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Abstract

Particulate matter (PM) air pollution is a global environmental health problem contributing to
more severe lung inflammation and injury. However, the molecular and cellular mechanisms
of PM-induced exacerbation of lung barrier dysfunction and injury are not well understood.
In the current study, we tested a hypothesis that PM exacerbates vascular barrier dysfunc-
tion via ROS-induced generation of truncated oxidized phospholipids (Tr-OxPLs). Treat-
ment of human pulmonary endothelial cells with PM caused endothelial cell barrier
disruption in a dose-dependent fashion. Biochemical analysis showed destabilization of cell
junctions by PM via tyrosine phosphorylation and internalization of VE-cadherin. These
events were accompanied by PM-induced generation of Tr-OxPLs, detected by mass spec-
trometry analysis. Furthermore, purified Tr-OxPLs: POVPC, PGPC and lyso-PC alone,
caused a rapid increase in endothelial permeability and augmented pulmonary endothelial
barrier dysfunction induced by submaximal doses of PM. In support of a role of TR-OxPLs-
dependent mechanism in mediation of PM effects, ectopic expression of intracellular type 2
platelet-activating factor acetylhydrolase (PAFAH2), which specifically hydrolyzes Tr-
OxPLs, significantly attenuated PM-induced endothelial hyperpermeability. In summary,
this study uncovered a novel mechanism of PM-induced sustained dysfunction of pulmo-
nary endothelial cell barrier which is driven by PM-induced generation of truncated products
of phospholipid oxidation causing destabilization of cell junctions.

Introduction

Particulate matter (PM) is the most common air pollutant with a serious global health threat
contributing to millions of premature deaths annually worldwide. The role of PM air pollution
in the development or exacerbation of various heart and lung diseases is becoming increasingly
recognized [1-3]. Among these diseases, two third include cardiovascular diseases such as
ischemic heart disease, congestive heart failure etc. and one third are respiratory illnesses such
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as chronic obstructive pulmonary disease, acute lower respiratory tract infections, pneumonia,
asthma and lung cancer [3-8]. PM is also suggested to have indirect detrimental effects on
cerebrovascular as well as reproductive and developmental health. In turn, PM directly
impacts the development and function of the lung [9, 10]. One of the well described mecha-
nisms of PM pathological effects on lung is the induction of lung inflammation accompanied
by endothelial cell (EC) dysfunction [11-13]. PM is known to cause thrombosis in an inflam-
mation-dependent manner via the generation of IL-6 [14, 15]. PM exposure also generates
reactive oxygen species (ROS) that plays a critical role in PM-induced cardiopulmonary disor-
ders [15, 16]. In the longer term, PM exposure induces epigenetic modifications especially
DNA methylation and controls the expression of various inflammatory and oxidant stress-
related genes [17-20].

The endothelial barrier formed by the cell-cell junction complexes controls the passage of
fluids, solutes and circulating cells across the vascular wall. Compromised EC barrier integrity
leads to the excessive leakage and development of life-threatening conditions such as pulmo-
nary edema and sepsis [21]. Adherens junctions play a major role in control of EC permeabil-
ity; and transmembrane protein VE-cadherin is a central player in the formation of adherens
junctions and regulation of endothelial barrier integrity. VE-cadherin is linked to actin cyto-
skeleton by its interactions with catenin family of proteins (o, B, y and p120-catenins) [22].
The disassembly of VE-cadherin-catenin complex following tyrosine phosphorylation, inter-
nalization or cleavage of VE-cadherin causes the destabilization of AJ with an increase in endo-
thelial permeability [23-26]. Exposure of endothelial cells to PM has been suggested to disrupt
endothelial barrier function [27, 28], but the underlying mechanisms still remain to be fully
elucidated. Oxidant stress, generation of reactive oxidant species (ROS) and subsequent activa-
tion of MAP kinases and Rho pathways have been suggested to mediate PM-induced endothe-
lial barrier dysfunction [27, 29].

