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Abstract

Background: Melioidosis is a frequently fatal infectious disease caused by the soil dwelling Gram-negative bacterium
Burkholderia pseudomallei. Environmental sampling is important to identify geographical distribution of the organism and
related risk of infection to humans and livestock. The aim of this study was to evaluate spatial distribution of B. pseudomallei
in soil and consider the implications of this for soil sampling strategies.

Methods and Findings: A fixed-interval sampling strategy was used as the basis for detection and quantitation by culture of
B. pseudomallei in soil in two environmental sites (disused land covered with low-lying scrub and rice field) in northeast
Thailand. Semivariogram and indicator semivariogram were used to evaluate the distribution of B. pseudomallei and its
relationship with range between sampling points. B. pseudomallei was present on culture of 80/100 sampling points taken
from the disused land and 28/100 sampling points from the rice field. The median B. pseudomallei cfu/gram from positive
sampling points was 378 and 700 for the disused land and the rice field, respectively (p = 0.17). Spatial autocorrelation of B.
pseudomallei was present, in that samples taken from areas adjacent to sampling points that were culture positive
(negative) for B. pseudomallei were also likely to be culture positive (negative), and samples taken from areas adjacent to
sampling points with a high (low) B. pseudomallei count were also likely to yield a high (low) count. Ranges of spatial
autocorrelation in quantitative B. pseudomallei count were 11.4 meters in the disused land and 7.6 meters in the rice field.

Conclusions: We discuss the implications of the uneven distribution of B. pseudomallei in soil for future environmental
studies, and describe a range of established geostatistical sampling approaches that would be suitable for the study of B.
pseudomallei that take account of our findings.

Citation: Limmathurotsakul D, Wuthiekanun V, Chantratita N, Wongsuvan G, Amornchai P, et al. (2010) Burkholderia pseudomallei Is Spatially Distributed in Soil in
Northeast Thailand. PLoS Negl Trop Dis 4(6): e694. doi:10.1371/journal.pntd.0000694

Editor: Hélène Carabin, University of Oklahoma Health Sciences Center, United States of America

Received November 12, 2009; Accepted March 31, 2010; Published June 1, 2010

Copyright: � 2010 Limmathurotsakul et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Wellcome Trust of Great Britain. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: direk@tropmedres.ac

Introduction

The Gram-negative bacterium Burkholderia pseudomallei is the

cause of melioidosis and a category B select agent. This organism

is present in soil and water across much of southeast Asia and in

northern Australia and is increasingly being detected elsewhere,

including areas of South America [1]. Melioidosis occurs as a

result of exposure to environments containing B. pseudomallei. The

route of infection is likely to be through direct skin inoculation

or contamination of wounds, and more rarely by inhalation

and ingestion [2]. Environmental sampling has been widely

used to determine the presence of B. pseudomallei in an effort to

identify geographical distribution of the organism and related

risk of infection to humans and livestock [3–12]. B. pseudomallei

has also been sampled from the environment to define the

population genetic structure of the organism, to compare this with

isolates associated with disease, and during outbreak investigations

[13–16].

Despite its importance as a cause of natural disease and a bio-

threat agent, there is limited information on which to base

sampling strategies for B. pseudomallei that minimize the false

negative rate. Common soil sampling strategies for B. pseudomallei

are to randomly select multiple sites, and then randomly select one

to seven sampling points in each site to collect the soil and test for

presence of the organism [3–16]. However, it is unclear whether

one to seven sampling points are sufficient to detect the presence of

the organism in a site. In addition, the optimal distance between

sampling points has not been defined.

The semivariogram is a geostatistical tool for determination of

the range over which measurements of soil properties are related

[17]. The semivariogram has been used to define the range over

which counts of specific environmental bacteria are related, and

has been reported to range from micrometers to several meters

[18–20]. Range of spatial autocorrelation is required to determine

the optimal distance between sampling points (sampling grid size)

[21,22]. However, no information has been published on the
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spatial autocorrelation of B. pseudomallei over distance between two

sampling points (lag distance). The aim of this study was to apply

the semivariogram to datasets from two large environmental

sampling studies, which previously defined the presence and

quantitation of B. pseudomallei in disused land [23] and a rice field

[24] in nearby regions of northeast Thailand. These data were

used as a basis on which to define appropriate environmental

sampling strategies for the presence of B. pseudomallei.

