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Abstract

The quantification of bolus-tracking MRI techniques remains challenging. The acquisition usually relies on one contrast and
the analysis on a simplified model of the various phenomena that arise within a voxel, leading to inaccurate perfusion
estimates. To evaluate how simplifications in the interstitial model impact perfusion estimates, we propose a numerical tool
to simulate the MR signal provided by a dynamic contrast enhanced (DCE) MRI experiment. Our model encompasses the
intrinsic R1 and R2 relaxations, the magnetic field perturbations induced by susceptibility interfaces (vessels and cells), the
diffusion of the water protons, the blood flow, the permeability of the vessel wall to the the contrast agent (CA) and the
constrained diffusion of the CA within the voxel. The blood compartment is modeled as a uniform compartment. The
different blocks of the simulation are validated and compared to classical models. The impact of the CA diffusivity on the
permeability and blood volume estimates is evaluated. Simulations demonstrate that the CA diffusivity slightly impacts the
permeability estimates (v5% for classical blood flow and CA diffusion). The effect of long echo times is investigated.
Simulations show that DCE-MRI performed with an echo time TE~5ms may already lead to significant underestimation of
the blood volume (up to 30% lower for brain tumor permeability values). The potential and the versatility of the proposed
implementation are evaluated by running the simulation with realistic vascular geometry obtained from two photons
microscopy and with impermeable cells in the extravascular environment. In conclusion, the proposed simulation tool
describes DCE-MRI experiments and may be used to evaluate and optimize acquisition and processing strategies.
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Introduction

Bolus-tracking MRI techniques are widely used in clinical and

preclinical studies to obtain imaging biomarkers that predict

tumors progression and outcome [1,2]. Depending on the

predominant contrast in use, two different techniques can be

employed: T1-weighted dynamic contrast enhanced MRI (DCE-

MRI) [3] or T�2 -weighted dynamic contrast susceptibility (DSC-

MRI) [4]. DSC-MRI is the approach of choice for measuring

perfusion biomarker in the brain. DCE-MRI is preferred in other

organs [5,6] where the contrast agent (CA) leaks outside of the

vessels. It is also used to assess the vessel permeability in the brain

when the blood brain barrier (BBB) is disrupted. These techniques

emerged at the same time about 20 years ago but their

quantification remains challenging.

In a brain voxel with intact BBB, the CA yields a transient,

strong increase in voxel R2 and R�2 due to the increase in the

magnetic susceptibility difference (Dx) between blood and tissue,

and a more subtle increase in voxel R1 due to the increase in blood

R1 and the water exchange between intra and extravascular

compartments [7]. In a tissue with an altered BBB, the CA leaks

across the vessels and Dx is reduced at the vessel wall, limiting the

increase in voxel R�2 whereas the R1 effect is enhanced.

Additionally, the distribution of CA around extravascular imper-

meable cells further perturbs the magnetic field and increases R�2
which then competes with the R1 enhancement. The intricacy of

these phenomena makes the MR signal interpretation arduous.

In DCE-MRI, the analysis is made with compartment models

which handle blood flow and CA exchanges but often lack

methods to deal with the NMR signal. Ideally, one would combine

the compartment models which describe the microscopic R1 and

R2 changes [8–11] with a model that describes the perturbations

of the magnetic field induced by the susceptibility interfaces [12–

15]. Recent progress to untangle these phenomena have been

made by measuring DSC-MRI and DCE-MRI simultaneously

using multi-echo sequences [16,17]. The analysis of these

acquisitions requires the use of advanced analytical models [18]

that can potentially provide new biomarkers [19]. However, the

impact of the CA diffusion within the extravascular space on the

MR signal is disregarded and the effect of the arising susceptibility

gradients around the cells remains unclear. A better description of

the entanglement of these various effects within a voxel is thus of

considerable interest.

In this article we report a numerical model of the MR signal in a

DCE-MRI like experiment acquired with a multi gradient-echo

sequence over several minutes. Within an affordable computing
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time, the proposed approach considered: the effect of the magnetic

field perturbations caused by vessel and cell interfaces, the

diffusion of water molecules, the blood flow, the CA leakage

across the vessel wall and the CA diffusion within the extravascular

space. The CA distribution is considered uniform within the

vascular compartment (plug-flow or not well mixed compartment

are not considered). The algorithm relies on:

1. A compartment model to simulate the CA exchange between

the capillary bed and the tissue.

