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Abstract

Mucosal-associated invariant T (MAIT) cells are an abundant class of innate T cells

restricted by the MHC I-related molecule MR1. MAIT cells can recognize bacterially-derived

metabolic intermediates from the riboflavin pathway presented by MR1 and are postulated

to play a role in innate antibacterial immunity through production of cytokines and direct bac-

terial killing. MR1 tetramers, typically stabilized by the adduct of 5-amino-6-D-ribitylaminour-

acil (5-A-RU) and methylglyoxal (MeG), are important tools for the study of MAIT cells. A

long-standing problem with 5-A-RU is that it is unstable upon storage. Herein we report an

efficient synthetic approach to the HCl salt of this ligand, which has improved stability during

storage. We also show that synthetic 5-A-RU•HCl produced by this method may be used in

protocols for the stimulation of human MAIT cells and production of both human and mouse

MR1 tetramers for MAIT cell identification.

Introduction

The study of mucosal-associated invariant T cells (MAIT cells) represents an intriguing fron-

tier in immunology [1–10]. MAIT cells are prevalent within the human peripheral T cell com-

partment, gut, lung and liver with large inter-individual variability associated with age and

disease states, composing as little as<1% to>10% of peripheral blood CD3+ cells [11–14].

Despite such abundance in human donors, their specific roles during the innate immune

response are incompletely understood. MAIT cells canonically express a semi-invariant T-cell

receptor (TCR) composed of TRAV1-2-TRAJ33 α-chain pairing predominantly with TRBV6

and TRBV20 β-chains [15–17]. Upon activation, MAIT cells can produce granzyme B, inter-

feron-γ, tumor necrosis factor-α, interleukin-17, and kill bacterially infected cells [11, 18, 19].

There is mounting evidence that MAIT cells may play a key role in the detection and response

to infectious pathogens, including Mycobacterium tuberculosis (Mtb) [12, 20–22].

PLOS ONE | https://doi.org/10.1371/journal.pone.0191837 February 5, 2018 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Li K, Vorkas CK, Chaudhry A, Bell DL,

Willis RA, Rudensky A, et al. (2018) Synthesis,

stabilization, and characterization of the MR1

ligand precursor 5-amino-6-D-ribitylaminouracil

(5-A-RU). PLoS ONE 13(2): e0191837. https://doi.

org/10.1371/journal.pone.0191837

Editor: Travis Beddoe, La Trobe University,

AUSTRALIA

Received: October 9, 2017

Accepted: January 11, 2018

Published: February 5, 2018

Copyright: © 2018 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Support from the National Institute of

Allergy and Infectious Disease (niaid.nih.gov) is

gratefully acknowledged: U19 AI11143, Carl

Nathan, PI (supported work by KL, CKV, MSG, and

JA); U19 AI111211, Henry M. Blumberg, PI

(supported work by DLB, RAW, JDA); HHSN

272201300006C (supported work by DLB, RAW,

JDA); and T32AI007613-18, Roy M. Gulick, PI

https://doi.org/10.1371/journal.pone.0191837
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191837&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191837&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191837&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191837&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191837&domain=pdf&date_stamp=2018-02-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0191837&domain=pdf&date_stamp=2018-02-05
https://doi.org/10.1371/journal.pone.0191837
https://doi.org/10.1371/journal.pone.0191837
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


An enabling advance in MAIT cell biology was the discovery that the MAIT cell TCR recog-

nizes microbially-derived vitamin B metabolites presented by the major histocompatibility

(MHC)-related protein MR1 [7, 23]. A number of stabilizing ligands were initially discovered,

some of which were reported to activate MAIT cells, while others (notably 6-formylpterin)

bound tightly to MR1 but had minimal stimulatory activity [16, 24]. In addition to providing a

molecular basis for the detection of MAIT cells, these observations also enabled the construc-

tion of antigen-loaded MR1 tetramers, first using reduced 6-hydroxymethyl-8-D-ribitylluma-

zine as a stabilizing ligand [16]. In later work, intermediates for riboflavin biosynthesis such as