Phospholipids provide the structural basis for the formation of cell membranes. In turn,
phospholipid oxidation generates bioactive lipid mediators that play an important role in cel-
lular signaling [30, 31]. The increased accumulation of oxidized phospholipids from enzymatic
or non-enzymatic cleavage of phospholipids have been reported in many pathological condi-
tions including atherosclerosis, auto immune disease, lung injury and sepsis [30]. Among
these, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC) represents the
major plasma membrane phospholipid and its oxidation generates a heterogeneous mixture of
oxygenated full-length products such as 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-
3-phsphocholine (5,6-PEIPC), 1-palmitoyl-2-(5,6-epoxycyclopentenone)-sn-glycero-
3-phsphocholine (5,6-PECPC); and truncated products of PAPC oxidation including 1-palmi-
toyl-2-(5-oxovaleroyl)-sn-glycero-phosphocholine (POVPC), 1-palmitoyl-2-glutaroyl-sn-gly-
cero-phosphocholine (PGPC) and lysophosphatidyl choline (lyso-PC). Importantly, these
truncated oxidized phospholipids (Tr-OxPLs) have been shown to induce endothelial barrier
disruption [32].

In this study, we tested the hypothesis that PM challenge triggers the production of bioac-
tive Tr-OxPLs by pulmonary EC, which cause AJ breakdown and endothelial barrier dysfunc-
tion. We also evaluated potential molecular approaches to reduce the levels of Tr-OxPLs and
mitigate barrier disruptive effects of PM on pulmonary vascular endothelium.

Materials and methods
Cell culture

Human pulmonary artery endothelial cells and endothelial growth media were obtained from
Lonza (Allendale, NJ). Cells were used at passages 5-8 and all cell stimulations were carried
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out in medium containing 2% fetal bovine serum unless otherwise specified. Texas Red-conju-
gated phalloidin and Alexa Fluor 488-labeled secondary antibodies were purchased form
Molecular Probes (Eugene, OR). Antibodies to phospho-VE-cadherin (pTyr-658 and pTyr-
731) were obtained from Invitrogen (Carlsbad, CA) and VE-cadherin antibody was from
Santa Cruz Biotechnology (San Jose, CA). p120-Catenin antibody was from BD biosciences
(San Diego, CA) and HRP-linked anti-mouse and anti-rabbit IgG were obtained from Cell Sig-
naling (Beverly, MA). N-acetyl cysteine and amifostine were obtained from Sigma (St. Louis,
MO). For PM, we used an urban PM 1649b collected from ambient air in Washington, DC
and characterized by National Institute of Standards and Technology (certification date: 12/
17/2015; expiration date: 07/31/2030). Purified POVPC, PGPC and lyso-PC were obtained
from Avanti Polar Lipids (Alabaster, AL).

ROS measurement

Human pulmonary endothelial cells were grown in 96-well plate and 5-(and-6)-carboxy-2’, 7'-
dichlorodihydrofluorescein diacetate was added to final concentration of 10 uM. Cells were
incubated in serum-free medium for 30 min at 37°C, protected from light, then stimulated
with PM. ROS measurement was performed using the Image LIVE Green Reactive Oxygen
Species Detection Kit from Molecular probes (Eugene, OR) according to the manufacturer’s
instructions.

EC permeability assays

The cellular barrier properties were analyzed by measurements of transendothelial electrical
resistance (TER) across confluent human pulmonary endothelial monolayers using an electri-
cal cell-substrate impedance sensing system (Applied Biophysics, Troy, NY) as previously
described [33]. Endothelial permeability to macromolecules was monitored by Vascular Per-
meability Imaging Assay (Millipore, cat. #17-10398) described elsewhere [34]. Briefly, FITC-
avidin tracer was added directly to the culture medium 15 min after EC stimulation with PM
for 3 min before termination of the experiment. Unbound FITC-avidin was washed out with
PBS (pH 7.4, 37°C), and fluorescence signal was meausred using endothelial cell monolayer
imaging by immunofluorescence microscopy or Victor—X microplate reader with fluores-
cence reading capacity as described previously [35].

VE-cadherin surface biotinylation assay

This assay was performed as we previously described [32]. Briefly, endothelial cell monolayers
after treatment with agonists of choice for 30 min were washed with PBS at 37°C and incu-
bated for 10 min with 5 mM Sulfo-NHS-SS-Biotin (Pierce Biotechnology, Rockford, IL) at
25°C. Subsequently, after washing of unbound Biotin, cells were lysed in 1% Triton-100 PBS,
and clarified cell lysate was incubated with 60 uL of Streptavidin-agarose (Pierce Biotechnol-
ogy, Rockford, IL) for 1 hr at 4°C. Beads with immobilized surface-biotinylated proteins were
washed and boiled in sample buffer with 5% 2-mercaptoethanol. Samples were next subjected
to western blot analysis with VE-cadherin antibody.