2. The computation of the magnetic field induced by the

susceptibility variations using a Fourier based approach

[20,21].

3. The deterministic approach introduced by Bandetini et al. [22]

and further developed by Klassen et al [23] to model the MR

signal provided by free diffusing water molecules within an

inhomogeneous magnetic field.

The impermeable vascular and cellular membranes were

handled by a modified convolution kernel approach. The model

was first validated and compared to simple cases where analytical

solutions exist. The impact of the CA diffusion on the permeability

estimate was then investigated and the flexibility of the tool was

eventually demonstrated by running the simulation on vascular

networks obtained from optical microscopy and on geometries

with extravascular cells.

Methods

Algorithm
Simulations were performed in the Matlab environment

(Mathworks Inc. Natick, MA, USA) on a Dell Precision computer

(double quad 2.33 GHz Intel Xeon processor, RAM 32 GB) and

at the CNRS/IN2P3 Computing Center (Lyon/Villeurbanne -

France). The step time was set to dt~0:5ms and the total duration

of the simulated DCE experiment was TF ~900s. To simulate a

900s-long DCE experiment (1:8:106 frames given our dt) with

moderate computation time, simulations were performed in 2D.

The overall time was about 14 days for a single DCE experiment.

In the following, bold capital letters refer to 2D-lattices. II refers to

the lattice filled with 1, | to the point wise multiplication, 6 to

the convolution and
P

to the 2D summation over a lattice.

Summation of a lattice and a scalar is done point wise.

The simulation tool was organized in three distinct blocks:

Geometry, Physiology and NMR (Fig. 1, Table 1).

(a) Geometry block. The geometry was designed on a 2D

plane sampled with Q2 pixels. N vessels with radius R were

randomly spread out orthogonal to the plane under periodic

boundary condition, defining the blood surface fraction BVf
(equivalent to a volume fraction in 3D).

Cells were spread out with the same boundary condition and

occupy a surface defined by the porosity

P~1{(CellsurfacezVesselsurface)=(Planesurface). The cell

radius was initially set to 10mm and slowly shrunk to obtain the

desired porosity.

Gv denoted the lattice with 1 inside the vessels and 0 outside. Gc

denoted the lattice with 1 inside the cells and 0 outside.

(b) Physiology block. This block modeled the CA concen-

tration, C(t), within the plane.

(b.1) Plasma. The time evolution of the concentration of CA in

the vessels, cv(t), was described by the discretized form of a two

compartments model where the CA enters the tissue via the

arterial influx, leaves by venous outflux and exchange by

transendothelial leakage. No spatial variation of CA caused by

plug-flow or not well-mixed space are considered.

cv(tzdt) ~cv(t)z F
BVf

ca(t){cv(t)ð Þdt

{
kpe :
P

GperiphP
Gv

P
Wperiph| cv(t){Cperiph(t)

� �
dt if F:dtƒBVf

cv(tzdt) ~ca(t) if F:dtwBVf

8>>><
>>>:

ð1Þ

where F denotes the blood flow in surface fraction per second

(equivalent to a volume fraction in 3D), ca(t) the arterial input

function (AIF) and the terms modeling for the permeability are

defined in the following paragraph. cv(t) was considered the same

in each vessel. The AIF was an input to the physiology block.

(b.2) Permeability. The CA exchanges between the vessels and the

extravascular space occurred only at the periphery of each vessel.

Gperiph was defined as the lattice with 1 in the one-pixel wide

periphery of each vessel (connectivity 4) and with 0 outside. The

CA concentration lattice in that region was denoted Cperiph(t). At

each time step, we considered the CA exchange between the

vessels and its periphery. The amount of CA that extravasates was

modeled by a first order kinetic law with exchange rate kpe. The

same exchange rate was considered in both ways:

Cperiph(tzdt)~kpe|(cv(t){Cperiph(t))dtzCperiph(t) ð2Þ

In 3D, one generally defines kpe as the exchange rate between the

vessel and the extravascular extracellular volume, ve (kpe~P:S=ve,

with P the permeability and S the surface exchange). In our 2D

approach, we must consider the volume in which the CA

extravasates, which is reduced to the surface
P

Gperiph, plus the

contact exchange which is not equivalent for every points in the

periphery of the vessels. Thereby, to remain consistent with the

literature, kpe was scaled by Wperiph:

kpe~kpeWperiph ð3Þ

with

Wperiph~

P
(II{Gv{Gc)P

Gperiph
|

SP
S

ð4Þ

where the first fraction accounts for the volume scaling and the

second for the differences in the contact exchange. S was

computed as (see also Fig. 2C for an illustration of S):