5-amino-6-D-ribitylaminouracil (5-A-RU, 1, Fig 1), modified in situ by methylglyoxal (MeG),

were discovered to be potent activators of MAIT cells and also allowed generation of MR1 tet-

ramers [24]. In the latter case, Corbett et al. demonstrated that 5-A-RU forms a Schiff base

adduct 5-OP-RU with MeG, thus presenting a highly activated ketone to Lys43 of MR1 for

covalent attachment, which stabilizes MR1 and permits the formation of stable complexes

[24]. The resulting tetramers have proved capable of binding MAIT cells directly and as such

have emerged as the gold standard for identification of MAIT cells, replacing less specific

approaches such as staining for TRAV1-2 in combination with the C-type lectin receptor,

CD161.

5-A-RU has been known for many years due to its role as an intermediate in the biosynthe-

sis of riboflavin [25, 26]. Accordingly, syntheses of 5-A-RU and congeners have been reported

since the late 1950s, with key early advances registered by Plaut [27, 28], Katagiri [29], Masuda

[30], and Wood [31–33]. These procedures were largely adapted by later investigators [34–37];

in addition, an enzymatic approach has also been reported [38]. Consistently, these investiga-

tors have remarked on the difficulty of working with 5-A-RU once it has been synthesized, cit-

ing stability problems that necessitated some combination of avoiding light, air, or

concentrated solutions. In some cases, these problems were minimized by directly using

freshly prepared solutions of 5-A-RU in the intended subsequent reaction, but even this work-

around has the disadvantage of needing to prepare 1 on each occasion of use. The specific

nature of the instability of 1 has not been established, although it has been described as prone

to oxidation [36]. We have confirmed that the material does decompose to unidentified bypro-

ducts when left for even a few hours (see below).

The use of 1 as a ligand for MR1 folding reactions requires the in situ reaction of 1 with

MeG to afford the active species 5-OP-RU. Left standing, this initial Schiff base is known to

cyclize to afford the corresponding lumazine [39]. In this situation, having a stable store of

5-A-RU is desirable, but the aforementioned stability problems complicate this approach. An

alternative approach, published by Mak et al. when the present manuscript was in preparation,

involves the preparation of solutions of 5-OP-RU in DMSO, which were reported to be stable

[37].

In this paper, we report that the stability and convenience of 1 can be enhanced through the

simple expedient of making and storing it as its HCl salt. In the course of this work, we com-

bined the best features of existing syntheses of 1 into a practical route. Finally, we show that

1•HCl, when reacted with MeG, performs comparably to 5-OP-RU made by other routes as

demonstrated by upregulation of the surface expression of MR1, activation of MAIT cells, and

the construction of MR1 tetramers.

Materials and methods

Chemistry

The syntheses of (2R,3S,4S)-5-aminopentane-1,2,3,4-tetraol (2) [29], 6-chloro-5-nitropyrimi-

dine-2,4(1H,3H)-dione (3b) [31, 40], and 5-nitro-6-(((2S,3S,4R)-2,3,4,5-tetrahydroxypentyl)
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amino)pyrimidine-2,4(1H,3H)-dione (4c) [31] were carried out by previously reported routes.

They are included in Supporting Information S1 File along with full characterization of the

intermediates.

5-Amino-6-D-ribitylaminouracil hydrochloride (1•HCl, 5-A-RU•HCl)

To a solution of 5-nitro-6-(((2S,3S,4R)-2,3,4,5-tetrahydroxypentyl)amino)-pyrimidine-2,4

(1H,3H)-dione (4c, 0.327 mmol, 100 mg) in water (4 mL) was added 2 drops of 2N aqueous

KOH followed by sodium hydrosulfite (1.96 mmol, 0.341 g). The light-yellow solution turned

colorless within 20 minutes and a white precipitate formed; the reaction was monitored by

HPLC-MS until starting material was consumed (ca. 1 hour). The mixture was purified via

reverse phase chromatography and 0.18 mL of 1N HCl was added to the combined fractions

containing product. Upon concentration, the title compound was obtained as a red tar, which

solidified upon standing (70.0 mg, 69%). 1H NMR (400 MHz, D2O) δ 4.01 (ddd, J = 7.5, 6.0,

2.8 Hz, 1H), 3.87–3.77 (m, 2H), 3.76–3.71 (m, 1H), 3.71–3.64 (m, 2H), 3.56 (dd, J = 14.7, 7.5

Hz, 1H). 13C NMR (101 MHz, D2O) δ 160.9, 150.8, 150.4, 82.6, 72.2, 72.0, 70.3, 62.3, 44.5.