Protein subcellular fractionation and immunoblotting

After agonist stimulation, cells were and lysed with cold TBS-NP40 lysis buffer (20 mM Tris
pH 7.4, 150 mM NaCl, 1% NP40) supplemented with protease and phosphatase inhibitor
cocktails (Roche, Indianapolis, IN). Cytosolic (soluble) and membrane/cytoskeletal (particu-
late) fractions were isolated as described previously [36]. Protein extracts were separated by
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SDS-PAGE, transferred to polyvinylidene fluoride (PVDF) membrane, and probed with spe-
cific antibodies. Equal protein loading was verified by western blot analysis of initial total cell
lysates with antibody to VE-cadherin.

Immunofluorescent staining and image analysis

Following agonist stimulation, endothelial cells were fixed in 3.7% formaldehyde solution in
PBS for 10 min at 4°C, washed with PBS, permeabilized with 0.1% Triton X-100 in PBS for 30
min at room temperature and blocked with 2% BSA in PBS for 30 min. Incubation with VE-
cadherin antibody was performed in blocking solution (2% BSA in PBS) for 1 hr at room tem-
perature followed by staining with Alexa 488-conjugated secondary antibody. Actin filaments
were stained with Texas Red-conjugated phalloidin diluted in the blocking solution. After
immunostaining, the slides were analyzed using an inverted microscope Nikon Eclipse TE300
connected to SPOT RT monochrome digital camera and image processor (Diagnostic Instru-
ments, Sterling Heights, MI). The images were processed with Adobe Photoshop 7.0 (Adobe
Systems, San Jose, CA). For each experimental condition at least 10 microscopic fields in each
independent experiment were analyzed.

DNA transfection. Human lung EC were transfected with PAFAH2 DNA plasmid har-
boring Myc-FLAG-tags (OriGene, Rockville, MD) using Lipofectamine 2000 reagent (Invitro-
gen, Grand Island, NY) as reccommended by the manufacturer. Then, cells were treated with
vehicle or PM after 24 hr of transfections and assayed for permeability measurements or other
biochemical analysis.

Animal studies. All animal care and treatment procedures were approved by the Univer-
sity of Maryland and University of Chicago Institutional Animal Care and Use Committees. 8-
10-week old male and female C57Bl/6j mice were purchased from Jackson Laboratories (Bar
Harbor, ME). Animals were handled according to the National Institutes of Health Guide for
the Care and Use of Laboratory Animals. PM was administered as suspension in saline
(100 pg/mouse). Animals were anesthetized with a 0.03 ml intraperitoneal injection of keta-
mine (12 mg/kg). Proper anesthesia was assessed by paw and tail pinching, and additional
anesthetic was administered as necessary. Animals were sacrificed at 3 hrs or 24 hrs after PM
administration by exsanguination under ketamine anesthesia. After perfusion with Hank’s bal-
anced salt buffer supplemented with 0.5 mM phenyl-methyl-sulfonyl-fluoride (PMSF) and 0.1
mM Pefa-block, lungs were snap frozen in liquid nitrogen and used for MS analysis of Tr-
OxPL content.

Mass Spectrometry analysis of Tr-OxPLs in cell samples and lungs. The levels of Tr-
OxPLs in endothelial cells and mouse lungs was determined by mass spectrometric analysis as
recently described by our group [37]. Briefly, lipids were extracted by employing modified
Bligh and Dyer method [38] using 2% formic acid for phase separation. Then, Tr-OxPLs con-
tent was determined by liquid chromatography electrospray ionization tandem mass spec-
trometry using Sciex 6500QTRAP mass spectrometer coupled with Shimadzu Nexera X2
UHPLC system.