S~Gv6Wz{Gv with Wz~

0 1 0

1 1 1

0 1 0

0
BBB@

1
CCCA ð5Þ

The concentration lattice C was eventually updated with Cperiph:

C~C|(II{Gperiph)zCperiph|Gperiph ð6Þ

(b.3) CA Diffusion. The diffusion of CA into the extravascular

space was modeled with a Gaussian diffusion kernel, denoted DCA,

as described by Eq.[7]:

C(tzdt)~C(t)6DCA with DCA!
1

s2
e
{

x2zy2

2s2 ð7Þ
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where the mean square displacement of a CA molecule is

Sx2zy2T~2s2~4DCAdt (in 2D, [22]) and (x,y) the coordinates

in the plane. The kernel DCA was designed with the same size as

C.

Figure 1. Algorithm sketch of the simulation. Only the most important parameters have been represented. Data on the left of the gray boxes
are inputs to the model. Data on the right are outputs of the simulation. The simulation is organized in three blocks. Block (a) initializes the geometry.
Block (b) describes the CA behavior over time. Block (c) estimates the MR signal.
doi:10.1371/journal.pone.0057636.g001
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The diffusion of CA described by Eq.[7] should neither

contribute to the transendothelial transport modeled by Eq.[2]

nor diffuse within the cells. We thus introduced a bounce-like

mechanism for CA transport at the membranes of the vessels and

cells characterized by the following weighting lattice (see also

illustration in Fig. 2A):

WCA~((GvzGc)6DCA)|(II{Gv{Gc) ð8Þ

For each point of the lattice, WCA defines the amount of CA that

would have diffused from one point into the cells or vessels in the

case of free diffusion. At each time step, this amount has to be sent

back to the extravascular extracellular space. In our case, it is sent

back to where it originates. The evolution of C(t) was thus

Table 1. List of the main parameters used in the algorithm.

Name Definition Units

N Number of vessels -

BVf Blood Volume fraction %

R Radius of the vessel mm

DCA Diffusivity of the CA mm2:s{1

Gv Vessel lattice -

Gc Cells lattice -

S Contact surface lattice -

Wperiph Permeability weighting lattice -

WCA Diffusion weighting lattice -

ca(t) Arterial input function mM:s{1

F Blood flow %:s{1

kpe Permeability rate s{1

cv(t) Plasma CA concentration mM

C(t) CA concentration lattice mM

½CA�(t) Mean CA concentration in C(t) mM

B0 Static magnetic field T

ADC Apparent Diffusivity of the water mm2:s{1

a RF flip angle rad

w RF phase angle rad

xm Molar magnetic susceptibility of the CA ppm:mM{1

Dxblood{tissue Original Magnetic susceptibility between blood and
tissue

ppm

S(t) MR signal -

Ri(t) Relaxation rates lattices s{1

B(t) Magnetic field lattice T

Mi(t) Magnetization lattices -

doi:10.1371/journal.pone.0057636.t001

Figure 2. Illustration of the weighting lattices S and WCA. (a) Zoom in the diffusion weighting lattice WCA. The diffusion appears restricted
near the membranes. (b) Illustration of the geometry lattices. In red, the vessel, in grey the cells. (c) Zoom in the surface weighting lattice S that
computes the number of contact exchange interfaces between a vessel and its periphery.
doi:10.1371/journal.pone.0057636.g002
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computed with Eq.[9]:

C(tzdt)~(C(t)6DCAzC(t)|WCA)|

(II{Gv{Gc)zcv(t)|Gv

ð9Þ

Special attention was paid to the kernel width to minimize

physically impossible behaviors of CA such as jump over obstacles.

The step time dt was set according to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DCAdt
p

vsm where sm was

the characteristic size of the smallest obstacles (see discussion

section for further details). Each step that involved a convolution

was computed using the FFT algorithm. The mean CA

concentration in the plane, ½CA�(t), was computed by averaging

C(t).
(c) NMR block. This block modeled the magnetiztion, M(t),

within the plane.

