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Abstract
Leukemia is an abnormal proliferation of white blood cells that occurs in bone marrow and expands through the blood. 
It arises from dysregulated differentiation, uncontrolled growth, and inhibition of apoptosis. Glutamine (GLN) is a "condi-
tionally essential" amino acid that promotes growth and proliferation of leukemic cells. Recently, details about the role of 
GLN and its metabolism in the diagnosis and treatment of acute myeloid, chronic lymphocytic, and acute lymphoblastic 
leukemia have emerged. The uptake of GLN by leukemia cells and the dynamic changes of glutamine-related indexes 
in leukemia patients may be able to assist in determining whether the condition of leukemia is in a state of progression, 
remission or relapse. Utilizing the possible differences in GLN metabolism in different subtypes of leukemia may help 
to differentiate between different subtypes of leukemia, thus providing a basis for accurate diagnosis. Targeting GLN 
metabolism in leukemia requires simultaneous blockade of multiple metabolic pathways without interfering with the 
normal cellular and immune functions of the body to achieve effective leukemia therapy. The present review summarizes 
recent advances, possible applications, and clinical perspectives of GLN metabolism in leukemia. In particular, it focuses 
on the prospects of GLN metabolism in the diagnosis and treatment of acute myeloid leukemia. The review provides 
new directions and hints at potential roles for future clinical treatments and studies.

Keywords Glutamine · Leukemia · Glutamine metabolism · Glutaminase · Glutamine transporter protein

1 Introduction

Leukemias are a group of aggressive hematologic malignancies (also known as blood cancers) involving clonal prolif-
eration of immature myeloid progenitor cells in the bone marrow and peripheral blood. They are caused by genetic 
mutations in hematopoietic stem cells. Presently, the treatment of choice includes chemotherapy and allogeneic stem 
cell transplantation [1]. With the development of time and technology, immunotherapeutic approaches for various 
leukemias have shown great promise, such as CD33 or CLL-1-specific chimeric antigen receptor (CAR)-T cell therapy[2, 
3] and immune checkpoint inhibitor therapies such as TIM3, CD47, and anti-CD70 [4–6]. Regardless of therapy, relapse 
is common and shortens the survival of leukemia patients. Therefore, alternative treatment strategies are needed.

Growing evidence points to the critical role of amino acid metabolism on the diagnosis and treatment of leukemia. The 
metabolic pathways for GLN, arginine, isoleucine, tryptophan, cysteine, tyrosine, threonine, and L-serine play a crucial role 
in cancer. Moreover, amino acid metabolism is active in high-risk populations and the corresponding genes are associated 
with the immune microenvironment in acute myeloid leukemia (AML) patients [7]. Among the various amino acids, GLN 
metabolism seems to be an effective target against leukemia [8]. Leukemia cells have changes in the uptake and utilization 
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of GLN as well as metabolic pathways. Through the dynamic changes of GLN-related indexes in patients can help to deter-
mine whether the leukemia is in progress, remission or relapse, and the differences in glutamine metabolism in different 
subtypes of leukemia can help to differentiate between subtypes of leukemia. Therefore, this review discusses the role of GLN 
metabolism in three common types of leukemia: AML, chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia 
(ALL). Furthermore, it discusses the latest advances and developments in the field, as well as the therapeutic opportunities 
and challenges of GLN targeting.

