigDB) to interpret biological 
functions (24,25). The threshold was set at P=0.05. 
Significantly enriched gene sets were plotted using the 
“gseaplot2” function of the “enrichplot” R package.

Construction and evaluation of the nomogram

Nomogram is a user-friendly graphical interface that enables 
clinicians to estimate survival for each individual (26).  
In our study, the nomogram was constructed based on 
SPM to individualize the predicted survival probability for 
1-year, 3-year, and 5-year in the TCGA CRC cohort. The 
calibration plot and concordance index (C-index) were 
harnessed to assess the performance of the nomogram. 

We  u sed  the  “ rms”  R  package  (h t tp s : / /www.
rdocumentation.org/packages/rms) to generate the 
nomogram and calibration plots. Calibration is typically 
assessed by the predicted probabilities calculated by the 
nomogram versus the actual probabilities. A nomogram 
with perfect accuracy would result in a calibration plot 
in which x- and y-axis are separately observed and 
predicted probabilities with nearly all points falling along 
the 45-degree line. The distance between the pairs and 
the 45-degree line measures the absolute error of the 
nomogram’s prediction.

We used the “rcorr.cens” function in the “Hmisc” R 
package (https://cran.r-project.org/web/packages/Hmisc/) 
to generate the C-index. The discrimination or predictive 
accuracy of a model is defined as the performance to 
separate patients with different outcomes, which could 
be measured via the C-index. The C-index denotes the 
proportion of pairs, with the responders having a higher 
predicted probability of response than the nonresponders. 
The C-index was assessed by comparing nomogram-
predicted versus observed Kaplan-Meier estimates of 
survival probabilities based on a bootstrap approach with 
1,000 resamples. 

Statistical analyses

Categorical variables were compared using the χ2 test or 
Fisher’s exact test. Continuous variables were compared 
using the t-test or Mann-Whitney U test for variables 
with an abnormal distribution. The paired t-test was used 
to identify the difference between tumors and paired 
normal tissues. Survival curves were analyzed using the 
Kaplan-Meier method and compared using the log-rank 

https://ars.els-cdn.com/content/image/1-s2.0-S1074761318301213-mmc2.xlsx)
https://ars.els-cdn.com/content/image/1-s2.0-S1074761318301213-mmc2.xlsx)
https://www.rdocumentation.org/packages/rms
https://www.rdocumentation.org/packages/rms
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test. Principal component analysis (PCA) was performed 
and plotted using R software. The statistical significance 
threshold was set at 0.05 if not explicitly mentioned. All 
statistical analyses were implemented using R software (ver. 
3.6.1). All data analyzed in this study are available in https://
cdn.amegroups.cn/static/public/atm-20-2430-3.xlsx.

Availability of data and materials

The datasets generated and/or analyzed during the current 
study are available in the TCGA database, https://portal.
gdc.cancer.gov/, and the GEO database, https://www.ncbi.
nlm.nih.gov/gds/?term=GSE87211. CMS subtyping calls, 
BRAF status, KRAS status and MSI status were all obtained 
from doi: 10.7303/syn2623706. Evaluations of Th1, Th2, 
Th17 cells were obtained from a previously published 
research (https://ars.els-cdn.com/content/image/1-s2.0-
S1074761318301213-mmc2.xlsx). 

Results

Investigation of STING-related genes in CRC

We investigated 431 CRC tumors and 48 paired normal 
tissues from the TCGA database. The overall expression 
levels of STING in tumor cells were higher than paired 
normal tissues (P=0.049; Figure 1A). Since recurrently 
suppressed STING had been suggested in CRC (13), we 
considered that the increased levels of STING might be 
due to the heterogeneity of CRC. Further research in the 
context of CRC subtypes showed that the expression of 
STING was exclusively increased in the CMS1 subtype 
(P=0.036, paired t-test) and was suppressed in the CMS2, 
CMS3, and CMS4 subtypes (Figure 1B; Table S1).