(c.1) Relaxation. Longitudinal and transverse relaxation lattices

were calculated from C(t) based on Eq.[10]:

Ri(t)~R0,v
i |GvzR0,t

i |(I{Gv)zriC(t) ð10Þ

where index i stands for 1 or 2, R0,v
i and R0,t

i are the initial

relaxation rates of the vascular and tissue compartments respec-

tively and ri is the CA relaxivity.

(c.2) Magnetic field. The perturbations of the magnetic field

induced by the susceptibility variations in the plane were

computed using a Fourier based approach [20,21] adapted here

in 2D, Eq.[11]:

D~BB(t)~B0
1

3
{

k2
y sin2 h

k2
xzk2

y

 !
D~xx(t) ð11Þ

where kx and ky are the coordinates in the Fourier space, h the

angle between the normal to the plane and B0 and the tilde, ~XX ,

denotes the Fourier transform of X. The susceptibility map was

defined by Dx(t)~xmC(t)zDxblood-tissue|Gv where xm is the

molar magnetic susceptibility of the CA and Dxblood-tissue the

original magnetic susceptibility difference between the vessel and

tissue. The perturbation of the magnetic field was averaged over 3

orthogonal orientations of the plane with respect to B0 to mimic

an isotropic distribution of vessels in a 3D voxel (see validation in

results section).

(c.3) Magnetization. The magnetization evolution was described

by the Bloch equations, Eq.[12]:

M\(tzdt) ~M\(t)e{icDB(t)dte{R2(t)dt

ME(tzdt) ~(ME(t){M0)e{R1(t)dtzM0

(
ð12Þ

with c~2:68:108 rad:s{1:T{1 and M0 the longitudinal magne-

tization at equilibrium. The symbol e denotes here a point wise

exponentiation.

(c.4) Water diffusion. The diffusion of water was modeled by

applying a diffusion kernel, DH2O, on the magnetization lattices as

already proposed [22,23]:

Mi~Mi6DH2O with DH2O!
1

s2
e
{

x2zy2

2s2 ð13Þ

where the mean square displacement of a water molecule is

Sx2zy2T~2s2~4ADCdt (in 2D, [22]) and i stands for \ or E.

The convolution with the kernel modeled the probability of the

spins to move to a different location during the time dt. Due to the

finite extension of the lattice, the kernel was subsequently

normalized to unity. We assumed that water diffused freely within

the plane and between compartments. The convolution was

performed using the FFT algorithm.

(c.5) MR sequence. A saturation-recovery sequence with a multi

gradient-echo acquisition scheme was simulated. At each echo

time TE , the MR signal was sampled by summing the transverse

magnetization M\ across the lattice. At t modulo TR, RF

excitation pulse, characterized by flip angle a and phase w, was

applied on the magnetization lattices. For spin-echo case, a p RF

pulse was applied at TSE
E =2.

Unless mentioned otherwise, the parameter values used in the

simulation were as follows. The static magnetic field B0 was set to

4.7T, the time step dt to 0:5ms and the total duration of the

experiment TF to 900s. The geometry modeled was a 70|70mm2

plane sampled with Q2~5602 elements (lattice point size

0:015mm2). N~5 vessels of radius R~3mm were generated, filling

up BVf ~2:9%. These values match in vivo measurements in

healthy tissue [24,25]. In vivo measurements made in rodents

provided the AIF shape, cv(t) [26]. Relaxation properties of the

CA matched Gd-chelate ones: r1~3:3s{1:mM{1,

r2~4:1s{1:mM{1 (data from Guerbet, France). The initial

relaxation rates were, in the vessels, R0,v
1 ~0:582s{1 [27],

R0,v
2 ~200s{1 (higher than previously reported value [28]), in

the tissue, R0,t
1 ~0:769s{1 [29], R0,t

2 ~16s{1ms. We used

xm~0:027ppm:mM{1 for the molar susceptibility of the CA

[30] and Dxblood{tissue~0:0422ppm (SO2~60% and ½Hct�~40%
at 4:7T [31]) (CGS units). The water diffusion was set to

760mm2s{1 [32]. TR was set to 500 ms, a to 900 and w to 00 [26].