2  Glutamine metabolism

GLN is a nonessential amino acid with two amino groups, the α-amino group and a readily hydrolysable side-chain 
amide group, with five carbons, a molecular weight of 146.15 kDa, and a chemical composition of C = 41.09%, H = 6.90%, 
O = 32.84%, and N = 19.17%. Classified as a neutral at physiological pH, it is the most abundant and versatile amino 
acid in the body (~ 0.6–0.8 mM) [9]. GLN is converted by glutaminase (GLS) to glutamate, which is then transformed to 
α-ketoglutarate (α-KG), an intermediate in the tricarboxylic acid (TCA) cycle and a core element in GLN metabolism [9, 
10]. Glutamate can be directly converted to α-KG in two ways. The first is via glutamate dehydrogenase (GLDH), which 
produces the potential autophagy inducer ammonium and NADH or NADPH as cofactors. The second is via a group of 
transaminases, including glutamate–oxaloacetate transaminase, glutamate-pyruvate transaminase, and phosphoserine 
aminotransferase. Glutamate serves as a metabolite for the growth and proliferation of cancer cells via the TCA cycle. 
Moreover, glutamate can be deaminated in a number of reactions, thus providing a source of nitrogen for nonessential 
amino acids, purines and pyrimidines [11]. At the same time, intracellular glutathione (GSH) derived from GLN effec-
tively scavenges intracellular reactive oxygen species (ROS), mediating ferroptosis and redox homeostasis in cancer cells 
[8]. Notably, GLN promotes the activation of rapamycin complex 1 (mTORC1), which is associated with apoptosis and 
autophagy in cancer cells.

GLN is as important in hematologic tumors as one of the nutrients on which cancer cells depend for survival. Given 
the need of tumor cells for glucose (for anaerobic glycolysis), GLN deficiency has been associated with cell death [12–14]. 
In both healthy and diseased states, immune cells consume as much GLN as possible, and its deprivation holds promise 
as a new therapeutic tool.

3  Glutaminase

GLS is a key enzyme involved in GLN metabolism. It comprises renal glutaminase-1 (GLS-1) and hepatic glutaminase-2 
(GLS-2). GLS-1 has two variable splice isoforms: glutaminase C and renal glutaminase. The TCA cycle yields metabolic 
intermediates that are involved in the biosynthesis of nucleotides, GSH, and other amino acids [15]. In addition, GLN can 
be converted to α-KG for oxidative phosphorylation to produce ATP. Elevated expression of GLS-1 is directly or indirectly 
associated with poor prognosis in stem cell, colorectal, and breast cancers [16].

The GLS-2 gene is located on chromosome 12q13 and contains 18 coding exons. GLS-2 is considered more of a tumor 
suppressor than GLS-1. GLS-2 has been shown to be a p53 target as it contains two possible p53 binding sites [17]. The 
tumor suppressor p53 activates GLS-2 expression, regulates intracellular ROS levels and reduced/oxidized GSH ratios, 
and removes intracellular ROS to protect cells from genomic damage and ROS-sensitive apoptosis [18, 19]. TAp63, TAp73, 
and long-chain non-coding RNAs can also regulate GLS-2 [20–22]. Meanwhile, increased mitochondrial GLS expression 
enhances GLN catabolism by Myc oncogene inhibition of miR-23, which in turn targets GLS [23]. GLS inhibition decreases 
the production of GSH in AML cell lines, leading to increased mitochondrial ROS and apoptosis [8, 24]. Thus. GLS-1 and 
GLS-2 may serve as diagnostic and therapeutic targets for certain cancers. Clinical studies should explore new chemo-
therapeutic combinations of GLS inhibitors in the treatment of leukemia.

4  Inhibitors of the GLN transporter limit tumor demand for GLN

Strong expression of alanine-serine-cysteine transporter protein 2 (ASCT2), a GLN transporter, helps meet the amino acid 
needs of tumors [25] (Fig. 1). However, ASCT2 has also anticancer properties [26], because its deletion can lead to apop-
tosis of leukemia cells [27]. Inhibition of ASCT2-mediated GLN uptake in human cells using a lead compound (V-9302) 
resulted in attenuation of cancer cell growth and proliferation, frequent cell death, and increased oxidative stress [28]. 
ASCT2 plays the same role in cell proliferation and apoptosis in several cancers [29–36]. In a study of 25 patients with 
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different clinically aggressive tumors (lung, breast, colon, or lymphoma), who underwent fluorine 18-(2S,4R)-4-fluoroglu-
tamine positron emission tomography, all showed abnormal GLN metabolism [37]. Notably, ASCT2-mediated pharma-
cological inhibitors significantly reduced GLN uptake by triple-negative basal-like breast cancer cells, while having little 
effect on luminal breast cancer cells [38]. Taken together, this evidence implies that ASCT2 may serve as a potential target 
for antitumor drugs. ASCT2 inhibitors and the combination of ASCT2 inhibitors with other antitumor therapies may offer 
a promising antitumor strategy. However, more research is needed in this area of leukemia. Because GLN may be closely 
related to leukemogenesis and progression, it may directly or indirectly affect the diagnosis and treatment of leukemia.