Statistical analysis

Results are expressed as means + SD of three to five independent experiments. Stimulated
samples were compared with controls by unpaired Student’s t-test. For multiple-group com-
parisons, one-way analysis of variance (ANOVA) followed by the post hoc Fisher’s test were
used. P<0.05 was considered statistically significant.
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Results
PM disrupts EC barrier via disassembly of adherens junctions

We assessed the effects of PM on EC barrier function by measuring endothelial permeability
with two complementary approaches: measurement of transendothelial electrical resistance
(TER) using ECIS array and evaluation of endothelial cell monolayer permeability for FITC-
avidin as described in Methods. Stimulation of pulmonary endothelial cell monolayers with
PM caused a rapid and sustained dose-dependent decrease in TER in the dose range of 10-

50 pg/ml of PM reflecting endothelial cell barrier dysfunction (Fig 1A). Accordingly, evalua-
tion of endothelial cell monolayer permeability to macromolecules by express permeability
testing (XPerT) assay developed in our group [34], showed increase in FITC fluorescence in
PM-treated endothelial monolayers in a dose-dependent fashion (Fig 1B). Alternatively,
immobilization of FITC-avidin on the bottoms of the wells with endothelial cell monolayers
challenged with PM was visualized by fluorescence microscopy (Fig 1C). AJ play a central role
in maintaining endothelial barrier integrity, and VE-cadherin is the major transmembrane
protein that forms heterotypic adhesions with VE-cadherins from neighboring cells leading to
establishment of endothelial monolayer barrier [39]. To test whether PM-induced EC barrier
disruption was accompanied by changes in AJ integrity, we performed immunofluorescence
staining of VE-cadherin in pulmonary endothelial monolayers. PM treatment caused the dis-
appearance of VE-cadherin from cell junctions accompanied by the formation of intercellular
gaps; the morphological changes reflecting disruption of cell-cell contacts and endothelial bar-
rier failure caused by PM (Fig 2A). Analysis of PM effects on integrity of endothelial adherens
junction complexes was further performed using biochemical approaches. In situ biotinylation
assay of cell surface proteins showed a marked decrease of biotinylated VE-cadherin in PM
stimulated cells suggesting VE-cadherin internalization (Fig 2B). PM also caused redistribu-
tion of adherens junction proteins VE-cadherin and p120-catenin from cell membrane frac-
tions to cytosolic fractions, as evaluated by subcellular fractionation assay (Fig 2C). The
decreased pool of biotinylated VE-cadherin and reduced membrane targeting of adherens
junction proteins reflects PM-induced VE-cadherin internalization and disassembly of adhe-
rens junction complexes. These findings are consistent with PM effects on endothelial mor-
phological changes and monolayer barrier function.

PM-induced ROS production drives pulmonary EC barrier dysfunction

Since earlier studies have suggested the generation of ROS as a key mechanism of PM-induced
pathologies [15, 29], we sought to determine whether PM-induced endothelial dysfunction
was also mediated by oxidant stress. The measurement of ROS levels by DCFDA assay showed
a rapid increase in ROS following PM stimulation which was blocked by pre-treatment with
known antioxidants N-acetyl cysteine (NAC) and amifostine (Fig 3A). The role of ROS pro-
duction in mediating PM-induced EC barrier disruption was assessed by the measurements of
endothelial permeability. The results showed that inhibition of ROS production with NAC
attenuated PM-induced decrease in TER (Fig 3B). Likewise, pretreatment of EC with NAC or
amifostine strongly attenuated PM-induced increase in endothelial permeability to macromol-
ecules measured by XPerT assay (Fig 3C). The protective effects of ROS inhibition were further
assessed by immunofluorescence staining and analysis of VE-cadherin positive adherens junc-
tions. The results showed that VE-cadherin disappearance from cell junctions and formation
of intercellular gaps caused by exposure to PM was abolished by pretreatment of endothelial
cells with amifostine (Fig 3D).
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Fig 1. PM causes endothelial barrier disruption. (A) Human pulmonary lung EC were exposed to indicated concentrations of PM and
TER was measured across the cell monolayers over time. (B) Cells grown on immobilized biotinylated gelatin were exposed to PM for 4 hr
and FITC-avidin (25 ug/mL) was added for 3 min. After washing unbound FITC-avidin with PBS, FITC fluorescence was determined in
Victor X5 plate reader. Normalized readings are expressed as mean + S.D.; n = 6, *p<0.05. (C) Visualization of FITC fluorescence in
control or PM-treated cells (20 pg/cm?, 4 h).