HRMS (m/z): calculated for C9H17N4O6 ([M+H]+) 277.1143; found 277.1143.

MAIT cell activation assay

Human MR1 was sub-cloned from a plasmid expressing human MR1 (Origene) into retroviral

vector MSCV-IRES-GFP-R1 (MIG-R1; addgene plasmid # 27490) [41]. C1R (ATCC) cells, a

Fig 1. Chemical structures. Structures of 5-A-RU (1), the Schiff base it forms with methylglyoxal (5-OP-RU), and the

covalent attachment of the latter to MR1.

https://doi.org/10.1371/journal.pone.0191837.g001
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human B cell lymphoblastoid cell line lacking major-histocompatibility proteins, were trans-

duced with this construct. GFP+MR1+ cells were isolated by fluorescence activated cell sorting

and cultured in IMDM media (ATCC) 10% FBS for 72 hours to confluence prior to activation.

Synthetic 5-A-RU•HCl was stored at 4˚C in solid form until dissolving in sterile, distilled H2O

and freezing at –80˚C in 200 μM stock solutions (referred to here as 5-A-RU•H2O solutions).

Stock solutions of 2 μM 5-A-RU•H2O and 50 μM MeG•H2O were prepared as needed for cell

culture. C1R GFP MR1 cells were directly incubated with 2 μM 5-A-RU•H2O and 50 μM

MeG•H2O for 15 hours at 37˚C and stained with Zombie Red Viability dye (Biolegend) and

PE MR1 antibody (26.5, Biolegend) for 30 minutes at 4˚C, as previously reported [24]. Follow-

ing Mak et al. [37], cryopreserved healthy donor peripheral blood mononuclear cells (PBMCs)

were thawed and cultured in RPMI 1640 media (ATCC) 10% FBS and directly incubated with

2 μM 5-A-RU•H2O/50 μM MeG•H2O for 15 hours at 37˚C. No toxicity to C1R GFP or

PBMCs was observed with 5-A-RU or MeG alone, or in combination. PBMCs were stained

with Zombie Red Viability stain, Alexa 700 CD3 antibody (UCHT1, Biolegend), APC CD161

antibody (DX12, BD), and PE MR1/5-OP-RU tetramer for 30 minutes at 4˚C. Cells were per-

meabilized and fixed for 40 minutes at 4˚C with FoxP3/Transcription factor Staining Buffer

Set (eBioscience) and stained with FITC granzyme B (GB11, Biolegend) for 1 hour at 4˚C.

Blocking experiments were performed by incubating PBMCs directly with 5 μg/mL anti-MR1

antibody (26.5, Biolegend) for one hour prior to incubation with 5-A-RU/MeG. Human CD3/

CD28 T cell activator Dynabeads (Gibco) were incubated with PBMCs for 15 hours at a 1:2

bead to cell ratio as a positive control for T cell activation. All cells were analyzed on a Fortessa

Flow Cytometer (BD).

Tetramer formation

Production of MR1/5-OP-RU tetramers followed published methods with slight modifications

[24]. We prepared an expression construct consisting of DNA coding for residues 1–280 of the

mature human MR1 subunit followed by a Gly-Ser linker and the BirA substrate peptide 85

[42]; all codons were optimized for expression in E. coli, the synthetic gene was obtained from

IDT (https://www.idtdna.com), and the insert was cloned into a pET derived vector developed

in the NIH Tetramer Facility [43]. The MR1 subunit was expressed in BL21(DE3) cells and the

inclusion bodies were washed and solubilized in freshly prepared 8M urea as described [43].