5  GLN metabolism in leukemia

Leukemia is a myeloid malignancy characterized by abnormal proliferation and differentiation of hematopoietic pre-
cursor cells. Cancer cells are highly dependent on GLN metabolism and availability [39]. GLN metabolism is centered in 
the mitochondria. Mitochondria play a crucial role in the maintenance of hematopoietic stem cells, whose malignant 
transformation ultimately leads to leukemic stem cells [40]. The first evidence of impaired mitochondrial metabolism 
in AML was the presence of mutations in the gene encoding isocitrate dehydrogenase (IDH) in AML patients [41, 42].

Recent in vivo and in vitro studies have shown that GLN is restricted to the cancer cell environment [43]. Glutamine 
is used as an alternative fuel for the TCA cycle, with plasma concentrations of 0.6–0.8 mM, and is the most common 
amino acid in blood [9, 10]. As in other cancers, plasma GLN concentrations in AML patients are quite low, 0.3 mM or 
less, suggesting that GLN is rapidly depleted in AML cells [10, 44, 45]. A study of 55 newly diagnosed AML patients and 
45 healthy individuals also showed that GLN levels were much lower in the former than in the latter [46]. AML cells are 
completely dependent on exogenous GLN, and knockdown of high-affinity ASCT2 leads to apoptosis in AML cell lines 
and inhibits tumor progression in AML xenografts and primary AML mouse models [47] Indeed, ASCT2 plays pleiotropic 
roles in cellular metabolism and serves as a promising molecular target for the treatment of leukemia [27].

GLS is a rate-limiting factor for TCA activity in AML and is highly expressed in AML patients [48]. The initial step 
required for glucose-independent oxidative phosphorylation is the conversion of GLN to glutamate. Subsequently, 

Fig. 1  Overview of glutamine metabolism in leukemia cells. The increased demand for glutamine by leukemia cells and simultaneous inhi-
bition of the ASCT2 transporter, result in a declining hydrolysis of glutamine to glutamate. α-KG, α-ketoglutarate; ASCT2, alanine-serine-
cysteine transporter protein 2; GLS, glutaminase; TCA, tricarboxylic acid. The Illustration was created in Figdraw
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glutamate provides the substrate for the synthesis of α-KG. IDH catalyzes the oxidative decarboxylation of isocitrate to 
α-KG. Mutations in IDH result in the conversion of α-KG to R2-hydroxyglutarate, which is detected in approximately 2% 
of adult AML patients [42, 49] (Fig. 2). ATP and metabolic pathways localized to the mitochondria have been shown to 
play an important role in the progression of AML [50]. Elevated levels of 2-hydroxyglutarate, a metabolite associated with 
the TCA cycle, may promote tumorigenesis [51]. Meanwhile, the central nervous system is also involved in metabolic 
processes, posing a major challenge to the treatment of acute leukemia [52]. In addition, in studies on GLN metabolism, 
N6-methyladenosine  (m6A) regulates GLN metabolism through modification of insulin-like growth factor 2 mRNA-binding 
protein 2 (IGF2BP2), which directly or indirectly promotes AML cell development and self-renewal, and higher levels of 
IGF2BP2 expression correlate with a poor prognosis for AML [53].

Taken together, changes in glutamine utilization and metabolic pathways in leukemia cells are expected to be potential 
prognostic markers. For example, GLS is highly expressed in AML patients and IGF2BP2 is associated with prognosis in 
AML. By detecting dynamic changes in glutamine-related markers, it is possible to understand the progression, remis-
sion or relapse of leukemia and provide diagnostic value. Glutaminolysis inhibits the conversion of GLN to circulating 
TCA metabolites by regulating various enzymes, and GLS is the first step in the process. Therefore, targeting GLS to block 
GLN degradation is a promising therapeutic strategy. Targeting of the two GLS isoforms, GLS-1 and GLS-2, will provide 
new insights on the treatment of leukemia. Hereafter, we discuss the relationship between GLN and AML, CLL, and ALL.

