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The power metric: a new statistically 
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Abstract 

A new metric for the evaluation of model performance in the field of virtual screening and quantitative structure–
activity relationship applications is described. This metric has been termed the power metric and is defined as the 
fraction of the true positive rate divided by the sum of the true positive and false positive rates, for a given cutoff 
threshold. The performance of this metric is compared with alternative metrics such as the enrichment factor, the 
relative enrichment factor, the receiver operating curve enrichment factor, the correct classification rate, Matthews 
correlation coefficient and Cohen’s kappa coefficient. The performance of this new metric is found to be quite robust 
with respect to variations in the applied cutoff threshold and ratio of the number of active compounds to the total 
number of compounds, and at the same time being sensitive to variations in model quality. It possesses the correct 
characteristics for its application in early-recognition virtual screening problems.

Keywords:  Power metric (PM), Virtual screening, Metric, Model performance, Enrichment factor, Area under the curve 
(AUC), Receiver operating curve enrichment factor (ROCE), Correct classification rate (CCR), Matthews correlation 
coefficient (MCC), Cohen’s kappa coefficient (CKC), Relative enrichment factor (REF)
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Background
The field of virtual screening with applications in drug 
design has become increasingly important in terms of hit 
finding and lead generation [1–3]. Many different meth-
ods and descriptors have emerged over time to help the 
drug discovery scientist in applying the most optimal 
techniques for almost any given computational problem 
[4]. However, still a serious drawback in the domain of 
virtual screening is the lack of metrics standards to statis-
tically evaluate and compare the performance of different 
methods and descriptors. Nicholls [5] suggested a few list 
of desirable characteristics of a good metric:

1.	 independence to extensive variables,
2.	 statistical robustness,
3.	 straightforward assessment of error bounds,
4.	 no free parameters,
5.	 easily understandable and interpretable.

In addition to these five characteristics, we believe that a 
good metric might also benefit from having well-defined 
lower and upper boundaries as this facilitates quantita-
tive comparison of different models and facilitates opti-
mization of fitness functions based on these metrics.

In this paper a new metric is proposed that adheres 
to the six desired characteristics of an ideal metric. The 
metric is based on the principles behind the power of 
hypothesis test, which is the probability of making the 
correct decision if the alternative hypothesis is true. 
Comparison of the new power metric with more estab-
lished metrics, including the enrichment factor (EF) [6, 
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7], the relative enrichment factor (REF) [8], the receiver 
operating characteristic (ROC) enrichment ROCE [9–
11], the correct classification rate (CCR) [12, 13], Mat-
thews correlation coefficient (MCC) [14], Cohen’s kappa 
coefficient (CKC) [15, 16] together with the standard 
precision (PRE), accuracy (ACC), sensitivity (SEN) and 
specificity (SPE) metrics, is presented in this paper.

Methods
Definitions
In the field of virtual screening, the quality of a model can 
be quantified by a number of metrics. The area under the 
curve (AUC) represents the overall accuracy of a model, 
with a value approaching 1.0 indicating a high sensitiv-
ity and high specificity [17]. A model with an AUC of 0.5 
represents a test with zero discrimination. AUC metrics 
are calculated from typical ROC curves; these are plots of 
the (1 − SPE) values on the x-axis against the SEN values 
plotted on the y-axis for all possible cutoff points. Sensi-
tivity and specificity, and thus the AUC, are good indica-
tors of the validity of a method but are not measuring the 
predictive value of a method [18].

The AUC is a metric that describes the overall quality 
of a model. In practical virtual screening experiments 
however, it is typical to score each molecule according to 
a value proposed by the model, and rank these molecules 
in decreasing order based on these calculated values. It is 
custom to define a cutoff threshold χ that separates pre-
dicted actives (all compounds along the ‘top’ side of this 
ranked list) from predicted non-actives (all compounds 
along the ‘bottom’ side of the ranked list) (see Fig. 1). The 
cutoff threshold χ is defined as the fraction of compounds 
selected:

with Ns being the number of compounds in the selection 
set (the predicted actives) and N being the total number 
of compounds in the entire dataset. The majority of met-
rics, including all metrics in this paper, are dependent 
on the value of this cutoff criterion χ since this criterion 
defines which compounds are predicted to be active and 
non-active.