To explore the prognostic value of STING, we selected 
96 STING-related genes of five pathways from MSigDB 
(24,25). These pathways are generally related to innate 
immune responses to viral and bacterial infections, 
detection of cytosolic nucleic acids, activation of type I IFN 
responses, apoptotic signaling through the type II major 
histocompatibility (MHC II) complex, and initiation of 
the adaptive immune response (Table S2). We performed 
univariate Cox regression analysis for each gene, and 
POLR1D, DHX9 and IRF2 showed significant prognostic 
value (Figure 1C, Table S3). DHX9 (HR =0.72, 95% CI, 
0.56–0.92, P=0.01) showed a positive association, whereas 
POLR1D (HR =1.23, 95% CI, 1.01–1.49, P=0.038) and 
IRF2 (HR =1.34, 95% CI, 1.04–1.73, P=0.022) showed 

negative associations with the prognosis in CRC samples. 
Moreover, DHX9 and POLR1D were significantly 
overexpressed, compared to the decreased IRF2 in tumor 
tissues (Figure 1D).

To assess whether POLR1D, IRF2, and DHX9 were 
associated with conventional features (age, sex, stage, pT, 
pN, pM and location), the expression levels of POLR1D, 
IRF2, and DHX9 in all 431 CRC samples were de-
dimensioned to the x- and y-axes in the PCA analysis. 
As a result, none of these conventional features showed 
significant associations with POLR1D, IRF2, and DHX9 
(Figure S1).

Construction of the SPS

Using the three prognostic indicators,  we built  a 
multivariate Cox regression model to predict outcomes 
of CRC. DHX9 and IRF2 remained significant in the 
model (DHX9, HR =0.73, P=0.0263 and IRF2, HR =1.32, 
P=0.0347), and POLR1D reached borderline significance 
(HR =1.22, P=0.0561; Table S3). We calculated SPS and 
divided CRC patients into a high SPS group and a low 
SPS group according to the optimal cutoff value (cutoff 
value =0.15, Methods). The low SPS group containing 256 
samples showed a better outcome, while the high SPS group 
including 175 samples showed worse prognosis (P=2e-4, 
log-rank test; Figure 2A), with a 2.67-fold higher risk than 
the low SPS group (95% CI, 1.53–4.67, P=0.0006). 

In the univariate Cox regression analyses, only age, pT, 
pN, pM, stage, and SPS showed significant prognostic 
value (Figure 2B, more data available online: https://cdn.
amegroups.cn/static/public/atm-20-2430-1.xlsx). We 
classified CRC patients into stage I-IV and performed subset 
analyses. For patients with stage III CRC, the high SPS 
group showed significantly worse prognosis than the low 
SPS group (P=0.0013; Figure 2C). The low SPS group of 
stage II and IV CRC tended to have better outcomes, though 
the p value did not reach statistical significance (P=0.077 in 
stage II and P=0.19 in stage IV; Figure 2C). By comparison, 
SPS was unsatisfactory in distinguishing patients at risk in 
stage I (P=0.6; Figure S2), which may be due to the relatively 
small volume of samples. Thus, the SPS showed prognostic 
potential, especially for stage III CRC patients.

SPS is an independent risk factor for CRC

To explore whether SPS is an independent risk factor, we 
conducted a multivariate Cox regression analysis. After 