Fig. 2  Strategies for targeting glutamine metabolism in AML. l-asparaginase allows the hydrolysis of extracellular glutamine, impeding its 
synthesis and hydrolysis. Upon translocation to the cell, glutamine is transformed to glutamate by the two isoforms of glutaminase, GLS-1 
and GLS-2. Glutamine is synthesized from glutamate and ammonia  (NH3) by glutamine synthetase. In this reaction, an ATP is consumed. 
The reverse reaction yields glutamate and ammonium ions  (NH4

+). Almost all cells in the body contain glutamine and ammonium ions, and 
express both glutamine synthetase and GLS. The predominant expression of one or the other of these enzymes will determine whether 
tissues are more likely to produce or consume glutamine. α-KG, α-ketoglutarate; ASCT2, alanine-serine-cysteine transporter protein 2; GLS, 
glutaminase; GSH, glutathione; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; TCA, tricarboxylic acid; XCT, cystine/glu-
tamate transporter
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6  Glutamine as a therapeutic strategy for leukemia

6.1  Acute myeloid leukemia

Reducing intracellular GLN levels in AML patients is one of the main strategies for AML treatment. The most important 
step in targeting GLN is the use of GLS to catalyze the deamination reaction of GLN to glutamate. Glutamate is further 
catabolized and metabolized to α-KG which feeds into the TCA cycle to provide energy. Therefore, glutaminase inhibitors 
are a popular antitumor strategy [54]. In particular, the renal-type GLS-1 form disrupts GLN-driven oxidative phospho-
rylation in AML cell lines, thereby preventing tumor growth and inducing apoptosis [55].

Blocking GLN metabolism with the GLS inhibitor CB-839 results in GSH depletion [56, 57]. In AML, where GSH acts as an 
antioxidant, a decrease in GSH leads to the accumulation of mitochondrial ROS and subsequent apoptosis [58, 59]. At the 
same time, the inhibitory effect of CB-839 makes AML cells more sensitive to adjuvants of the mitochondrial redox state, 
such as arsenic trioxide and hypertriglyceride [8]. Therefore, CB-839 applied together with the above adjuvants induces 
apoptosis in AML cells. In addition to inducing apoptosis in AML cells, CB-839 inhibits also the mTOR signaling pathway 
[54]. In AML cells, GLN condenses with cysteine and glycine to produce GSH, which maintains redox homeostasis, prevents 
ROS-induced damage, and provides a nitrogen source for DNA replication [55, 60]. In addition, many AML gene mutations 
have been shown to be associated with a number of mutations. In addition, many AML gene mutants are specific for GLN 
metabolism. For example, the glutaminase inhibitor BPTES was able to target and inhibit the unique metabolic profile of 
primary AML cells with IDH mutations (i.e., glutamine addiction), which in turn slowed the growth of primary AML cells 
with mutant IDH [49]. The fact that there is a unique selective inhibitory effect of interfering with glutamine metabolism 
on AML cells with IDH mutations is demonstrated. Other than this, aberrant expression of the FMS-like tyrosine kinase 
3 (FLT3) gene in AML also leads to disorders of glutamate metabolism [61]. Approximately 25–30% of AML cases show 
hyperactivation due to mutations in tandem duplications within genes (FLT3–ITD) or in the structural domain of tyrosine 
kinase (FLT3–TKD) [62]. The FLT3 inhibitor AC220 (also known as Quizartinib) decreases GLN uptake and GSH production 
in AML cells, while increasing sensitivity to oxidative stress [63]. In addition, GLN is also used as a parenteral nutrient to 
assist in the treatment of AML. In a randomized, double-blind, controlled study including 45 adult AML patients and 127 
cycles of chemotherapy, GLN improved the clinical course of patients after bone marrow transplantation and parenteral 
nutrition [64]. If in AML, the degree of GLN dependence of AML cells with specific gene mutations (e.g. IDH mutations 
and FLT3 mutations) is investigated. It is possible to assist in the diagnosis of such subtypes of AML with specific gene 
mutations by detecting GLN-related metabolic markers.