Apart from the Ns and N variables, two other defini-
tions are used in the following sections: the number of 
true active compounds in the selection set that is defined 
as ns, and the number of true active compounds in the 
entire dataset defined as n. Finally, the prevalence of 
actives Ra in the entire dataset can be defined as:

Definition and calculation of established metrics
The sensitivity of a model is defined as the ability of the 
model to correctly identify active compounds from all 

(1)χ = Ns/N

(2)Ra = n/N

the actives in the screening set (also termed the true pos-
itive rate or TPR), while specificity refers to the ability of 
the model to correctly identify inactives from all inactives 
in the dataset at a given cutoff threshold χ:

In line with the true positive rate, one can also define a 
false positive rate FPR as the number of true inactives in 
the selection set in relation to the total number of inac-
tives in the entire dataset:

Other well-established metrics include the precision 
and accuracy:

The enrichment factor is probably the most used met-
ric in virtual screening and other fields as well. The EF 
at a given cutoff χ is calculated from the proportion of 
true active compounds in the selection set in relation to 
the proportion of true active compounds in the entire 
dataset:

The enrichment factor is very intuitive and easy to 
understand, but it lacks a strong statistic background and 
has some drawbacks, including the lack of a well-defined 
upper boundary [the EF(χ) can vary from 0 in the case 
that there are no active compounds in the selection set 
(ns =  0), and up to 1/χ when all active compounds are 
located in the selection set (ns = n); see Ref. [19] for the 
derivation], the dependency of the value on the ratio of 
active to inactive compounds in the dataset, and a pro-
nounced ‘saturation effect’ when the actives saturate the 
early positions of the ranking list and the performance 
metric cannot get any higher, thereby preventing to dis-
tinguish between good and excellent models [6].

To avoid the problems associated to EF, a number of 
other metrics have been proposed. The first of these is 
the relative enrichment factor [8], a metric in which the 
problem associated to the saturation effect is fixed by 

(3)SEN (χ) = TPR(χ) =
TP

TP + FN
=

ns

n

(4)SPE(χ) =
TN

FP + TN
=

N − Ns − n+ ns

N − n

(5)FPR(χ) =
FP

FP + TN
=

Ns − ns

N − n

(6)PRE(χ) =
TP

TP + FP
=

ns

Ns

(7)

ACC(χ) =
TP + TN

TP + TN + FP + FN
=

2ns + N − Ns − n

N

(8)

EF(χ) =
TP/TP + FP

TP + FN/TP + TN + FP + FN
=

N × ns

n× Ns
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considering the maximum EF achievable at the cutoff 
point:

The REF, has well defined boundaries—ranging from 0 
to 100—and is less subject to the saturation effect.

The ROC enrichment metric is defined as the fraction 
of actives found when a given fraction of inactives has 
been found [9]:

The ROCE metric has been advocated by some 
researches as a better approach to address early recov-
ery [5, 9]. However, some issues still remain, such as the 
lack of a well-defined upper boundary [which is equal to 
1/χ when TPR(χ) equals 1], a smaller but still noticeable 
saturation effect, and a statistic robustness which is not 
as desirable as we will demonstrate later.

Another metric often considered to measure classifica-
tion performances is the correct classification rate [12], 
defined as the percentage of instances correctly classified:

(9)REF(χ) =
100× ns

min(N × χ , n)

(10)

ROCE(χ) =
ns/n

(Ns − ns)/(N − n)
=

ns × (N − n)

n× (Ns − ns)

The CCR is sometimes also called the balanced accu-
racy [20].

Matthews correlation coefficient has been advocated 
as a balanced measure that can be used on classes of dif-
ferent sizes [14]. The MCC is in essence a correlation 
coefficient between the measured and predicted classifi-
cations; it returns a coefficient of +1 in the case of a per-
fect prediction, 0 when no better than random prediction 
and −1 in cases of total disagreement between prediction 
and observation:

 The last metric that is evaluated with respect to its per-
formance as compared to the here developed power met-
ric is Cohen’s kappa coefficient [21–24]:

Derivation of a new metric: the power metric
In virtual screening studies, we can assume all com-
pounds being inactive as the null hypothesis, and the 
assumption that some compounds are active as the alter-
native hypothesis. The statistical power, also known as 
sensitivity or recall, is equal to the true positive rate.

However, the statistical power alone does not include 
information about the distribution of negative instances 
or the size effect. Therefore, a metric based on statisti-
cal power and suited for applications in the field of vir-
tual screening should incorporate information about the 
negative instances as well. Ideally, a good virtual screen-
ing method must be able to perform a good prediction of 
true positive instances combined with a small false posi-
tive prediction rate. This translates in a metric that com-
bines the TPR with the false positive rate:

Graphically, the ‘net power’ is the area of the distribu-
tion of positive instances or the alternative hypothesis, 
minus the area of the distribution of negative instances or 
the null hypothesis (Fig. 2).