https://cdn.amegroups.cn/static/public/atm-20-2430-3.xlsx
https://cdn.amegroups.cn/static/public/atm-20-2430-3.xlsx
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/?term=GSE87211
https://www.ncbi.nlm.nih.gov/gds/?term=GSE87211
https://ars.els-cdn.com/content/image/1-s2.0-S1074761318301213-mmc2.xlsx)
https://ars.els-cdn.com/content/image/1-s2.0-S1074761318301213-mmc2.xlsx)
https://cdn.amegroups.cn/static/public/ATM-20-2430-supplementary.zip
https://cdn.amegroups.cn/static/public/ATM-20-2430-supplementary.zip
https://cdn.amegroups.cn/static/public/ATM-20-2430-supplementary.zip
https://cdn.amegroups.cn/static/public/ATM-20-2430-supplementary.zip
https://cdn.amegroups.cn/static/public/ATM-20-2430-supplementary.zip
https://cdn.amegroups.cn/static/public/atm-20-2430-1.xlsx
https://cdn.amegroups.cn/static/public/atm-20-2430-1.xlsx
https://cdn.amegroups.cn/static/public/ATM-20-2430-supplementary.zip
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adjusting for age, sex, stage, pT, pN, pM, MSI state, 
KRAS state, BRAF state, and CMS molecular subtype, 
SPS remained an independent prognostic factor (HR =2.9, 
P=0.00013). The optimal multivariate prognostic model 
(SPM) was selected by the backward stepAIC (Methods), 
containing age, stage, and SPS (Figure 3A, more data 
available online: https://cdn.amegroups.cn/static/public/
atm-20-2430-2.xlsx). We additionally compared the SPM to 
an extra clinicopathological prognostic model (CPM) that 
didn’t include SPS (Figure 3A). The difference between the 
high SPM group and low SPM group, and the difference 
between the high CPM group and the low CPM group 

were all statistically significant (log-rank test, P<0.001; 
Figure 3B). However, SPM achieved a higher concordance 
index (CI =0.74 for SPM; CI =0.681 for CPM). Time-
dependent receiver operating characteristic curve (ROC) 
analyses and time-dependent AUC curves also identified the 
superior accuracy of the SPM in predicting the prognosis of 
CRC (Figure 3C,D).

Validation of SPS

To avoid overfitting, we randomly sampled three genes from 
the remaining 93 STING-related genes to generate 1000 
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Figure 1 Investigations of STING and related genes in colorectal cancer (CRC). (A) Comparison of the overall STING expression levels 
of tumor cells versus paired normal tissues in CRC. The P value was calculated by paired t-test. (B) Subset analysis of STING expression 
levels of tumor cells versus paired normal tissues in consensuses molecular subtypes (CMS1, CMS2, CMS3 and CMS4). The P values were 
calculated by paired t-test. (C) Prognostic values of 96 STING-related genes, in which DHX9, IRF2 and POLR1D are significant (colored 
in red). Hazard ratios and P values were calculated by univariate Cox regression analysis. (D) Comparison of the expression levels of DHX9, 
IRF2 and POLR1D in tumor cells versus paired normal tissues in CRC. P values were calculated by paired t-test.
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extra multivariate Cox regression models. The prognostic 
significance of these random models was then compared 
with the SPS. We found that the DHX9-IRF2-POLR1D-
based SPS prominently outperformed random classifiers 
(Figure 4A). Additionally, we tested the performance of 
SPS in an external cohort (GSE87211) that consisted of 
363 CRC patients. After normalizing the expression of 
POLR1D, IRF2, and DHX9, samples were divided into 
a high SPS group and a low SPS group (Methods). The 
low SPS group showed significantly longer survival than 
the high SPS group (P=0.006, log-rank test; Figure 4B). 
Moreover, the risk of death was 3.02-fold higher in the 
high-risk group than in the low-risk group (HR =3.02, 95% 
CI, 1.35–9.04, P= 0.01).

Features of high-risk CRC and implications in 
immunotherapy

To obtain a better understanding of the biological 
background of the high SPS group, we compared the two 
groups in terms of genomic aberrations, transcriptional 
features, and the immune landscape.