At present, the specific quantitative indicators and the exact extent of GLN dependence in AML subtypes with specific 
genetic mutations need to be investigated in further studies. In general, however, this dependence may be manifested 
by an increased rate of cellular uptake and utilization of GLN, increased activity of enzymes involved in intracellular GLN 
metabolism, and a more critical role of the GLN pathway in maintaining cell survival, proliferation, and energy supply. 
In conclusion, GLN is essential for the treatment of leukemia and is an effective therapeutic strategy. It is also important 
in medical research as a nutrient to support cell growth and repair, and as a potential antitumor agent for the treatment 
of leukemia.

6.2  Chronic lymphocytic leukemia

The 13q deletion is the most common cytogenetic mutation in CLL. Bruton’s tyrosine kinase and B-cell lymphoma-2 
inhibitors are widely used in the clinic for the treatment of CLL; however, CLL cells have developed resistance to these 
drugs. CB-839, a small-molecule GLS-1 inhibitor, decreases GLS-1 activity and inhibits CLL cell proliferation; however, the 
efficacy of CB-839 is limited in combination with conventional CLL drugs [65]. In addition, CLL lymphocytes in del11q-
positive CLL cells exhibit altered glutamine metabolism [66]. Mitochondria in CLL have been reported to increase ROS 
production [67]. The role of GLN in preventing the overproduction of ROS underscores its importance in tumor growth 
and energy production [68].
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6.3  Acute lymphoblastic leukemia

Acute lymphoblastic leukemia is a heterogeneous malignancy of immature B or T lymphoblastoid cells that is most preva-
lent in children [69, 70]. l-asparaginase (ASNase) is the first-line therapy for childhood ALL [71, 72], as well as adult ALL [73]. 
ASNase hydrolyzes GLN to produce glutamate and may be considered for patients with Notch1 ALL positivity [74]. The notch1 
receptor is effective in the treatment of ALL. Notably, when GLN is secreted by adipocytes, its cytotoxicity towards ALL cells is 
blocked [75]. Therefore, targeting GLN and ASNase may also serve in the development of novel therapeutic agents [76, 77]. In 
addition, GLN nutritional therapy during chemotherapy can effectively improve and enhance the systemic nutritional status 
and immunity of pediatric patients with ALL [78]. Notably, there are genomic differences in relapsed ALL during treatment 
[79]. Among these differences, reduced dependence on GLN is an important cause of drug resistance in leukemia cells [80].

Mitochondria are one of the major sources of ROS production. Redox dysfunction plays a crucial role in leukemogenesis 
in ALL, and inhibition of ROS production via NADPH oxidases is a novel therapeutic tool for the treatment of ALL [81]. Many 
enzymes neutralize ROS, including superoxide dismutase, catalase, glutathione peroxidase (GPX), thioredoxin, peroxiredoxin, 
and glutathione transferase [82]. In addition, activating mutations in NOTCH1 are common in T-cell ALL, and inhibition of 
NOTCH1 signaling suppresses and promotes autophagy during GLN catabolism [83]. GLN metabolism regulates the expres-
sion of mitochondrial uncoupling protein 2 (UCP2) in T-cell ALL cell lines, and UCP2 is required for T-cell ALL proliferation [84]. 
A link between UCP2 and ROS production has been demonstrated [85]. Therefore, promoting GSH production by blocking 
GLN metabolism and indirectly preventing ROS production is a novel therapeutic strategy for ALL.