Materials and Methods

Study sites
Soil samples were collected from two locations situated in a rural

rice-growing region in Ubon Ratchathani province, northeast

Thailand. Sampling of an area of disused land situated to one side of

road 231 in Amphoe Meung was performed in September 2005 (the

rainy season), as previously described [23]. The long-term history of

this land is unknown but its position along the side of a tarmac road

which had been in existence in its present form for at least 10 years

together with the lack of any signs of recent cultivation suggest that

the land had been disused for at least a decade. A member of the

study team (GW) who has used the road for more than 10 years

confirmed that this land has not been cultivated during this period.

The site ran parallel to the road with a brick wall forming the distal

boundary. The land plot size was 100 m625 m and was covered

with low-lying scrub. Sampling of an area of rice field situated in

Amphoe Lao Sua Kok (a distance of 19 km southwest from the

disused land) was performed in May 2007 (start of the rainy season),

as previously described [24]. The rice field was several acres in size

and has been used for rice cultivation for more than 25 years. The

field was divided by raised earth walkways; the area selected was

25 m625 m in size, and was isolated by raised earth walkways on

three sides and by a dirt road on the fourth side. Both sites were wet

but not flooded at the time of sampling. The soil type was sandy

loam in both sites.

Sampling strategy
The disused land site was rectangular and a rectangular

experimental grid was located at its center. A grid comprising

5620 plots placed 2.5 m apart on the vertical axis and 1.25 m

apart on the horizontal axis (312.5 m2) was marked out using

string and wooden stakes. Plots were referenced using letters (A to

E for horizontal rows viewed with back against the road, row A

lying closest to the wall), and numbers (1 to 20 from left to right on

the vertical axis). A square experimental grid was used in the rice

field. A grid comprising 10610 plots each measuring 2.5 m by

2.5 m (625 m2) was marked out using string and wooden stakes.

Sampling plots were also referenced using letters (A to J) for

horizontal rows as viewed with back against the earth walkway,

row A lying closet to the dirt road) and numbers (1 to 10 from left

to right). Soil sampling was performed at the center of each plot. A

standard soil sampling technique was performed, as previously

described [23,24]. A hole was dug using a clean spade to a depth

of approximately 30 centimeters. A clean plastic bag was placed

on weighing scales and a sample of soil (100 grams) was removed

from the base of the hole. The spade was cleaned with alcohol

before and after sampling at each point.

Soil culture and B. pseudomallei identification and
quantitation

Soil was cultured for the presence of B. pseudomallei [23,24].

Colonies of B. pseudomallei were initially identified on the basis of

colony morphotype [25]. Colonies suspected to be B. pseudomallei

were tested using the oxidase test, and positive colonies confirmed

as B. pseudomallei using a highly specific latex agglutination test

(positive for B. pseudomallei but negative for B. thailandensis) [26].

Following confirmation of bacterial identity, colonies with an

identical morphotype on a given agar plate were considered to

represent B. pseudomallei, and a colony count performed to allow

calculation of the number of B. pseudomallei colonies per gram of

soil at each sampling point. The lower and upper limit of detection

of the methodology were 1 to $10,000 CFU/gm soil, respectively.

Proportions of positivity were compared by the Chi-square test

and bacterial counts were compared using the Wilcoxon-Mann-

Whitney test.

Analysis of spatial autocorrelation
Spatial autocorrelation was analysed to quantify the relationship

between B. pseudomallei count and lag distance between sampling

points. To reduce the effect of skew, log10 transformation after

adding one to the number of B. pseudomallei count was performed.

The formula used for the semivariogram was defined as one half

the average of the squared difference of log CFU count between all

pairs of observations that are the distance h apart [27], as follows:

c(h)~
1

2DN(h)D

X
(i,j)[N(h)

Dz(xi){z(xj)D2

where c(h) is a semivariogram at lag distance of h, N(h) is the total

number of sampling point pairs that are a lag distance apart of h,

and z(xi) is log CFU count at location xi. Figure 1 demonstrates a

theoretical semivariogram. The line of the theoretical semivario-

gram starts from a positive variance if sampling has been

repeatedly performed at the same point (where lag distance equals

zero). This is known as nugget variance, which could be caused by

measurement error, random variation or undefined spatial

autocorrelation over distances less than the smallest sampling

interval. The semivariogram generally rises to an upper asymptote

called the sill. The sill indicates that the variance at this level is

stable and not affected by spatial autocorrelation. The lag distance

at which this occurs is called the range of spatial autocorrelation or the

limit of spatial dependence.