Folding of the MR1 subunit with human β2m, 5-A-RU, and MeG and subsequent purification

followed published protocols [24]. Purified MR1/5-OP-RU was enzymatically biotinylated as

described [43] and free biotin was removed by gel filtration chromatography. Tetramers were

prepared with R-phycoerythrin (Prozyme, http://www.prozyme.com) as described [43].

Results and discussion

Chemistry

The synthesis of 1 requires (1) the preparation of ribitylamine, (2) attachment of ribitylamine

to a uracil derivative, and (3) functional group conversions in the assembled compound to

afford 1 (Fig 2). A satisfactory literature-based procedure for the conversion of (–)-ribose to

ribitylamine via an intermediate oxime, which is then reduced, has been used in most reported

syntheses of 5-A-RU [25, 29]. Two alternatives for the nucleophilic aromatic substitution

(SNAr) reaction appear in the literature. The first is a reaction of amine 2 with 6-chloropyrimi-

dine-2,4-dione 4a, followed by nitrosylation to afford 4b [25]. In general, material was stored

as 4b and reduced immediately before the amine was needed. For example, amine 1 was pre-

pared and used as a stock solution for the specific application of MR1 tetramer formation [24].
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The conversion of 3a to 4b was originally reported to proceed in 50–70% yields for both the

SNAr and nitrosylation steps [25]. We briefly examined a modification whereby the original

SNAr conditions (neat, 95–110˚C, 3 hours) were replaced by microwave conditions (180˚C, 10

minutes), but in our hands the yields topped out at about 16% prior to nitrosylation. We were

accordingly drawn to an alternative route initially reported by Cresswell and Wood [31],

whereby the displacement was carried out on the more highly activated nitrouracil 3b [40],

which afforded 4c smoothly in very high yield, was stable indefinitely, and could be used with-

out additional purification.

The reduction of 4c proceeds smoothly using either Na2S2O4 [31, 33] or catalytic hydro-

genation [35, 44–46] to afford 1 as reported. Although these procedures been reported in

acidic media [32, 35], the isolation of the unstable amine as its salt as a means of stabilizing

pure material has not been previously disclosed. Since doing so would remove potential nucle-

ophilic or single-electron-transfer proclivities from the compound, we explored salt formation

of material obtained from chromatographic purification of 1. Accordingly, addition of aque-

ous HCl to newly-chromatographed 1 afforded the corresponding HCl salt as a reddish solid.

This material was amenable to full characterization and storage in the solid state (the NMR

spectrum indicated minimal decomposition after 19 days of storage in D2O at room tempera-

ture without light protection or after 37 days in solid form at room temperature (wrapped in

foil); see Supporting Information, S1 and S2 Figs). In comparison, we observed substantial

decomposition to unknown byproducts in the NMR spectra of samples of neutral 1 kept in

DMSO–d6 or D2O in as little as after one day of storage (Supporting Information, S3 and S4

Figs, respectively). We have prepared 1•HCl on 200 mg scale using this approach (50% yield

on this scale).

Functional evaluation of synthetic 5-A-RU•HCl

To functionally validate our synthetic 5-A-RU, we tested the compound for its ability to upre-

gulate surface MR1 in C1R lymphoblastoid cells engineered to express human MR1, as previ-

ously reported [16]. Direct incubation with 2 μM 5-A-RU•H2O and 50 μM MeG•H2O

strongly upregulated surface MR1 expression as measured by MR1 antibody staining and flow

cytometry (Fig 3a and 3b).