7  GLN causes cellular ferroptosis in an indirect way

In clinical settings, radiotherapy remains the mainstay treatment for leukemia, although GLN-targeting agents (e.g., CB-839) 
have been developed to indirectly induce ROS production [8]. It is well known that ROS production and lipid peroxidation 
is a key feature and an important step in iron death, and the generation of ROS promotes lipid peroxidation, which in turn 
triggers iron death. However, the mechanism of iron death involves a variety of factors, including antioxidant system factors, 
such as GSH and GPX4, which are important mechanisms of iron death [86, 87]; iron metabolism factors, such as  Fe2+ which 
promotes the production of ROS through the Fenton reaction and so on, which in turn promotes lipid peroxidation [88]; 
lipid metabolism-related factors, such as lipoxygenase enzymes (LOXs), which can directly oxidize unsaturated fatty acids 
on biological membranes (PUFAs) and PUFA-containing lipids on biological membranes, which may induce iron death [87]; 
signaling pathway factors, such as cystathionine-glutamate transporter receptor (system Xc -), p53, and other pathways can 
regulate iron death. The mechanism underlying the role of GLN in leukemia remains unclear, and its use in clinical practice 
is relatively rare. Notably, p53-dependent activation of GLS-2 expression correlates with ROS, while elevated ROS levels lead 
to p53 stabilization and activation [89]. Sawako et al. demonstrated that GLS-2 reduces cellular sensitivity to ROS-related 
apoptosis [19]. Increased mitochondrial production of ROS and lipid peroxidation, along with decreased expression of GSH 
and GPX4, lead to ferroptosis [90, 91]. The accumulation of intracellular iron during ferroptosis is important in leukemic cells. 
GLN metabolism enhances ROS production in the TCA cycle [92–94]. GLN catabolism inhibits intracellular GSH depletion 
and subsequent ROS generation [49, 95], as well as affecting the TCA cycle [96]. The accumulation of lipid ROS can lead to 
ferroptosis [96]. Notably, GLS-2 is present on the cell surface of human neutrophils [97], which promotes lipid ROS production 
and enhances ferroptosis by catalyzing the generation of α-KG from glutamate [98, 99]. GLN increases α-KG levels and can 
activate amino acid sensor kinases, leading to formation of mTORC1 [100, 101], which then regulates ferroptosis sensitivity 
[102, 103]. In conclusion, increasing ROS levels through GLN metabolism promotes ferroptosis by blocking GSH synthesis 
(Fig. 3), which may provide new therapeutic guidelines for ferroptosis-based clinical treatment.

8  Discussion

GLN and its metabolites have significant antileukemic effects. Because of the close association between GLN and leu-
kemia prognosis, we have summarized the latest developments on GLN and leukemia-related drugs or other studies by 
publication date (in no particular order), category, and content (Table 1).

There are multiple pathways involving GLN in leukemia, along with multiple factors that regulate and interfere with 
each pathway. GLN metabolic pathway: Supplies carbon for TCA cycle intermediates and nitrogen for nucleotide and 
amino acid biosynthesis, and plays an important role in hematopoietic tumors and hematologic neoplasms [116]; Bypass 
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pathway: when leukemia cells are deprived of Gln, the serine pathway upregulates the key serine enzymes phospho-
glycerate dehydrogenase (PHGDH) and phosphoribosyltransferase (PSAT), leading to an increased demand for serine 
and exacerbation of serine dependence in leukemia cells [117]; Lipid-related metabolism: AML cells are dependent on 
OXPHOS [118–120], AML cells obtain free fatty acids from bone marrow adipocytes and utilize fatty acid oxidation (FAO) 
and OXPHOS to maintain AML cell survival and growth [121–123]. However, OXPHOS-deficient cells accelerate the uti-
lization of GLN, and GLN depletion promotes the accumulation of ROS [124]. We also note that targeting GLN and GLN 
metabolism (or parts of it) may have a limited impact on leukemia therapy. For example, ASCT2 is not the sole transporter 
for GLN [125]. This suggests that GLN influences the development and progression of leukemia. Therefore, future studies 
related to GLN should focus on the inhibition of multiple metabolic pathways for the effective treatment of leukemia.