Author Summary

Melioidosis is a severe infection caused by the environ-
mental bacterium Burkholderia pseudomallei. Soil sampling
is important to identify geographic regions where humans
and animals are at risk of exposure. The purpose of this
study was to examine a factor that has a major bearing on
the accuracy of soil sampling: the spatial distribution of
B. pseudomallei in soil of a specified sampling site. Soil
sampling was performed using a fixed-interval grid of 100
sampling points in each of two sites (disused land and rice
field) in northeast Thailand, and the presence and amount
of B. pseudomallei determined using culture. Mapping of
the presence and B. pseudomallei count demonstrated that
samples taken from areas adjacent to sampling points that
were culture positive (negative) for B. pseudomallei were
also likely to be culture positive (negative), and samples
taken from areas adjacent to sampling points with a high
(low) B. pseudomallei count were also likely to yield a high
(low) count (spatial autocorrelation). These data were used
as the basis for highlighting several pitfalls in current
approaches to soil sampling, together with a discussion of
the suitability of a range of sampling strategies in different
geographical locations and for different study objectives.

Spatial Distribution of B. pseudomallei in Soil
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The semivariogram was modelled using the Gaussian equation

[27], as follows:

c hð Þ~C0zC1 1{exp {3
DDhDD
a

� �2
( )" #

where C0 is a parameter quantifying the nugget effect, C1 is a

spatially structured component of the model, and a is the range of

spatial autocorrelation. The Gaussian model was fitted with non-

linear least square regressions.

The semivariogram requires assumptions of stationarity and

normality. Stationarity is the condition that mean and variance do

not vary significantly in space. Exploratory spatial data analysis

(ESDA) described by Cressie [17] was used to evaluate stationarity

of log B. pseudomallei counts in both fields. The assumption of

normality was rarely held because most sampling points in the rice

field were culture negative for B. pseudomallei. The indicator

semivariogram, a robust method of semivariogram, was also used

[27]. This was computed by substituting z(xi) with a binary

variable (1 if culture was positive and 0 if culture was negative).

The indicator semivariogram was then rescaled by the indicator

variance. Semivariograms and indicator semivariograms were also

computed for different directions in order to determine whether

the pattern of spatial variability changed with direction in the field.

The nugget/sill ratio was used to determine nugget effect on

overall variability. A value approaching 1.0 indicates that a large

degree of the variability is associated with within sample measure-

ments, and that relatedness between spatially separated measure-

ments is limited. A value close to zero indicates that the relatedness of

spatially separated measurements within the range is strong.

All analyses were calculated using Stata 9.0 (College Station,

Texas, United States) and S-plus 6.0 with Spatial Stats module

(Insightful Corp, Seattle, United States).

Results

Presence and quantity of B. pseudomallei in two sampling
sites

A total of 80 (80%) sampling points in the disused land site were

culture positive for B. pseudomallei, compared with 28 (28%) positive

points in the rice field site (p,0.001, Chi-square test). The median

B. pseudomallei count for the disused land was 378 cfu/gram soil

(range 1 to .10,000, interquartile range (IQR) 55 to 1119), while

the median count for the rice field was 700 cfu/gram soil (range 10

to .10,000, IQR 50 to 2810). There was no difference in B.

pseudomallei count in the positive points of the two sites (p = 0.17,

Mann-Whitney test). Further statistics relating to log B. pseudomallei

counts are available in Table S1. B. thailandensis was not detected in

either field.

Mapping of B. pseudomallei distribution
Mapping of log B. pseudomallei counts showed that sampling plots

with high (low) B. pseudomallei count were likely to be surrounded

by sampling points with high (low) count (Figure 2). The highest

density of B. pseudomallei (.10,000 CFU/gram) was similar in both

fields. Stationarity of log B. pseudomallei counts was tested; no major

trends of mean and variance were observed with direction in either

field. Therefore, correlation (semivariogram) between any two

locations depended only on the lag distance between them, not

their exact locations.

Spatial autocorrelation
Spatial autocorrelation of log B. pseudomallei counts in the

disused land and the rice field was present for up to 11.4 meters

and 7.6 meters of lag distance, respectively (Table 1, Figure 3).

The nugget/sill ratios were 0.50 and 0.49 for the disused land and

the rice field, respectively, indicating a moderate degree of spatial

autocorrelation of log CFU count at both sites. Using a robust

method (indicator semivariogram), we found that the range of

spatial autocorrelation for presence of B. pseudomallei in the rice

field was 7.1 meters, which was not different from the range of

spatial autocorrelation for log B. pseudomallei counts (7.6 meters).