The metric is not new; it has been developed indepen-
dently several times in the past. Its origin can be traced 

(11)

CCR(χ) =
1

2

[

TP

TP + FN
+

TN

TN + FP

]

=
1

2

[

ns

n
+

N − Ns − n+ ns

N − n

]

(12)

MCC(χ) =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

=
N × ns − Ns × n

√
Ns × n× (N − n)× (N − Ns)

(13)

CKC(χ) = 1−
1− TP+TN

TP+TN+FP+FN

1− (TP+FN )(TP+FP)+(FP+TN )(FN+TN )
(

TP+TN+FP+FN
2
)

= 1−
N × n+ N × Ns − 2× ns × N

N × n+ N × Ns − 2× n× Ns

(14)′net power′ (χ) = TPR(χ)− FPR(χ)

Fig. 1  Illustration of the relation between cutoff χ and number of 
predicted actives/non-actives. Assuming a list of compounds ranked 
according to their predicted activity values, all compounds that are 
located on the left side of χ on this ranked list are predicted to be 
active, while all compounds that are located on the right-hand side of 
χ on this list are predicted to be non-active. All compounds that fall 
along the left-hand side of χ define the ‘selection set’; in this example 
this includes five compounds. The total number of compounds in 
the selection set is Ns (here: 5), while the total number of compounds 
in the entire collection is N (here: 15). The number of true actives in 
the selection set is ns (here: 3) and the number of true actives in the 
entire data collection is n (here: 4). Using these abbreviations, one 
can define the number of true positives TP as being equal to ns, the 
number of true negatives TN equal to (N − Ns − n + ns), the number 
of false positives FP equal to (Ns − ns), and the number of false nega‑
tives FN being equal to (n − ns)
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back to the seminal paper of Peirce [25] with his ‘sci-
ence of the method’ [26]. More than 70 years later, it was 
proposed again by Youden as Youden’s index (Y’J) [27]. 
Youden’s index is often used in conjunction with the 
ROC curve as a criterion for selecting the optimum cut-
off point [28]. The index has been used to calculate the 
best cutoff point in the ROC curve. Once more, almost 
50 years later in 2003, it was proposed again by Powers 
who called it ‘informedness’ [10].

Despite the success of this metric to evaluate the pre-
diction power of a method, it is not entirely appropri-
ate for virtual screening studies due to the lack of early 
recovery capabilities that are very desirable in any virtual 
screening application. Consider, for instance, a data-
base of 10,000 compounds of which 1% are active com-
pounds. In this hypothetical thought experiment, we can 
think of different methods that yield identical Youden’s 
indices calculated from different TPR and FPR values. 
Thinking of two methods, each produce a Youden’s index 
of 0.5, with the first one characterized by a TPR =  0.9 
and a FPR  =  0.4, and the second method character-
ized by a TPR =  0.51 and a FPR =  0.01. In the case of 
the first method, 4050 compounds will be marked as 
‘hits’ of which only 90 compounds being true active (or 
5.7% of the selected compounds). However, for the sec-
ond method only 150 compounds are flagged as ‘hits’, 
of which 51 compounds are true actives (or 34% of the 
selected compounds). Obviously, for virtual screening 
applications, the second method provides a more optimal 
early recovery rate since only 1.5% of the original dataset 
needs to be tested in order to recover 51% of all active 
compounds.

Normalization of the ‘net power’ metric by dividing by 
the sum of the true positive and false negative rates intro-
duces early recovery capabilities bias into the ‘net power’ 
metric. This difference-over-the-sum normalized ‘net 
power’ expresses the dominance of the true positive rate 
over the false positive rate among those instances predict 
as positive, expressed by its rates:

The metric ranges from −1 to +1 and can easily be 
modified to range from 0 to +1 by adding 1 to the met-
ric and dividing by 2. We call this new metric the power 
metric (PM) and is defined as follows:

Probability distribution function to evaluate the metrics
In order to evaluate the performance of several metrics 
used in the field of virtual screening, we used the prob-
ability distribution function approach as suggested by 
Truchon and Bayly to build hypothetical models of differ-
ent qualities [6]. For a typical virtual screening study with 
N compounds of which n being active compounds, we 
generated the ranks of these active compounds according 
to the exponential distribution as proposed by Truchon 
and Bayly [6]:

The generated real number Xi corresponds to the rela-
tive position of active compound i and Ui is a pseudo 
random number with values between 0 and 1. In this 
exponential distribution, the λ parameter represents the 
model quality (lower λ values correspond to poor mod-
els and larger λ values correspond to better models). The 
number Xi is transformed into a rank integer ri that falls 
within 1 and N:

No ties were allowed and each active compound occu-
pies one unique position. In cases when a clash occurred, 
a new random number was generated. In our simulations 
we used values of λ equal to 1, 2, 5, 10, 20 and 40. Visu-
alization of the quality of these models is given in Fig. 3.