https://doi.org/10.1371/journal.pone.0206251.g001

PM stimulates production of Tr-OxPLs by pulmonary EC

To evaluate a role of Tr-OxPLs in rapid PM-induced endothelial permeability response, we
used mass spectrometry approach as described in Methods. Previous studies by our group
demonstrated barrier-disruptive effects of three synthetic Tr-OxPLs: POVPC, lyso-PC and
PGPC, on pulmonary endothelial cells [32]. In this study, we analyzed endogenous generation
of these major Tr-OxPLs in EC exposed to PM. The results showed a significant increase of
POVPC, PGPC and lyso-PC variants in pulmonary EC which was observed at 1 hr and 4 hrs
after PM stimulation (Fig 4A-4C). Further analysis of the Tr-OxPLs changes was performed
in the phospholipid extracts from lung tissues of mice injected with PM. There was a signifi-
cant increase in PGPC and POVPC levels in mice challenged with PM (Fig 4D and 4E). Both
elevated Tr-OxPLs returned to basal levels by 24 hrs post-PM challenge.

PM-upregulated TR-OxPLs induce EC permeability in vitro

We studied effects of single purified truncated oxidized phospholipid species identified by MS
analysis in PM-challenged endothelial cell and lung tissues. All three products: PGPC, lyso-PC
and POVPC, caused monophasic, rapid and dose dependent TER decline reflecting increased

EC permeability, which was observed in the 5-40 pg/ml concentration range (Fig 5A).
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Combination of each of Tr-OxPLs tested above and PM-0.5 at concentration which cause sub-
maximal drop in TER, led to augmented EC barrier disruptive response (Fig 5B). These results
suggest that further elevation of Tr-OxPLs generated in endothelial cells treated low PM-0.5
doses by additional supplementation of exogenous POVPC recapitulates EC permeability
response to high PM-0.5 dose and, thus support the role of Tr-OxPLs as an initiating mecha-
nism of PM-induced EC hyperpermeability.

PM-produced Tr-OxPLs disrupt cell junctions assembly

The results described above showed PM-induced production of Tr-OxPLs and adherens junc-
tion disassembly. The next studies investigated in more detail the role of PM—Tr-OxPL axis as
a mechanism of rapid VE-cadherin cell junction disassembly and endothelial barrier dysfunc-
tion. VE-cadherin is a key protein regulating cell-cell interactions and endothelial barrier func-
tion. Tyrosine phosphorylation at Tyr®® and Tyr”*' impairs VE-cadherin activity towards
formation of adherens junctions [39]. Thus, we examined tyrosine phosphorylation of VE-cad-
herin at Tyr®®® and Tyr”*" in cells treated with PM-0.5. EC treatment with 20 pg/cm* PM-0.5
caused rapid and sustained VE-cadherin phosphorylation at both sites which was observed as
early as 30 min after treatment (Fig 6A). Endothelial cell treatment with POVPC caused simi-
lar pattern of VE-cadherin tyrosine phosphorylation in a dose-dependent manner (Fige 6B), as
in endothelial cells treated with PM suggesting PM—TR-OxPLs mechanism of VE-cadherin
phosphorylation leading to endothelial hyperpermeability. In agreement with the effects of
endothelial cell co-treatment with low doses of PM and Tr-OxPL on endothelial permeability,
such combined treatment resulted in augmented VE-cadherin phosphorylation (Fig 6C). VE-
cadherin tyrosine phosphorylation caused by PM, Tr-OxPL or their combination was directly
linked to VE-cadherin internalization detected by surface biotinylation assays (Fig 6D) and
disappearance from cell-cell contacts (Fig 6E).
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Inhibition of Tr-OxPLs generation rescues PM-induced EC barrier
dysfunction

Since our results strongly indicate that production of Tr-OxPLs is the major mechanism that
mediates PM-induced endothelial cell dysfunction, we tested whether inhibition of Tr-OxPLs
restores endothelial function. Hydrolysis and deactivation of truncated products of phospho-
lipid activation via cleavage of truncated/oxidized fatty acid moiety present at sn-2 position of
Tr-OxPL species can be accomplished by the group VII class of platelet-activating factor acet-
ylhydrolases. Specifically, intracellular type 2 platelet-activating factor acetylhydrolase
(PAFAH2) is a unique enzyme which may inactivate pro-inflammatory TR-OxPLs [40]. To
evaluate a role of PAFAH?2 as a potential rescue strategy to reduce the pool of PM-induced Tr-
OxPLs driving endothelial barrier dysfunction, we performed ectopic expression of PAFAH2
in human pulmonary endothelial cells before their treatment with PM. PAFAH2 overexpres-
sion strongly attenuated PM-induced VE-cadherin tyrosine phosphorylation (Fig 7A).
PAFAH2 overexpression also repressed PM-induced internalization and loss of VE-cadherin
from plasma membrane (Fig 7B and 7C). More importantly, PAFAH2 overexpression attenu-
ated PM-induced endothelial permeability as evidenced by recovery of TER decrease (Fig 7D).
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Discussion