However, in the disused land where the proportion of positive

points was very high, spatial autocorrelation for presence of B.

pseudomallei was lower (nugget/sill ratio 0.79), indicating that

variability of test positivity in this field was mainly caused by

measurement error or random variation. A directional semivar-

iogram and directional indicator semivariogram showed that the

patterns of spatial variability were not different with direction in

either field (Figure S1 and S2).

Sampling strategy
Findings from our data were combined with a statistical

approach to define common pitfalls of sampling for the detection

of B. pseudomallei in soil. The presence of B. pseudomallei in the soil is

hazardous and of the potential errors associated with soil sampling,

we considered a false negative result as the one of greatest

significance. This would result in under-reporting of the

geographic distribution of the organism, and could result in the

dissemination of inaccurate and misleading information in areas

defined as false negative. In light of this, we considered the

reliability of a negative culture result in a given study site based on

the 95% binomial confidence interval (CI) (Figure 4). For example,

if only 10 independent samples are randomly taken in one area

and all are negative, the exact 95% binomial CI ranges from 0 to

30.8%, which means that even if the probability of sampling points

positive for B. pseudomallei is actually as high as 28%, it is still not

uncommon for all 10 independent samples randomly selected from

this site to be negative (as the 95%CI includes 28%). If 100

samples are taken, the exact 95% binomial CI is 0 to 3.6%, and if

1000 samples are taken the CI is 0 to 0.4%, and so on (Figure 4).

The number of sampling points taken and distance between them

should be based on a formal sample size calculation [21,22]. The

semivariograms and ranges of spatial autocorrelation defined in

Figure 1. Theoretical semivariogram showing an increase in
variance as lag distance increases within range (a) (spatial
autocorrelation), and upper asymptote (sill) as lag distance
exceeds the range (no spatial autocorrelation). The nugget
variance (C0) exhibits a positive variance at lag distance 0.
doi:10.1371/journal.pntd.0000694.g001

Spatial Distribution of B. pseudomallei in Soil
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Figure 2. Presence and count (log cfu/gm soil) of B. pseudomallei in 100 spaced sampling plots within 312.5 m2 of the disused land
(2A) and 625 m2 of the rice field (2B). The gray scale represents the amount of B. pseudomallei in soil, with pure white indicating a point negative
for B. pseudomallei.
doi:10.1371/journal.pntd.0000694.g002

Table 1. Summary of parameters obtained from fitting a Guassian equation to the semivariograms and indicator semivariograms.

Field Model Direction Range (m) Nugget (C0) Sill (C) Nugget effect (C0/C)

Disused land Semivariogram Omnidirectional 11.4 0.95 1.91 0.50

N45E 9.3 0.90 1.79 0.51

N45W 13.7 0.99 2.07 0.48

Indicator semivariogram Omnidirectional 5.7 0.13 0.16 0.79

N45E 6.3 0.13 0.17 0.75

N45W 5.5 0.13 0.17 0.73

Rice field Semivariogram Omnidirectional 7.6 0.99 2.01 0.49

N45E 8.0 0.96 2.09 0.46

N45W 7.0 1.02 1.92 0.53

Indicator semivariogram Omnidirectional 7.1 0.11 0.23 0.47

N45E 7.2 0.10 0.23 0.46

N45W 7.0 0.11 0.23 0.48

doi:10.1371/journal.pntd.0000694.t001

Spatial Distribution of B. pseudomallei in Soil
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this study allowed us to determine the optimal distance between

sampling plots in this geographical area [21,22]. The optimal

distance between sampling points has been described as being half

the range of the spatial autocorrelation observed in the

semivariogram [22]. As the range of spatial autocorrelation for

the presence of B. pseudomallei were 5.7 and 7.1 meters of lag

distance, for northeast Thailand we propose that the initial

sampling grid size during future studies could be between 2.5 and

3.5 meters.

Discussion

Spatial autocorrelation of B. pseudomallei in soil
The aim of this study was to define the spatial distribution B.

pseudomallei in soil using a geostatistical approach to analyse

datasets from two large environmental sampling studies. We found

that B. pseudomallei was not uniformly distributed in the soil, but

rather was randomly distributed with spatial autocorrelation.