Fig 2. Synthetic routes to 5-A-RU 1 and its salt 1•HCl.

https://doi.org/10.1371/journal.pone.0191837.g002
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Fig 3. Functional studies. 5-Amino-6-(D-ribitylamino)uracil (5-A-RU) reacted with methylglyoxal (MeG)

upregulates MR1 and activates human mucosal-associated invariant T (MAIT) cells. (a, b) 2 μM 5-A-RU•H2O and

50 μM MeG•H2O were directly incubated with the human C1R GFP MR1 expressing cell line for 15 hours. MR1 mean

fluorescence intensity (MFI) was compared to resting C1R GFP by unpaired t-test. Graphed values are five technical

replicates from two independent experiments; violet = no ligand, red = 2 μM 5ARU/50 μM MeG. ���� p<0.001 (c)

Synthesis, stabilization, and characterization of 5-A-RU
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We produced MR1/5-OP-RU tetramers from human MR1 and β2m folded with synthetic

5-A-RU•HCl and MeG using slight modifications of published protocols as described in the

Methods section [24]. Fig 3c is a representative panel of human MR1/5-OP-RU tetramer stain-

ing of human peripheral blood mononuclear cells (PBMCs). The tetramer clearly identifies a

distinct CD161 high cell population that comprised 16.6% of live CD3+ cells. In five healthy

donors tested, the mean tetramer+CD161++% of T cells was 8.2% (Range: 3.05–16.6%).

Greater than 88% of MR1 tetramer positive cells among T cells co-stained for Vα7.2 (range:

81–97%) whereas >50% of Vα7.2+ cells among T cells co-stained with tetramers (range: 21–

84%) (Supporting Information, S5a Fig). Among CD3+CD161++ cells, we observed that

>90% of tetramer+CD161++ T cells were identified by anti-Vα7.2 (range: 87–98%), whereas

>80% of Vα7.2+CD161++ were identified by tetramers (range: 71–82%) (Supporting Infor-

mation, S5 Fig). These data highlight the importance of using MR1 tetramers to identify

human MAIT cells due to the presence of both Vα7.2 negative MR1-restricted cells as well as

TRAV1-2 usage among naive αβ T cells [47, 48].

To determine whether synthetic 5-A-RU•HCl is able to activate MAIT cells, we employed a

functional assay using human PBMCs as previously reported [37]. Although in vitro activation

of MAIT cells was previously achieved using immortalized cell lines [16, 37, 47, 49, 50], sorted

primary cells [11, 49, 50], bacteria/bacterial products [16, 21, 22, 37, 47, 49] or pan-T cell mito-

gen [12, 21] these assays are limited by allo-reactivity, ligand abundance/specificity, and often

cannot easily be applied without additional manipulations of clinical samples. To simplify

these approaches, it has been reasoned that MR1-expressing cells such as monocytes and B

cells [49, 51] within the PBMC aliquot are abundant and could directly present synthetic

ligand to MAIT cells without the need for culturing cell lines or performing cell-sorting [37,

52]. We directly incubated PBMCs with 2 μM 5-A-RU•H2O and 50 μM MeG•H2O and

assayed upregulation of the T cell surface activation marker CD69. Synthetic 5-A-RU/MeG

strongly induced MAIT TCR downregulation, accompanied by upregulation of CD69, and

both responses were reversed by MR1 blockade, indicating their specificity for MR1 antigen

presentation (Fig 3d). We note that Mak et al. obtained analogous activation using 1.26 nM

solutions of pre-formed 5-OP-RU [37].

To confirm that TCR downregulation occurred with activation, we titrated the concentra-

tion of activation ligand and stained with tetramer or anti-Vα7.2 (Supporting Information, S5

Fig). We observed a dose-dependent loss of both surface markers, suggesting that MAIT cell

activation results in TCR downregulation, as has been noted with other T cells [53]. While no

toxicity was observed in PBMCs after incubation with 5-A-RU/MeG, we did observe dose-

dependent depletion of MAIT cells from the tetramer positive gate, which is likely attributable

to TCR downregulation and possibly activation-dependent cell death [48, 54].

We also observed upregulation of granzyme B in MAIT cells with ligand stimulation (Fig

3e). We next applied this assay to 5 independent healthy donors and observed MR1-dependent

MAIT cell activation in all donors (Fig 3f). Our data confirm the functionality of the synthetic

MR1 ligand precursor and establish a whole PBMC assay which can be applied to clinical sam-

ples to interrogate human MAIT cell function.