PM air pollution has emerged as a severe environmental health concern with over 4 million
premature deaths annually worldwide from various cardiopulmonary disorders [41]. PM is
known to target the disruption of endothelial barrier but the underlying mechanisms are not
known. Earlier studies have suggested the role of oxidative stress and inflammation in mediat-
ing PM-induced endothelial cell dysfunction [15, 29]. Here we report a novel paradigm of
endothelial dysfunction during PM exposure as a result of PM-ROS-induced generation of Tr-
OxPLs and subsequent AJ assembly disruption. Our findings demonstrate deleterious effects
of PM on endothelial cells depend on elevation of ROS which triggers the production of bar-
rier disruptive Tr-OxPLs including POVPC, PGPC and lyso-PC. These Tr-OxPLs act on VE-
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Fig 5. PM-produced Tr-OxPLs increase endothelial permeability. (A) Purified Tr-OxPLs were added to EC monolayers at indicated
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by measuring TER over time. Data are expressed as mean + S.D.;n = 5.
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cadherin, a major protein of A] complex, by inducing its phosphorylation leading to its inter-
nalization and loss from plasma membrane that ultimately disrupts endothelial cell barrier.
Moreover, we also showed that inhibition of Tr-OxPLs production by PAFAH2 rescues PM-
induced endothelial cell barrier disruption, suggesting a critical role of PM-ROS-TrOxPLs sig-
naling axis during endothelial dysfunction caused by PM exposure.

In agreement with previous report of the role of ROS in PM-induced EC dysfunction [29],
our data show that PM-induced ROS production is upstream of PM-caused EC hyperperme-
ability, since anti-oxidants NAC and amifostine largely restored endothelial barrier integrity.
PM-induced generation of reactive oxygen species (ROS) is a recognized mechanism of cellu-
lar damage, inflammation and lung barrier dysfunction [42, 43]. PM induce oxidative stress
via several mechanisms including activation of pro-oxidant enzymes and mitochondrial
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damage leading to uncontrolled ROS production [16]. In turn, oxidative stress promotes oxi-
dation of cell phospholipids and generation of Tr-OxPLs [30]. Suppression of oxidative stress
by ROS scavengers like NAC has been shown to attenuate in vivo oxidation of circulating lipo-
proteins in patients [44]. WR-1065, a bioactive thiol metabolite of amifostine, acts as free-radi-
cal scavenger and, similarly to NAC, protects cells and tissues from oxidative damage. As free-
radical scavenger, amifostine demonstrated its radioprotective effects in tumor radiotherapy
[45] and mitigated oxidant stress-mediated lung dysfunction in the models LPS- and ventila-
tor- induced lung injury [46, 47]. Thus, our results further extend findings from previous stud-
ies and strongly suggest that NAC and amifostine function as anti-oxidants to mitigate PM-
induced Tr-OxPL formation and abrogate deleterious consequences of elevated Tr-OxPLs in

the lung.

Furthermore, we also show that PM-induced disruption of A] complex caused by the loss
of major AJ proteins VE-cadherin and p120-catenin mediates endothelial cell barrier disrup-

tion. Phosphorylation of VE-cadherin at Tyr

and Tyr””" is known to prevent its binding to

partners, p120- and B-catenin, leading to weakened AJ [48, 49]. The reduced interaction of
VE-cadherin with p120-catenin also causes the internalization and loss of VE-cadherin from
plasma membrane [39]. Our data show that PM or POVPC alone induced rapid tyrosine
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Fig 7. Overexpression of PAFAH2 represses PM-induced EC barrier dysfunction. (A, B, C) Cells were transfected with
plasmid encoding human PAFAH?2 or control empty vector for 24 h followed by treatment with PM (20 pg/cm?, 4 hr). Cell
lysates were analyzed by Western blotting to determine phospho-VE-cadherin (A), membrane bound VE-cadherin (B) and
biotinylated VE-cadherin (C) levels. Detection of VE-cadherin in total cell lysates was used as normalization control. (D) Cells
transfected with empty control vector or PAFAH2 overexpressing plasmid were treated with PM and TER was monitored over
time. Data are expressed as mean + S.D.;n = 4.
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phosphorylation of VE-cadherin at Tyr-658 and Tyr-731, and VE-cadherin phosphorylation
was augmented by co-treatment with PM and POVPC. Collectively, our data suggest a major
role of non-contractile, adherens junction-mediated mechanism of PM-induced endothelial
barrier disruption which may act in synergy with previously reported contractile mechanism
of endothelial permeability mediated by RhoA and p38 MAP kinase pathways [27, 29]. Most
importantly, our results revealed for the first time that PM induces the production of endothe-
lial cell barrier disruptive Tr-OxPLs in vitro as well as in vivo that cause PM-induced endothe-
lial dysfunction.