As a reference for kpe, we used k0~1:83:10{3s{1 and

k1~4:83:10{3s{1, values reported in [26] for healthy muscle

tissue and for tumor tissue. An illustration of the shape of the AIF

is presented in Fig. 3b. For DCA, we used D0~46mm2s{1 which

correspond to the coefficient of diffusion for Gd-DOTA measured

in rat brain [33]. The free diffusion of Gd-DOTA,

Dfree~485mm2s{1, has also been reported [33].

Validation
Contrast Agent Diffusion. To evaluate our kernel based

approach used to model constrained diffusion, we compared our

results to a 2D Monte-Carlo (MC) simulation. In the MC

approach, elastic rebounds of CA on the surface of obstacles were

considered [34]. Diffusion with both approaches was simulated

within the same geometry, N~5 and R~3mm. The apparent

diffusion coefficient of Gd was set to D0. Due to the extensive

computation time of the MC approach, we simulated the diffusion

process during 3s. The CA was initially positioned at the center of

the grid: 1 mM in a single pixel for the kernel simulations, 500,000
particles randomly spread within the same pixel for the MC

simulations. To allow comparison between the two approaches,

the total amount of matter of each approach was equalized

afterwards.

Blood flow and CA Permeability. To investigate the

validity of the approach used to model the permeability, we fitted

the concentration profiles with the classic modified Tofts model [8]

using a nonlinear Levenberg-Marquardt algorithm.

½CA�(t)~BVf :cv(t)zkpe:ve

ðt

0

cv(t)e{kpe(t{t) dt ð14Þ

A Simulation Tool for DCE-MRI
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We eventually compared the estimate of kpe, kFit
pe , with the

theoretical kpe, kTh
pe , introduced as an input of the simulation at

step (b.2). We denoted BVFFit the estimate of BVf .

Magnetic Field Perturbations. To validate the 2D tech-

nique used to compute the magnetic field perturbations, we

balanced the corresponding 3D model (magnetic field perturba-

tions induced by isotropic distributed cylinders in space and

orientation [35]) with 3 different 2D approaches: 1 unique vessel

in 1 B0 orientation, N vessels in 1 B0 orientation, N vessels in 3 B0

orientations. For each approach, we simulated and averaged the

free induction decays (FID) provided by a set of 70, randomly

obtained, geometries (only 1 geometry for the first 2D approach,

and we estimated RGE
2 by a mono-exponential function fitted to

the mean FID with a nonlinear Levenberg-Marquardt algorithm.

Each geometry had the same properties: BVf ~2:9%, R~3mm,

N~1 or N~5 for the 2D approach, N~12 for the 3D approach.

To match the conditions described by [35], the magnetic

susceptibility difference between the vessels and the tissue was

set to Dx~0:231ppm.

Relaxation changes vs vessel radius. To further investi-

gate the validity of the proposed approach, we simulated the

dependency of the gradient-echo (GE) and spin-echo (SE)

relaxation rates (DRGE
2 and DRSE

2 ) with the radius of the vessels

as previously described [36–38]. For a given vessel radius, we

randomly generated a set of 10 different geometries with N~5
vessels that occupy 2% of a plane. To match these constraints, the

plane size was adjusted to the vessel radius. Eighteen vessel radii

were simulated, between 1 and 100mm. To match the conditions

used by Boxerman et al. [37], the diffusion of water was set to

1000mm2:s{1, B0 to 1:5T and Dx to 0:1ppm. The MR signal was

simulated at TE~60ms for gradient-echo type experiment and at

TSE
E ~100ms for spin-echo type experiment. The relaxation rates

were computed with Eq.[15]:

DRGE
2 ,DRSE

2 ~{
1

TE

ln(
S(TE)

S(0)
) ð15Þ

Figure 3. Illustration of the evolution of the concentration of CA. CA concentration in the vessels cv(t) (a) and the corresponding MR signal
S(t) (b). S(t) is simulated for 2 echo times: TE~0ms (black) and TE~40ms (grey). The change in CA concentration C(t), represented by the lattices,
and in the magnetic field perturbations DB(t) are presented at five times points labeled (1) to (5). For this longer echo time, one can observe the
competition between the susceptibility effect which decreases the signal (point (2)) and the enhancement produced by the R1 relaxation effect of
the CA which extravasates into the tissue (points (3) to (5)). At the last simulation time point (t~TF ) (5), cv(t) is lower than ½CA�(t) (not shown) and
the concentration in the extravascular space begins to decrease. Note the log scale for C(t) introduced for sake of clarity.
doi:10.1371/journal.pone.0057636.g003
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Impact of Diffusion, Permeability and Echo Time
The concentration c(t) was derived from the MR signal S(t) as

described in [26]:

c(t)~
1

r1

(R1(t){R0
1) ð16Þ

with

R1(t)~{
1

TR

ln(1{
S(t)