Samples taken from areas adjacent to sampling points with a high

(low) B. pseudomallei count were also likely to yield a high (low)

count. This finding is consistent with previous studies of other

microorganisms present in soil [18–20]. Several explanations have

been proposed for this phenomenon. Bacterial communities may

be affected by an uneven distribution of organic matter from

which soluble compounds are diffusing, with bacterial density

greatest close to the organic matter [28]. Another possibility is that

the spatial pattern may reflect an effect of regulation within the

bacterial community itself, in which release of specific bacterial

factors involved in bacterial gene regulation influences growth

within the community. This is supported by a growing body of

evidence that bacterial quorum-sensing occurs in soil [29–31].

Difference in positivity rate and spatial relationship
observed between rice field and disused land

This study also demonstrated a marked difference in the

proportion of samples positive for B. pseudomallei in the disused land

site versus the rice field site, despite the observation that the B.

pseudomallei counts per gram of soil at positive spots were not

different between the two sites. This was reflected in the shorter

range of spatial autocorrelation for log CFU count in the rice field

compared with the disused land (7.6 meters versus 11.4 meters).

Rice fields undergo repeated flooding, ploughing, planting, rice

stubble burning and the application of chemical fertilizers and

pesticides. B. pseudomallei may also be influenced by the presence of

rice. A difference in bacterial communities present in rice field and

disused land has been described previously in regions where B.

pseudomallei was not present, and agricultural practices have been

Figure 3. Semivariograms for count (log cfu/gm soil) of B. pseudomallei and indicator semivariograms for presence of B. pseudomallei
over the lag distance (in meters). The solid line represents the fitted Gaussian model. In the disused land (3A and 3B), range of spatial
autocorrelation for log CFU count was 11.4 meters, and range of spatial autocorrelation for presence of the organism was 5.7 meters. In the rice field
(3C and 3D), range of spatial autocorrelation for log CFU count was 7.6 meters, and range of spatial autocorrelation for presence of the organism was
7.1 meters.
doi:10.1371/journal.pntd.0000694.g003
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reported to lead to reversible changes in the community structure

of environmental Burkholderia species other than B. pseudomallei

[32–34]. However, this finding should not be interpreted to mean

that the proportion of B. pseudomallei in disused land is higher than

in rice fields because the number of sites sampled is low and the

sampling points within each field were correlated. Intensive

sampling to determine the distribution of B. pseudomallei in a field

has not been subjected previously to systematic study. Future

studies are required to investigate whether these findings are

reproducible.

Soil sampling strategies
The best soil sampling strategy should have adequate power to

detect the presence of B. pseudomallei in a field, regardless of

whether the prevalence of the organism is high or low. Our study

was based on a fixed-interval sampling strategy which was used for

its simplicity, and because this is a recommended strategy for the

generation of semivariograms [21,35]. Alternative sampling

strategies have been described, including random sampling,

stratified sampling, adaptive sampling and multistage sampling

[36]. The most appropriate sampling strategy will depend on the

objectives of the study, and whether any information is already

available for the geographical area to be sampled. In stratified

sampling, the experimental area is divided into zones or strata and

unequal numbers of samples are taken from each stratum.

Stratified sampling may be used where sampling areas differ

greatly or prior information indicates that the B. pseudomallei

prevalence varies across the study area. We showed that sampling

less than 10 sampling points per site may give a false negative

result, even if the actual probability that an independent sampling

point will be positive is as high as 28%. Adaptive sampling may be

a suitable approach for the detection of B. pseudomallei in an area

where the presence and/or distribution of B. pseudomallei is

unknown. For example, a pilot study could be performed in a

defined experimental area in which 20 random points are sampled

and tested for the presence of B. pseudomallei. If any sampling point

is positive for B. pseudomallei, this confirms the presence of the

organism and therefore an area of risk to humans and livestock. If

no sampling points are positive for B. pseudomallei, a second round

of sampling is done in which a larger number of random points or

all possible sampling grid points are sampled in the same area.

Based on our analysis, we recommend that a minimum of 100

sampling points for an area of land measuring 30 m630 m should

be taken during stage 2 in the event that the first round of

sampling is negative.

Random sampling with ad hoc strategies have been used

previously to define the presence of B. pseudomallei throughout

southeast Asia and northern Australia [3–16]. The methodology

for sampling including calculations or justification of sample size

was not usually specified, and the number and position of sampling

points were probably selected on an ad hoc basis. This has

provided important information on geographical areas of positivity

and has shown that B. pseudomallei load is higher in areas of south

Asia including northeast Thailand and Laos than in northern

Australia. However, the sampling strategies such as those

previously used in which a small number of sampling points were

tested per field and/or distances between the points were short

could potentially underestimate the geographical distribution of

positive sites, particularly in an area of low prevalence.