Human MAIT cells identified by flow cytometry as Live CD3+ MR1 tetramer+ CD161++ cells after 15 hours under the

following conditions: black = no ligand, green = 2 μM 5ARU/50 μM MeG, red = αMR1/2 μM 5ARU/50 μM,

blue = anti-CD3/CD28. Color code also applies to (d)-(f). (d) Contour plots and histograms representing

MR1-dependent CD69 expression of MAIT cells in one human donor (e) Contour plots of MAIT cell granzyme B

production under the same conditions in panel (c). (f) Mean and SD of MR1-dependent MAIT cell CD69 expression

in five human donors. Mean and SD for resting and 5-A-RU/MeG conditions represent two technical replicates per

condition. SD: standard deviation.

https://doi.org/10.1371/journal.pone.0191837.g003
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Conclusions

These data indicate that synthetic 5-A-RU•HCl is a stable replacement of the free base in a

variety of protocols. Besides improving the convenience of using of using 1 in the study of

riboflavin biosynthesis [38], this synthetic method can provide abundant amounts of this MR1

ligand precursor in stable form and has facilitated construction of human and mouse MR1/

5-OP-RU tetramers now available through the NIH Tetramer Core facility (http://tetramer.

yerkes.emory.edu/reagents/mr1). Further, the availability of this purified MR1 ligand precur-

sor has enabled the development of an ex vivo MAIT cell activation assay using human PBMCs

to directly interrogate inter-individual differences in MAIT cell function in an antigen-spe-

cific, MR1-dependent manner. Overall, the development of a reproducible synthesis of 1•HCl

greatly enhances the practicality of using this ligand in the study of MAIT cell biology by

increasing the stability of the reagent in a convenient solid form.

Supporting information

S1 Fig. Stability of 5-A-RU•HCl (1•HCl) in D2O solution. A sample of 1•HCl was dissolved

in D2O and stored in an NMR tube without light protection. The 1H NMR spectra shown were

collected at (a) 0 days, (b) 4 days, (c) 12 days and (d) 19 days.

(TIF)

S2 Fig. Stability of 5-A-RU•HCl (1•HCl) in solid form. A portion of sample of 1•HCl was

taken at (a) 0 days, (b) 4 days, (c) 11 days and (d) 37 days, dissolved in D2O and analyzed by
1H NMR without light protection.

(TIF)

S3 Fig. Stability of 5-A-RU (neutral) in DMSO-d6. (a) 0 h, (b) 21 h, (c) 5 days, and (d) 23

days. Analyzed by 1H NMR without light protection.

(TIF)

S4 Fig. Stability of 5-A-RU (neutral) in D2O. (a) 0 h, (b) 21 h, (c) 5 days, and (d) 23 days.

Analyzed by 1H NMR without light protection.

(TIF)

S5 Fig. MR1/5-OP-RU tetramer and anti-Vα7.2 co-staining of T cell populations at rest

and after 5ARU/MeG activation demonstrate tetramer specificity for MAIT cell identifica-

tion. (a) Co-staining of resting human T cells using anti-Vα7.2 (left panel) or MR1/5-OP-RU

tetramers (right panel). Results represent density plots from one donor and mean% +SD in

three donors. SD: standard deviation. (b) Co-staining of resting human CD161++ T cells com-

paring tetramer+ cells among Vα7.2+CD161++ cells (left panel) to Vα7.2+cells among tetra-

mer+CD161++ cells (right panel). Results represent density plots from one donor and mean%

+ SD in three donors. (c) Human MAIT cells were identified by flow cytometry using anti-

Vα7.2 (left column) or MR1/5-OP-RU tetramers (right column) after 15 hours of rest or

5-A-RU dose titration (20 μM, 2 μM, 200 nM, 20 nM) + 50 μM MeG and demonstrate 5ARU

dose-dependent TCR downregulation.

(TIF)

S1 File. Additional experimental details. Includes synthesis details, copies of 1H and 13C

NMR spectra of known compounds, and references for the experimental section.

(PDF)
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