S(0)
(1{exp({R0

1:TR))) ð17Þ

This equation is valid only under certain assumptions (TR&T�2 ,

TR&T2 (no stimulated echoes), TE%T�2 , p=2 flip angle, no inflow,

etc.). We then fitted either ½CA�(t) or c(t) with the bi-compartment

model (Eq.[14]) to derive the errors on estimated permeability

constant: (kFit
pe {kTh

pe )=kTh
pe .

Results

For sake of simplicity, unless mentioned otherwise, the results

presented in this study are obtained with no cells positioned in the

extravascular space and in the limit of high flow (F :dtwBVf ), i.e.

cv(t)~ca(t).

As an illustration, Fig. 3 shows the changes in C(t) and DB(t)
throughout the simulation together with the input AIF (t) and the

output S(t) at two gradient-echo times: TE~0ms and TE~40ms,

with kpe~k0 and DCA~D0.

Validation
Contrast Agent Diffusion. Fig. 4a presents the geometry

lattice Gv and the injection site. Fig. 4c and Fig. 4d show the

diffusion maps obtained with the MC and the kernel approaches

respectively. Due to low SNR for the MC approach, the displayed

lattices were smoothed to ease their visualization. Fig. 4b shows the

correlation graph between the two approaches. The two maps are

in good agreement (R2~0:994) with a slightly faster diffusion

process observed in the MC approach (slope = 0.992).

Blood flow and CA Permeability. The results of this section

were obtained with dt~25ms. Fig. 5a shows the concentration

profiles obtained for different blood flow values when kpe~0.

When Fdt§BVf , the flow is high enough to renew the blood

volume at each time step dt and cv(t)~ca(t). When F :dtvBVf ,

i.e Fv1:2s{1 in our experimental conditions, the concentration

profiles are modified accordingly to the dilution of the arterial

input within the vascular compartment. This situation corresponds

to a single compartment model with a mono-exponential residue

function with characteristic time BVf =F .

Fig. 5b illustrates the time courses of ca(t) and ½CA�(t) when

kpe~k1 for different blood flows F : 3:10{3{15:10{3s{1

(equivalent to 19{90mL=min=100mL). ca(t) is an input to the

simulation (step b.1) and ½CA�(t) is the output of block b. As

depicted by the concentration curve shapes ½CA�(t), the uptake of

CA is limited when the blood flow decreases.

We simulated the change in ½CA�(t) for 4 permeability values, 4

blood flows and with DCA~Dfree (to mimic an infinite diffusion

coefficient as assumed by a bi-compartmental model). The Tofts

model properly fits the data for the range of permeabilities and

blood flow simulated (Fig. 5b). Fig. 5c presents the results of the

estimated parameter kFit
pe . For high flow, a linear correlation

between kFit
pe and kTh

pe is observed (R2~0:999994). The slope is

slightly lower than 1 and demonstrates that kFit
pe underevaluates

kTh
pe when the CA diffusion is slightly constrained (DCAv?). As

already reported, for lower blood flow values, the CA leakage is

limited by the inlet and the model fails to distinguish the blood

flow from the permeability [8].

Magnetic Field Perturbations. The different voxel config-

urations are displayed on Fig. 6a–d. Fig. 6e presents the mean

normalized FID obtained with each approach. The single vessel

approach results in a very short decay (1=RGE
2 ~7:5ms) whereas

the N vessels averaged over 3 directions approach

(1=RGE
2 ~18:3ms) presents a decay similar to what is obtained

with the 3D approach (1=RGE
2 ~18:4ms).

Relaxation changes vs vessel radius. Fig. 7 shows the

dependence of DRGE
2 and DRSE

2 on the vessel radius. The results of

our simulation are in very good agreement with similar works

obtained with other approaches [37,38]. We also observe that the

standard deviation is larger for the GE experiments than for the

SE experiments.