To illustrate the model generation process by exam-
ple, consider a model with quality λ = 20 and consisting 
of n =  100 active compounds on a total of N =  10,000 

(15)normalized ′netpower′ =
TPR(χ)− FPR(χ)

TPR(χ)+ FPR(χ)

(16)

PM(χ) =

(

TPR(χ)−FPR(χ)
TPR(χ)+FPR(χ)

+ 1

)

2

=
TPR(χ)

TPR(χ)+ FPR(χ)
=

ns × N − n× ns

ns × N − 2× n× ns + n× Ns

(17)Xi =
−1

�
ln
(

1−Ui

(

1− e−�

))

(18)ri = int(N × Xi + 0.5)

Fig. 2  Distribution curves of null and alternative hypothesis. The red 
area is the area defined by the alternative hypothesis minus the area 
defined by the null hypothesis, or, put differently, as the true positive 
rate (TPR, or 1 − β) minus the false positive rate (FPR, or α or type I 
error), hence ‘net power’ = 1 – β − α. The cutoff point is defined as 
the crossing point of the two distributions



Page 5 of 11Lopes et al. J Cheminform  (2017) 9:7 

compounds. To generate the relative rankings of these 
100 active compounds, Eq. 17 was called 100 times, each 
time with a different random number Ui. Using Eq.  18, 
the 100 generated Xi numbers are then converted into 
100 rankings ri with N set to 10,000. These 100 rankings 
are the absolute positions of the active compounds; the 
remaining 9900 ranks (10,000 − 100 = 9900) are those of 
the inactive compounds.

In order to evaluate the quality of the PM metric and to 
compare its behavior to the other metrics, a large number 
of datasets were generated and analyzed. The total num-
ber of compounds N, number of actives n, model qual-
ity λ and cutoff parameter χ were varied. Each simulation 
was repeated 10,000 times and the results were analyzed 
by inspecting the variations of mean and standard devia-
tion (STD) of the metrics as a function of the number of 
actives and total compounds. The eleven enrichment-
type metrics that were analyzed were the PM, EF, ROCE, 
CCR, REF, MCC, CKC, together with the standard PRE, 
ACC, SEN and SPE metrics.

All calculations were performed under Python 2.7 
using Numpy and Scipy [29]. The IPython notebook [30] 
was used as programming environment and figures were 
generated with Matplotlib [31]. MarvinSketch was used 
for drawing chemical structures [32].

Results and discussion
Dependency on model quality
One of the key aspects of a suitable metric is that its 
value is dependent of the model quality. In Table  1, the 

dependency of the different metrics on the model quality 
parameter λ was evaluated. All metrics are model quality 
dependent, but the ROCE, EF, REF, MCC, CKC, SEN and 
PRE show an approximate tenfold increase when moving 
from a poor model with quality λ =  2 to a good model 
with quality λ = 40, while in the case of the PM metric 
a doubling of the parameter value is observed (going 
from PM =  0.5 for a poor model to a value of 0.98 for 
a good model; Table  1). Accuracy and specificity met-
rics are not influenced by the model quality λ or by the 
cutoff value χ; both metrics fluctuate around a value of 
0.97-1.00 irrespective of the underlying model qual-
ity or applied threshold cutoff. In the case of the CCR 
metric, the maximal value of this metric finds it limit at 
0.75 ±  0.02 for the case with an extremely good model 
quality of λ = 40 in combination with a threshold cutoff 
χ of 2% (for a model with 100 actives on a total of 10,000 
compounds, a model quality of λ = 40 corresponds to an 
AUC of 97.25%, as compared to an AUC of 99.5% for the 
ideal case). This is not what one would like to expect for a 
metric to separate quality models from poor models. Fur-
thermore, the PM metric seems to be less influenced by 
the applied cutoff parameter χ, since the PM metric for 
a good model (λ =  40) at the different cutoffs of 0.5, 1 
and 2% remains largely unchanged (at a constant value of 
approximately 0.98; see Table 1), while an increase is seen 
for the CCR metric. It seems that all but the PM, SPE and 
ACC metrics are more dependent on the applied cutoff 
threshold χ (indicated by the shifts in the values and by 
the larger variations on the calculated metrics; Table 1), 
making it more difficult to define an appropriate metric 
value for identification proper virtual screening mod-
els. Starting with models of reasonable quality, and up 
to models of higher qualities (λ ≥ 10), the PM is calcu-
lated to vary between 0.9 and 1.0 with a relative standard 
deviation less than 10%. For the other metrics (except the 
CCR, ACC and SPE metrics), this relative standard devia-
tion is in most instances larger than 10%.

Dependency on the ratio of actives to total number 
of compounds
The influence of the Ra value, calculated from the ratio of 
number of actives n to the total number of compounds N, 
on the different metrics is given in Table 2. For the differ-
ent model qualities (a poor model with λ = 1 or a good 
model with λ = 20) and different cutoff values (χ = 1 or 
10%), there is a significant dependency for the REF, PRE 
and ACC metrics on the Ra value. The EF, CKC, SEN 
and ROCE metrics are not very sensitive to the Ra value 
when applied to poor models (λ  =  1), but show more 
dependency on the Ra ratio when applied on good mod-
els (λ = 20). In contrast, the REF is very sensitive to the 
Ra value when used on poor models (λ =  1), but is not 