Genomic aberrations   
Genomic aberrations that can increase cytoplasmic DNA 
augment the ability of the host’s immune system to detect 
the tumor. We found that a higher SPS was associated with 
lower cancer/testis antigen (CTA) levels (P=0.006, r=−0.134; 
Spearman’s correlation test; Figure S3) (27,28). We also 

A B

C

OS.Time

OS.Time OS.Time OS.TimeOS.Time

Figure 2 Construction of the STING-related prognostic score (SPS). (A) Kaplan-Meier survival analysis of the SPS. The high SPS group 
showed a significantly worse outcome than the low SPS group. P=2e-4, log-rank test. (B) Forest plot of univariate regression analysis of the 
SPS and conventional clinicopathologic factors. Statistically significant variates are annotated in red. (C) Kaplan-Meier survival analysis in 
stage II, III and IV CRC. SPS high patients with stage III CRC showed a significantly poorer prognosis than Low SPS patients (P=0.0013). 
Although the P values did not reach the statistical significance threshold, clear tendencies of better outcomes were observed for SPS low 
patients with stage II or IV disease (P=0.077 in stage II and P=0.19 in stage IV).
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found that the homologous recombination defect (HRD), 
which is considered the most effective target of defects in 
DNA repair (29), was negatively related to the SPS (P=0.04, 
r=−0.1, Spearman’s correlation test; Figure S3).

CMS subtypes  
We found that the SPS risk classification was not 

independent of the CMS molecular subtypes. The low SPS 
group had a higher frequency of patients with the CMS2 
subtype, while the high SPS group had a higher frequency 
of patients with the CMS4 subtype (P=0.014, Fisher’s exact 
test; Figure 5A). Additionally, the subtype NOLBL, the 
mixed CRC subtype, primarily overlapped with the four 
subtypes. The CMS1 subtype showed fewer associations 

Figure 3 SPS is an independent risk factor for CRC. (A) Forest plot of multivariate regression analyses of SPM (the top) and CPM (the 
bottom). (B) Kaplan-Meier survival analysis comparing SPM and CPM. (C) Time-dependent receiver operating characteristic curve (ROC) 
analysis comparing SPM and CPM. Curves at 0.5, 1, 2, 3, 4 and 5 years are presented. (D) Comparison of time-dependent area under curve 
(AUC) between SPM and CPM. The AUC and the corresponding confidence interval at each time point are presented. The dashed lines 
represent up and down 95% confidential intervals of each point.
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with the CMS2 and CMS4 subtypes (Figure S4).

Altered pathways  
CRC samples were sorted according to SPM risk level 
and evenly divided into a high SPM group (215 samples) 
and a low SPM group (216 samples). We compared the 
difference between the transcriptional landscapes of these 
groups. As a result, 26 of 50 hallmark gene sets showed 
significant enrichment in both, of which 15 gene sets 
were exclusively enriched in the high SPM group and 11 
gene sets were enriched in the low SPM group (Table S4).  
As a control, we also analyzed the difference between 
the high CPM group (214 samples) and the low CPM 
group (217 samples), derived from the model only based 
on age and stage. The high CPM group enriched eleven 
gene sets, and the low CPM group enriched six gene sets 
(Table S4). Significantly, five high-risk related hallmark 
gene sets overlapped between the high SPM group and 
the high CPM group, including pathways associated with 
P53, hypoxia, and KRAS signaling upregulation, the 
inflammatory response, and TNFa signaling via NFKB 
(Figure S5, Table S4). The IL6-JAK-STAT3, IL2-STAT5, 
IFNa, IFNr, and adipogenesis pathways were found to be 
exclusively enriched in the high SPM group (Figure 5B,  
Table S4). By contrast, the epithelial-mesenchymal 
transition pathway was only detected in the high CPM 
group (Figure 5B, Table S4).

Immune landscape 
We harnessed Cibersort to assess the absolute and relative 
infiltration of 22 types of immune cells in the TIME of 
CRC (Figure S6). The infiltration of M0 macrophages was 
negatively associated with the SPS, while the infiltration 
of follicular helper T cells and regulatory T cells were 
positively associated with the SPS (M0: r=−0.152, P=0.0015; 
follicular helper T cells: r=0.115, P=0.017; Tregs, r=0.131, 
P=0.0064; Pearson’s correlation test; Figure 5C). Th17 
cells, which are also differentiated from CD4+ T cells (30), 
showed a significantly positive correlation with the SPS 
(r=0.132, P=0.007, Pearson’s correlation test; Figure 5C). 
Additionally, we observed that TIM-3 was significantly 
upregulated in the high SPS group, while CTLA-4 and 
PDCD1 were not significantly different between the two 
groups (Figure 5D).