We propose that a multilevel approach is suitable to determine

the geographical distribution of B. pseudomallei within an endemic

region such as the province of Ubon Ratchathani. This sampling

method involves considering a primary sample unit such as field,

and a secondary sample unit such as sampling point in each field.

Defined areas of land (the primary sample unit) are selected from

the entire region using a sample size calculation. Each experi-

mental area is then sampled using an adequate number of

sampling points using an initial sampling grid size (in northeast

Thailand) of 2.5 to 3.5 meters (for example, 100 sampling points

in a single site measuring 30 m630 m) or based on new data

generated from future studies. Sampling strategies in each field

could be based on random sampling, fixed-interval sampling,

stratified sampling or adaptive sampling, as described above. This

extensive dataset would give a broad insight into the distribution of

B. pseudomallei across the region.

The optimal sampling grid size should be calculated based on

the spatial autocorrelation (semivariogram) of the presence of

organism in a given area and the level of precision required

[21,22]. Variability in B. pseudomallei count in soil within and

between different countries is well described [4,10,11], and the

proposed sampling distance may not hold true in areas where the

predicted B. pseudomallei count in soil is markedly different from

that found in this study, since the range of autocorrelation is likely

to differ [18]. To evaluate the range of spatial autocorrelation in

different geographic areas, we suggest that a semivariogram and

area-specific spatial autocorrelation values be calculated from

initial sampling of at least 100 to 150 sampling points [35].

Limitations and future studies
The moderate degree of nugget sill ratio found in this study

could be due to variation in the soil sampling technique used. The

standard methodology for culture of B. pseudomallei from soil

involved the addition of water to the soil sample followed by

vigorous manual mixing and overnight sedimentation, after which

the supernatant was removed for culture [4–6,8–10,13–16]. It is

possible that B. pseudomallei may either replicate or die during the

overnight sample preparation, and some strains may not grow in

the culture medium. Molecular detection techniques such as PCR

may resolve this problem. DNA extraction from soil followed by

detection of B. pseudomallei by real-time PCR has been reported

to be more sensitive than culture [11], and further studies are

Figure 4. Estimated 95% confidence intervals (log scale)
plotted against the number of soil samples taken for a given
test site. Confidence in a negative result is related to the number of
samples taken and is very low for a small sample size. Footnote to
Figure 4. Given that the true probability of the organism being in the
evaluated rice field is 28%, it is still not uncommon that random
sampling of 10 independent points would yield all negative results as
95%CI of 10 sampling points includes the probability of 28%.
doi:10.1371/journal.pntd.0000694.g004
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required in which PCR is evaluated in a range of geographical

settings. The possibility that soil from multiple sampling points in a

field could be bulked and DNA extracted and tested as a single

sample would allow for more rapid coverage of a potentially large

sample size [34]. It is likely, however, that culture will be used in

the immediate future to determine the presence of B. pseudomallei in

the environment. Further studies are now required to extend our

understanding of the global distribution of B. pseudomallei in the

environment, together with an evaluation of factors such as the

physical properties of soil and the effect of vegetation that

influence its spatial distribution.

Concluding comments
This is the first published study to define spatial distribution of

B. pseudomallei in the environment. Our data are likely to be specific

to northeast Thailand and our focus was primarily the issue of false

negatives. As such, it does not attempt to determine optimal

strategies necessary for all applications, such as the strategy

necessary to obtain an unbiased snapshot of bacterial population

genetic structure. However, our findings have major implications

for future environmental studies of B. pseudomallei, and highlight

both the critical importance of study design and methodological

approach and the need for further studies in this area.

Supporting Information

Figure S1 Directional semivariograms for quantitation of B.

pseudomallei (log cfu/gram soil) over the lag distance (in meters) in

the disused land at N45E (1A) and N45W (1B), and in the rice field

at N45E (1C) and N45W (1D).

Found at: doi:10.1371/journal.pntd.0000694.s001 (0.43 MB TIF)

Figure S2 Directional indicator semivariograms for presence of

B. pseudomallei over the lag distance (in meters) in the disused land

at N45E (1A) and N45W (1B), and in the rice field at N45E (1C)

and N45W (1D).

Found at: doi:10.1371/journal.pntd.0000694.s002 (0.43 MB TIF)

Table S1 Summary statistics for quantitative B. pseudomallei data

from the disused land and the rice field in log cfu/gram of soil.

Found at: doi:10.1371/journal.pntd.0000694.s003 (0.04 MB

DOC)
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