Research on human leukemia therapy and GLN continues. The body’s immune cells are also the focus of our interfer-
ence with GLN, both in terms of the dependence of cancer cells on GLN and as a component of the TCA cycle. For example, 
immune cells use GLN to grow rapidly and gain immunity [126]. Reprogrammed GLN metabolism plays an important 
role in the antitumor immune response of immune cells, such as T cells, B cells, macrophages, and natural killer cells 
[127]. Parenteral GLN supplements may be relevant in the anti-tumor immune response, as they enhance neutrophil 
phagocytosis and maintain the nutritional status [128]. Inhibition of GLN metabolism can lead to immune escape for 
cancer cells, as observed with the GLN inhibitor V-9302 in human breast cancer cells [129]. Therefore, further experiments 
should be conducted to determine whether GLN inhibitors and related drugs disrupt the anticancer effects of immune 
cells in the bone marrow microenvironment during diagnosis and treatment. Targeting GLN metabolism in cancer cells 
without interfering with the immune response is a major challenge for future research.

Fig. 3  Glutamine 
induces ferroptosis. α-KG, 
α-ketoglutarate; ASCT2, 
alanine-serine-cysteine trans-
porter protein 2; GLS, glutami-
nase; GPX4, glutathione per-
oxidase 4; GSH, glutathione; 
OXPHOS, oxidative phospho-
rylation; PLs, phospholipids; 
PUFA, polyunsaturated fatty 
acids; ROS, reactive oxygen 
species; TCA, tricarboxylic 
acid; XCT, cystine/glutamate 
transporter

Table 1  GLN and leukemia-
related drug development 
and other sustainability 
studies

Owing to the limitations of GLN-related drugs and inhibitors of GLN metabolism in clinical trials, they 
should be used with caution in clinical settings

Published Category Drugs and other substances

2021 Glutamine uptake inhibitors V-9302 [104, 105]
2019 Glutamine transporter SLC38A1 [106]
2019 Glutamine uptake inhibitors GPNA [106, 107]
2018 Asparaginase Erwinaze [108]
2019–2023 Glutaminase inhibitors CB-839 [65, 109, 110]
2019 Glutaminase antagonists DON [111]
2019 Glutaminase antagonists JHU-083 [112]
2021 Glutaminase inhibitors Gilteritinib [109]
2021 Asparaginase Pegcrisantaspase [113]
2019 Asparaginase ASNase [114]
1982 Glutaminase inhibitors l-glutamine antagonist [115]
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9  Conclusion

Existing evidence points to the attractiveness of GLN as a new target for the treatment of leukemia. This strategy is 
already exemplified by CB-839 and V-9302, but includes also mTOR signaling and apoptosis in AML cells. Expression 
of an abnormal gene (FLT3) can cause GLN metabolic disorders. In addition, GLN plays an important role in CLL and 
ALL. The key enzyme in GLN metabolism is the GLS-2 isoform, which acts as a tumor suppressor. It activates and 
promotes hepatic glutamine catabolism and triggers the activation of mTORC1, a signal that also controls ferroptosis.

Inhibitors of GLN metabolism have also some limitations in the treatment of leukemia. First, a clear framework for 
clinical care has not been established, and there is a lack of additional empirical support for the use of GLN inhibi-
tors to improve the prognosis of leukemia. More experimental studies are needed to provide better empirical data 
to improve the prognostic gap in GLN treatment of leukemia. Second, numerous studies have been conducted on 
AML, while relatively few have considered other types of leukemia (including, but not limited to, leukemia with rare 
genotypes and phenotypes). Such studies could determine whether the mechanism of action is the same in AML as 
in other types of leukemia.

In conclusion, available studies suggest that GLN is an attractive new strategy for the treatment of leukemia.

10  Future directions

The study of GLN in leukemia is in its preliminary stages, and its mechanism of action and clinical applications need 
further investigation. Future studies can focus on the following aspects: (1) the regulatory effect of GLN on various 
functional molecules in leukemia cells, (2) the regulatory mechanism of GLN on the relevant functional molecules in 
leukemia cells, (3) the application of GLN in leukemia treatment, (4) the effects of GLN on leukemia cell functions, such 
as cellular energy supply mechanisms, essential molecules, intracellular redox homeostasis mechanisms, and related 
signaling pathways for survival and proliferation, and (5) the effect of GLN on the prognosis of leukemia patients. The 
accrued knowledge will provide a new perspective for the effective clinical treatment of different types of leukemia.
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