Construction and evaluation of the nomogram

To extend the usage of SPS in the clinic, we constructed a 
nomogram predicting OS for CRC patients (Figure 6A). 
The bias between predictions and actual observations was 
referred to as calibration (26), and the calibration curves 
of survival achieved satisfactory performance for CRC of 
1, 3 and 5 years (Figure 6B,C,D). Moreover, the CI of the 
nomogram was 0.736. We further separately constructed 
two nomograms: one with removed SPS and the other 

Figure 4 Validation of SPS. (A) Comparison between random classifiers and SPS. We repeatedly sampled 3 genes from the remaining 93 
STING-related genes to form 1000 extra-random multivariate Cox regression models. Boxplot shows the P values of the 1000 extra models 
(left, log-rank test). The mean P value of random classifiers is 0.52, with a confidence interval of 0.50–0.53. The single horizontal bar 
displays the P value of SPS (right). (B) Validation of the prognostic value of SPS in an external GEO dataset. P=0.0058, log-rank test.
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Figure 5 Features of high-risk CRC and implications in immunotherapy. (A) Association between SPS and CMS molecular subtypes. 
Patients were sorted by SPS scores in descending order; the patients with a lower SPS had a higher frequency of CMS2, while the patients 
with a higher SPS had a higher frequency of CMS4 (P=0.014, Fisher’s exact test). (B) Altered pathways. Gene set enrichment analysis 
(GSEA) of distinct pathways enriched in either SPM-high CRC tumors (red) or CPM-high CRC tumors (blue). (C) Correlations between 
SPS and M0 macrophages, helper T cells, Tregs and Th17 cells (Spearman’s correlation). (D) Correlations between SPS classification and 
immunosuppressive molecules.
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Figure 6 Construction and evaluation of the nomogram. (A) Nomogram for predicting the probability of 1-, 3-, and 5-year OS for 
colorectal cancer (CRC) patients. (B) Calibration plot of the nomogram for predicting the probability of OS at 1 year. (C) Calibration plot 
of the nomogram for predicting the probability of OS at 3 years. (D) Calibration plot of the nomogram for predicting the probability of OS 
at 5 years.

based on TNM, which were less accurate than the SPS-
based nomogram (SPS: 0.382, age: 0.409, stage: 0.317, age 
+ stage: 0.713, TNM: 0.712).

To use the nomogram: First, map the information of an 
individual patient to the corresponding variable axis. Second, 
draw a line upward to identify the corresponding value on the 
“Points” axis, which presents as the predicted probabilities 
scaled from 0 to 10. Third, manually calculate the sum of 
the three values and localize the final point of an individual 
on the “Total Points” axis. Likelihoods of 1-, 3- or 5-year 
survival can be obtained on the corresponding survival axis.

Discussion

In our study, the expression of STING was upregulated 
exclusively in the CMS1 subtype and impaired in the other 

three subtypes. The impairment might explain the lack 
of immune infiltration in the CMS2, CMS3, and CMS4 
subtypes. Additionally, POLR1D, IRF2, and DHX9 
showed significant prognostic value among the 96 STING-
related genes. DHX9 has multiple functions in regulating 
transcription, translation, RNA processing and transport, 
DNA replication and the maintenance of genomic stability 
(31-37). A recent study indicated that DHX9 inhibited 
epithelial-mesenchymal transition (EMT) by regulating 
STAT3 in human lung adenocarcinoma cells (37). 
Accordingly, we observed overexpressed DHX9 in tumors, 
and higher DHX9 was related to better outcomes in CRC. 
By comparison, higher levels of POLR1D and IRF2 were 
associated with adverse outcomes in CRC. This was in line 
with that POLR1D plays a role in the synthesis of ribosomal 
RNA precursors and small RNAs. Also, a recent study 