Fig. 3  Visualization of the quality of the test models. In each case, 
100 active compounds were distributed in a total set of 1000 
compounds according to the distribution as defined by Eq. 17. The 
term ‘quality’ corresponds to the λ value of Eq. 17. The ‘ideal’ case was 
generated by positioning all 100 actives at the top-100 positions of 
the dataset. For each model, the AUC was calculated by integration 
using the composite trapezoidal rule
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dependent on the Ra value when applied on a good model 
in combination with a large cutoff value (χ = 1%; Table 2). 
In contrast, the PM and CCR metrics remain largely 
insensitive to the Ra value, unless when the PM metric it 
is applied to a very poor model (λ =  1) in combination 
with a small cutoff threshold value (χ = 1%). Again, good 
models all have PM values ≥  0.9 with small variations, 
and are independent on the number of actives in relation 
to the total number of compounds. The combination of 

a high model quality of λ = 20 with a cutoff threshold of 
χ =  1%, applied to a database with n =  50 actives on a 
total of N =  5000 compounds, corresponds to a virtual 
screening situation characterized by a high true posi-
tive and high true negative rate. It is therefore surprising 
that for the CCR metric a value of 0.58 ± 0.02 is calcu-
lated, while for the PM metric a more intuitive value 
of 0.95 ±  0.02 is found (Table  2). Increasing the cutoff 
threshold to 10% improves the calculated CCR value to 

Table 1  Dependency on  the model quality parameter λ using models generated from  datasets with  100 actives (n) 
on 10,000 compounds in total (N)

Metric abbreviations are given in the Methods section. All metrics are dependent on the model quality, but in case of the ROCE, EF, REF, MCC, CKC, SEN and PRE 
metrics there is at least a tenfold increase when moving from a bad model (λ = 2) to a good model (λ = 40), while for the PM metric there is a doubling of the value. 
The accuracy ACC and specificity SPE metrics are not dependent on the quality of model, while the correct classification rate metric (CCR) shifts from 0.5 in the case of 
a bad model to a maximum of 0.75 for the best model. Good models have a PM of >0.9; for good models this value is largely independent on the applied cutoff value 
χ (see Table 3 as well)

Metric λ χ (%)