Lipid peroxidation products such as 4-hydroxy-2-nonenal and 8-isoprostane have been
found in increased concentrations in patients with ARDS and other lung injuries and corre-
lated with severity of disease [50-52]. However, it is important to note that not all OxPLs have
deleterious effects on lung endothelium. The full length products of PAPC oxidation such as
OxPAPC, PEIPC and PECPC have barrier protective and anti-inflammatory activities. Among
these, a large number of studies from our group have established that OxPAPC exerts protec-
tion against endothelial barrier disruption and inflammation against a wide range of agonists
in various models of in vitro and in vivo lung injuries [46, 47, 53-56]. Nevertheless, even
OxPAPC at higher concentrations induces endothelial barrier disruption [57, 58]. And, Tr-
OxPLs at all times negatively regulate endothelial cell function with enhanced inflammatory
responses and barrier disruption [32].

Our results strongly suggest that PM-induced rapid endothelial barrier disruption occurs
through the production of various Tr-OxPLs including PGPC, POVPC and a number of
structural variants of lyso-PC, since each of these Tr-OxPLs species identified by mass spec-
trometry analysis of PM-challenged lungs and pulmonary endothelial cells caused a dose-
dependent increase in endothelial permeability. Furthermore, the robust potentiating effects
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of POVPC in PM-induced endothelial barrier disruption strongly suggest that generation of
Tr-OxPLS is essential for PM pathologic effects on lung function. These potentiating effects
of POVPC were also observed with respect to PM-induced VE-cadherin phosphorylation
and internalization, where minimal effects of low dose POVPC were augmented by PM co-
treatment. This phenomenon may be of clinical significance. It is conceivable that as normal
healthy endothelium may not become affected by low PM exposure. However, during vari-
ous pathological conditions (i.e. septic inflammation) associated with elevated Tr-OxPLs, the
pulmonary endothelium becomes more vulnerable to even low doses of PM. This "two-hit"
model could also be valid in other aspects of lung dysfunction. For example, in healthy indi-
viduals, epithelial barrier traps PM preventing their penetration to the lung parenchyma and
translocation into the circulation. But lung epithelial barrier compromise caused by infec-
tion, toxins, mechanical injury, etc., may be further exacerbated by PM leading to PM inter-
actions with lung endothelium and propagation of ALI-associated vascular permeability and
inflammation.

A definitive role of Tr-OxPLs mediated VE-cadherin phosphorylation and internalization
as a mechanism of PM-induced endothelial barrier dysfunction was further supported by
experiment with ectopic expression of PAFAH2, a Tr-OxPLs-specific acetyl hydrolase,
which markedly attenuated PM-induced VE-cadherin phosphorylation and restored VE-
cadherin presence in plasma membrane. Consistently, PAFAH?2 overexpression also signifi-
cantly attenuated PM-induced endothelial permeability. This finding not only confirms the
vital role of Tr-OxPLs generation in exacerbation of PM-induced endothelial cell dysfunc-
tion, but also presents a promising therapeutic strategy for targeted elimination of deleteri-
ous Tr-OxPLs without global inhibition of redox-dependent processes, since ROS signaling
also plays an essential role in lung physiology, innate immunity and lung recovery. In con-
clusion, our study demonstrates a novel pathologic mechanism of PM-induced endothelial
dysfunction via production of bioactive Tr-OxPL products. These findings also highlight
PAFAH?2-mediated inhibition of Tr-OxPLs production as a potential therapeutic approach
to alleviate PM-induced complications of lung injury and other acute cardiovascular inflam-
matory disorders.
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