Chen et al. A STING-related prognostic score for CRC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(1):14 | http://dx.doi.org/10.21037/atm-20-2430

Page 12 of 14

reported a positive correlation between the expression level 
of POLR1D and tumor size and predicted poor outcomes in 
CRC patients. The study also demonstrated that POLR1D 
affected cell proliferation, migration, and apoptosis  
in vitro, and influenced tumor growth in vivo (38). IRF2 is 
a member of the interferon regulatory transcription factor 
(IRF) family that competitively inhibits the IRF1-mediated 
transcriptional activation of IFN-α/β (39). It was reported 
that IRF2 participated in the KRAS-IRF2-CXCL3-CXCR2 
axis, and CRC with higher IRF2 expression exhibited a 
better response to anti-PD-1 therapy (40). Though these 
single predictors are significant, we considered that a 
combined gene panel could provide more comprehensive 
information to guide the clinical practice. It turned out that 
the SPS derived from a multivariate model was proven to 
be an independent risk factor and outperformed current 
clinicopathological features in predicting CRC outcomes. 

The high SPS group and the low SPS group were 
different in several biological features. We observed lower 
levels of CTA and HRD in the high SPS group. CTA could 
elicit immune responses in tumors, thus being a target 
for immunotherapy (27,28). HRD impairs normal DNA 
damage repair and results in genomic loss of heterozygosity 
(LOH) defined as loss or duplication of chromosomal 
regions (29). Genome instability that leads to carcinogenesis 
and tumor progression currently represents a biomarker 
of ICBs. Therefore, the high SPS group may be less 
benefited from ICBs. Moreover, the high SPS group was 
more immunologically tolerant, as we observed decreased 
M0 macrophages and increased TIM-3. By comparison, 
CTLA-4 and PDCD1 that primarily inhibit overactivated 
T cell responses showed no difference between the two 
groups. It’s known that TIM-3 encodes the Th1-specific 
cell surface protein to regulate macrophage activation, 
leading to immunological tolerance (41). Besides, as the 
high SPS group had a higher frequency of the CMS4 
subtype, it may reflect features of the CMS4 subtype to 
some extent, for example, increased TGF-β activation (16).  
In terms of pathway analysis, five hallmark gene sets were 
enriched in both SPM-high and CPM-high CRC, which 
have all been suggested to contribute to unfavorable 
outcomes in CRC (42-45). The IL6-JAK-STAT3 and the 
IL2-STAT5 signaling pathway were enriched exclusively in 
the high SPM group, and a higher SPS was associated with 
enhanced Th17 and Treg cells. This could be explained 
by facts that Tregs develop and express STAT5 under 
the influence of IL-2 and TGF-β and that IL-6 could 
induce the development of Th17 cells (46). In terms of the 

immunotherapy for CRC, ICBs currently are used limited 
among patients with dMMR/MSI-H (5), which might 
widely represent the CMS1 subtype. For the CMS2, CMS3, 
and CM4 subtypes, the Th17 axis may be a more promising 
target for the high SPS group, and immune interventions 
including STING agonists and immune interventions 
targeting the Th17 axis may reverse the impaired innate 
immune response phase (47). 

To better facilitate individualized medical assessments, 
we also provided a nomogram which we believe could 
be a useful tool for clinicians in the future. Finally, there 
are several limitations of this study, such as the use of 
retrospective datasets from the TCGA and GEO databases. 
Thus, the results should be further strengthened by more 
prospective studies.

Conclusions

In conclusion, for the first time, we identified and validated 
a STING-related independent risk factor and built a 
prognostic score, named SPS, to improve the prediction 
accuracy of prognosis in CRC. The relevant nomogram 
could be a promising tool for individual assessment in 
the future. In addition, the SPS provides insights into the 
immunotherapy in CRC. While ICBs may be beneficial 
to CRC patients of the CMS1 subtype, we suggest that 
STING agonists and immunotherapies targeting the Th17 
axis could benefit the CMS2, CMS3, and CMS4 subtypes in 
the high SPS CRC group.
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