2 5 10 20 40

PM 0.51 ± 0.35 0.74 ± 0.24 0.89 ± 0.09 0.95 ± 0.02 0.98 ± 0.01 0.5

ROCE 2.35 ± 2.18 5.13 ± 3.39 10.46 ± 4.99 22.34 ± 7.86 49.96 ± 14.35

EF 2.28 ± 2.06 4.83 ± 3.03 9.38 ± 4.04 18.08 ± 5.17 32.94 ± 6.22

REF 2.28 ± 2.06 4.83 ± 3.03 9.38 ± 4.04 18.08 ± 5.17 32.94 ± 6.22

CCR 0.50 ± 0.01 0.51 ± 0.01 0.52 ± 0.01 0.54 ± 0.01 0.58 ± 0.02

MCC 0.01 ± 0.01 0.03 ± 0.02 0.06 ± 0.03 0.12 ± 0.04 0.23 ± 0.04

CKC 0.01 ± 0.01 0.03 ± 0.02 0.06 ± 0.03 0.11 ± 0.03 0.21 ± 0.04

SEN 0.01 ± 0.01 0.02 ± 0.02 0.05 ± 0.02 0.09 ± 0.03 0.16 ± 0.03

SPE 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

PRE 0.02 ± 0.02 0.05 ± 0.03 0.09 ± 0.04 0.18 ± 0.05 0.33 ± 0.06

ACC 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

PM 0.61 ± 0.23 0.80 ± 0.11 0.90 ± 0.04 0.95 ± 0.01 0.98 ± 0.00 1

ROCE 2.32 ± 1.55 5.07 ± 2.31 10.19 ± 3.34 20.97 ± 5.08 44.00 ± 8.22

EF 2.26 ± 1.48 4.83 ± 2.09 9.25 ± 2.75 17.33 ± 3.46 30.54 ± 3.95

REF 2.26 ± 1.48 4.83 ± 2.09 9.25 ± 2.75 17.33 ± 3.46 30.54 ± 3.95

CCR 0.51 ± 0.01 0.52 ± 0.01 0.54 ± 0.01 0.58 ± 0.02 0.65 ± 0.02

MCC 0.01 ± 0.02 0.04 ± 0.02 0.08 ± 0.03 0.17 ± 0.03 0.30 ± 0.04

CKC 0.01 ± 0.02 0.04 ± 0.02 0.08 ± 0.03 0.17 ± 0.03 0.30 ± 0.04

SEN 0.02 ± 0.01 0.05 ± 0.02 0.09 ± 0.03 0.17 ± 0.03 0.31 ± 0.04

SPE 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

PRE 0.02 ± 0.01 0.05 ± 0.02 0.09 ± 0.03 0.17 ± 0.03 0.31 ± 0.04

ACC 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

PM 0.66 ± 0.13 0.82 ± 0.06 0.90 ± 0.02 0.95 ± 0.01 0.97 ± 0.00 2

ROCE 2.30 ± 1.08 4.91 ± 1.56 9.69 ± 2.18 18.75 ± 3.08 35.21 ± 4.06

EF 2.26 ± 1.03 4.70 ± 1.43 8.88 ± 1.82 15.87 ± 2.19 26.17 ± 2.23

REF 4.52 ± 2.07 9.40 ± 2.85 17.76 ± 3.65 31.74 ± 4.38 52.34 ± 4.45

CCR 0.51 ± 0.01 0.54 ± 0.01 0.58 ± 0.02 0.65 ± 0.02 0.75 ± 0.02

MCC 0.02 ± 0.01 0.05 ± 0.02 0.11 ± 0.03 0.21 ± 0.03 0.36 ± 0.03

CKC 0.02 ± 0.01 0.05 ± 0.02 0.11 ± 0.02 0.20 ± 0.03 0.34 ± 0.03

SEN 0.05 ± 0.02 0.09 ± 0.03 0.18 ± 0.04 0.32 ± 0.04 0.52 ± 0.04

SPE 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00

PRE 0.02 ± 0.01 0.05 ± 0.01 0.09 ± 0.02 0.16 ± 0.02 0.26 ± 0.02

ACC 0.97 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
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Table 2  Dependency on the Ra value

Metric Ra χ (%) λ

0.01 (n = 50; N = 5000) 0.05 (n = 250; N = 5000) 0.2 (n = 1000; N = 5000)

PM 0.39 ± 0.36 0.57 ± 0.15 0.62 ± 0.07 1 1

ROCE 1.59 ± 1.83 1.62 ± 0.85 1.73 ± 0.54

EF 1.55 ± 1.75 1.54 ± 0.74 1.48 ± 0.32

REF 1.55 ± 1.75 7.69 ± 3.71 29.58 ± 6.38

CCR 0.50 ± 0.01 0.50 ± 0.00 0.50 ± 0.00

MCC 0.01 ± 0.02 0.01 ± 0.02 0.02 ± 0.02

CKC 0.01 ± 0.02 0.01 ± 0.01 0.01 ± 0.01

SEN 0.02 ± 0.02 0.02 ± 0.01 0.01 ± 0.00

SPE 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

PRE 0.02 ± 0.02 0.08 ± 0.04 0.30 ± 0.06

ACC 0.98 ± 0.00 0.94 ± 0.00 0.80 ± 0.00

PM 0.58 ± 0.09 0.60 ± 0.04 0.62 ± 0.02 10

ROCE 1.50 ± 0.51 1.53 ± 0.24 1.62 ± 0.15

EF 1.49 ± 0.49 1.49 ± 0.22 1.44 ± 0.09

REF 14.88 ± 4.95 14.88 ± 2.16 28.73 ± 1.87

CCR 0.52 ± 0.03 0.53 ± 0.01 0.53 ± 0.01

MCC 0.02 ± 0.02 0.04 ± 0.02 0.07 ± 0.02

CKC 0.01 ± 0.01 0.03 ± 0.02 0.07 ± 0.01

SEN 0.15 ± 0.05 0.15 ± 0.02 0.14 ± 0.01

SPE 0.90 ± 0.00 0.90 ± 0.00 0.91 ± 0.00

PRE 0.01 ± 0.00 0.07 ± 0.01 0.29 ± 0.02

ACC 0.89 ± 0.00 0.86 ± 0.00 0.76 ± 0.00

PM 0.95 ± 0.02 0.98 ± 0.01 1.00 ± 0.00 1 20

ROCE 21.06 ± 7.29 46.82 ± 15.58 nana

EF 17.24 ± 4.92 13.94 ± 1.27 5.00 ± 0.00

REF 17.24 ± 4.92 69.71 ± 6.35 100.00 ± 0.00

CCR 0.58 ± 0.02 0.57 ± 0.01 0.53 ± 0.00

MCC 0.16 ± 0.05 0.30 ± 0.03 0.20 ± 0.00

CKC 0.16 ± 0.05 0.22 ± 0.02 0.08 ± 0.00

SEN 0.17 ± 0.05 0.14 ± 0.01 0.05 ± 0.00

SPE 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

PRE 0.17 ± 0.05 0.70 ± 0.06 1.00 ± 0.00

ACC 0.98 ± 0.00 0.95 ± 0.00 0.81 ± 0.00

PM 0.90 ± 0.01 0.93 ± 0.00 1.00 ± 0.00 10

ROCE 9.30 ± 0.57 13.38 ± 0.59 1612.74 ± 529.71

EF 8.58 ± 0.49 8.26 ± 0.22 4.99 ± 0.01

REF 85.82 ± 4.86 82.60 ± 2.15 99.84 ± 0.18

CCR 0.88 ± 0.02 0.88 ± 0.01 0.75 ± 0.00

MCC 0.25 ± 0.02 0.56 ± 0.02 0.67 ± 0.00

CKC 0.14 ± 0.01 0.52 ± 0.02 0.61 ± 0.00

SEN 0.86 ± 0.05 0.83 ± 0.02 0.50 ± 0.00

SPE 0.91 ± 0.00 0.94 ± 0.00 1.00 ± 0.00

PRE 0.09 ± 0.00 0.41 ± 0.01 1.00 ± 0.00

ACC 0.91 ± 0.00 0.93 ± 0.00 0.90 ± 0.00

In the case of bad model quality (λ = 1), the metrics most sensitive to variations in the Ra value include the REF, PRE and ACC metrics, and also the CKC metric in the 
case of a large cutoff value of χ = 10%. This dependency is not so outspoken for the PM metric, except in the case when a very bad model is combined with a low 
cutoff value (χ = 1%). In cases with better model quality (λ = 20), significant dependencies are observed for the ROCE, EF, REF, MCC, CKC, SEN, PRE and ACC metrics, 
while the PM, CCR and SPE metrics are more stable. The metric that is least sensitive to variations in the Ra value, irrespective of the underlying model quality or cutoff 
threshold, is the CCR metric
a  In this case the ROCE metric could not be calculated from Eq. 10 since (Ns − ns) is equal to 0
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0.88 ± 0.02 and decreases the PM case from 0.95 ± 0.02 
to 0.90 ± 0.01, again in line what one would expect from 
considering the true positive and true negative rates in 
this situation.

Dependency on the cutoff threshold χ
The dependency of the different metrics on the applied 
cutoff value χ is given in Table  3. This dependency was 
evaluated using models with n = 250 active compounds 
in a dataset of N = 10,000 compounds in total, and at five 
different cutoff values χ (0.5, 1, 2.5, 5 and 10%) for both a 
poor and high quality model (λ = 1 and 20, respectively). 
A significant dependency on the cutoff χ is observed for 
the REF and SEN metrics, increasing their values with 
increasing cutoff values. A similar behavior is observed 
for the CCR, MCC and CKC metrics when applied to 
the high quality model situation (λ =  20). Interestingly, 
the calculated REF metric values remain constant up 
to a cutoff of 2.5%, but at higher cutoff values this met-
ric increases significantly. It is not surprising that this 
turning point in metric behavior is observed at a cutoff 
value of 2.5%, since this corresponds to a selection set 
of exactly 250 compounds when applied to a dataset of 

10,000 compounds with 250 actives mixed into it. In 
case of a high quality model, this translates to a situation 
with maximum rates of true positives and true negatives. 
Focusing on the EF, ROCE, CCR, SPE, ACC and PM 
metrics, their values are quite constant over the differ-
ent cutoff values in the case of a bad model quality, but 
a significant drift is observed for the EF, CCR and ROCE 
metrics in case of a good model quality. This shift is again 
observed at a χ cutoff value larger than 2.5%. A similar 
drift is not observed for the PM metric that, together 
with the CCR metric, also has the smallest relative stand-
ard deviations (Table 3).

Dependency on both model quality λ and cutoff threshold 
χ
A direct comparison of the variation of the values of the 
five most commonly used metrics (CCR, ROCE, MCC, 
REF and CKC) with those of the PM, as a function of 
both model quality λ and cutoff threshold χ, is provided 
in Fig. 4. Comparing the results of the PM and CCR met-
rics, both types of metric values increase with increas-
ing model quality, but the PM metric seems to be less 
dependent on the applied cutoff threshold as compared 

Table 3  Dependency on  the χ cutoff value using models generated from  datasets with  250 actives (n) on  10,000 com-
pounds in total (N)

The PM is not so much dependent on the applied cutoff value. For good models the EF and ROCE metrics decrease when the cutoff is increased, while the REF, CCR, 
MCC and CKC values always increase when the cutoff is increased from 2.5% up to 10%

Metric χ λ

0.5% 1% 2.5% 5% 10%

PM 0.52 ± 0.25 0.57 ± 0.15 0.60 ± 0.08 0.60 ± 0.06 0.60 ± 0.04 1

ROCE 1.60 ± 1.19 1.59 ± 0.81 1.58 ± 0.51 1.55 ± 0.35 1.52 ± 0.23

EF 1.54 ± 1.10 1.56 ± 0.76 1.55 ± 0.48 1.53 ± 0.33 1.50 ± 0.22

REF 3.86 ± 2.75 3.89 ± 1.90 3.88 ± 1.20 7.63 ± 1.65 14.97 ± 2.22

CCR 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.01 0.51 ± 0.01 0.53 ± 0.01

MCC 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.01

CKC 0.00 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

SEN 0.01 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 0.08 ± 0.02 0.15 ± 0.02

SPE 1.00 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.95 ± 0.00 0.90 ± 0.00

PRE 0.04 ± 0.03 0.04 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01

ACC 0.97 ± 0.00 0.97 ± 0.00 0.95 ± 0.00 0.93 ± 0.00 0.88 ± 0.00

PM 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.00 0.94 ± 0.00 0.91 ± 0.00 20

ROCE 28.80 ± 8.24 26.73 ± 5.20 22.13 ± 2.46 16.72 ± 1.11 10.49 ± 0.34

EF 16.67 ± 2.70 16.12 ± 1.85 14.44 ± 1.03 11.99 ± 0.56 8.48 ± 0.22

REF 41.68 ± 6.74 40.30 ± 4.62 36.09 ± 2.56 59.97 ± 2.79 84.78 ± 2.18

CCR 0.54 ± 0.01 0.58 ± 0.01 0.67 ± 0.01 0.78 ± 0.01 0.88 ± 0.01

MCC 0.18 ± 0.03 0.24 ± 0.03 0.34 ± 0.03 0.40 ± 0.02 0.40 ± 0.01

CKC 0.13 ± 0.02 0.22 ± 0.03 0.34 ± 0.03 0.38 ± 0.02 0.31 ± 0.01

SEN 0.08 ± 0.01 0.16 ± 0.02 0.36 ± 0.03 0.60 ± 0.03 0.85 ± 0.02

SPE 1.00 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.96 ± 0.00 0.92 ± 0.00

PRE 0.42 ± 0.07 0.40 ± 0.05 0.36 ± 0.03 0.30 ± 0.01 0.21 ± 0.01

ACC 0.97 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.96 ± 0.00 0.92 ± 0.00
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Fig. 4  Comparison of the power metric with the five main other metrics (CCR, ROCE, MCC, REF and CKC) using a model dataset of 250 active com‑
pounds on a total number of 10,000. The logarithm of the quality parameter λ is varied along the abscissa [a log(λ) of 2 corresponds to a quality λ of 
100] while the applied cutoff threshold χ is varied along the ordinates. The black dotted line at a cutoff value χ of 2.5% indicates the boundary of 250 
compounds on a total of 10,000. In a perfect model, all 250 active compounds would be located along the topside of this boundary



Page 10 of 11Lopes et al. J Cheminform  (2017) 9:7 

to the CCR metric (in fact, the CCR metric value is 
increasing with increasing cutoff thresholds, while the 
opposite behavior is observed in the case of the PM met-
ric). The CCR metric is finding its highest values at larger 
cutoff thresholds in combination with high model quali-
ties, making it less suitable for early-recognition prob-
lems. A similar conclusion can be drawn for the MCC 
and CKC metrics, as in both cases maximum values are 
obtained near a cutoff threshold χ that is equal or close 
to the fraction of true actives within the entire dataset (in 
the example of Fig. 4, this is 2.5%). Focusing on the ROCE 
metric, maximum values are calculated when models 
of high qualities are combined with cutoff thresholds χ 
that are smaller than 2.5%, in casu the fraction of true 
actives within the entire dataset of compounds. At very 
low cutoff thresholds, the ROCE metric decreases again. 
A main disadvantage of the ROCE metric is the lack of 
a well-defined upper boundary, hence making it difficult 
to compare the quality of underlying models and applied 
cutoff thresholds. Finally, the REF metric is not a con-
tinuous function but shows a discontinuity in its metric 
value along a threshold cutoff value of 2.5%, a value that is 
equal to the fraction of true actives in the dataset. At this 
cutoff threshold value and for all model qualities, a mini-
mum in metric value is observed, which makes that for 
any given model quality under consideration two maxima 
are found: a first optimum at a cutoff threshold smaller 
than the 2.5%, and a second optimum that is located at a 
cutoff threshold χ much larger than the 2.5%.

Based on these observations, it can be concluded that 
the CCR, MCC and CKC metrics are all less suitable 
for early-recognition problems; for these problems the 
PM and ROCE metrics are better suited. The REF met-
ric might also be an option to some extend but some 
cautions are warranted when used in combination with 
cutoff thresholds χ that are equal or larger than the frac-
tion of true actives in the entire dataset. In these cases 
an increase in the REF metric is observed, which makes 
it less suitable for early-recognition problems. As already 
mentioned, the main disadvantage of the ROCE metric 
is the lack of a well-defined upper boundary, and for this 
reason the PM metric seems to posses powerful early-
recognition properties and might be one of the preferred 
metrics for evaluating virtual screening models.

Conclusions
The power metric PM as described in this paper is a sta-
tistically solid metric with little sensitivity to the ratio of 
actives to the total number of compounds (the Ra value; 
see Table  2) and little sensitivity to the cutoff thresh-
old parameter χ (Table  3). The metric is dependent on 
the underlying model quality, in such sense PM values 
around 0.5 are calculated for poor to random models, 

and values between 0.9 and 1.0 for high quality models. 
It is statistically robust in the sense that the calculated 
standard deviations are small and largely insensitive to 
the applied threshold cutoff value χ.
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