Impact of Diffusion, Permeability and Echo Time
We simulated a DCE experiment with various CA diffusion

coefficients (D0=4,D0=2,D0,2|D0,4|D0,10|D0,Dfree), various

permeabilities to CA (k0, k0=2, k1) and various TE (20 echoes,

DTE~2ms).

Fig. 8 illustrates S(t) obtained for different DCA values and kTh
pe

values. As expected, kTh
pe strongly impacts the shape of S(t)

(Fig. 8a). Conversely, the CA diffusion coefficient has a small

impact on the shape of S(t). The highest deviation appears when

the CA concentration in the vessels is maximum.

Fig. 9a presents the permeability estimates derived from

½CA�(t). The higher the permeability, the larger the error on

kFit
pe . The faster the CA diffusion, the smaller the error on kFit

pe . For

the range of CA diffusion coefficients used in this simulation, the

error never exceeded 10%. The highest error was obtained for the

lowest DCA coefficient (Fig. 9a). This means that when the CA

leaves slowly the vessel periphery, the vessel permeability is

underestimated. As expected, this underestimation becomes

smaller as DCA increases.

When the permeability estimates are derived from S(t) at

TE~0ms, the behavior of the error on kFit
pe remains unchanged

(Fig. 9b). For high DCA and low kTh
pe , the errors become negative,

in agreement with the result observed on Fig. 5b (slope smaller

than one). The error on the permeability estimate remaines below

5%. However, a difference between the permeability estimates

obtained from ½CA�(t) and S(t) appears for high DCA values : the

error is independent of kTh
pe when one analyzes ½CA�(t) and

becomes a function of kTh
pe when one analyzes S(t). This difference

may be ascribed to the R0
1 value used in Eq.[17] which assumes a

slow exchange regime across the vessel wall (the effective R0
1 could

not be computed since the water permeability was not controlled

for in our model).

Fig. 10a shows the variation of the error on kFit
pe (kFit

pe as a

function of TE for different kTh
pe and DCA). For short TE , the error

is minimum and the larger the CA diffusion, the lower the error as

already observed in Fig. 9b. For kTh
pe ~k1, the error increases with

TE . For kTh
pe ~k0 and kTh

pe ~k0=2 the evolution of the error is no

longer proportional to TE and ranges from 25% (for kTh
pe ) up to

200% (for BVf Fit). Fig. 10b shows BVf Fit as a function of TE for

different kTh
pe and DCA. This error is the largest for long TE . This

deviation from the input BVf is ascribed to the post-processing:
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the T�2 effects which are maximum at peak concentration are not

taken into account in Eq.[17] (Fig. 8a). At this echo time, the data

processing yields an erroneous estimate of BVf (Fig. 10b). For

kTh
pe ~k0=2, we note that BVf Fit appears sensitive to DCA for long

echo times.

The effect of the echo time on the permeability error is much

stronger than that of DCA. Going from 0 to 10 ms may increase

Figure 4. Comparison between MC approach and kernel based approach for modeling the CA diffusion. (a) Geometry used, Gv . The
white cross indicates where the CA was initially placed. (b) Spatial correlation plot between C obtained via the convolution with a diffusion kernel
and C obtained with the MC approach after normalization. (c–d) Final maps of CA concentration, C, for the MC approach (CMC ) and the kernel
approach (CKER), respectively (smoothed and undersampled to a 64|64 lattice).
doi:10.1371/journal.pone.0057636.g004

Figure 5. Concentration profiles for various blood flows and permeabilities to CA. (a) Concentration of CA in the vascular compartment,
cv(t), as a function of time for impermeable vessel wall (kTh

pe ~0) and different blood flow values. (b) Time course of ca(t) and ½CA�(t) for kTh
pe ~k1 and

different blood flow values. ½CA�(t) is plotted every 20s to ease readability. The plain black lines represent the fit obtained with the Tofts model
(Eq.[14]). Note the difference in scale for the arterial input function, ca(t). (c) Plots of the estimated permeability coefficient kFit

pe and the input value

kTh
pe for different blood flows and permeabilities to CA. A linear fit is obtained in the case of high flow (F :dt§BVf ). For lower blood flows, the model

failed to distinguish the flow from the permeability and kFit
pe is underestimated.

doi:10.1371/journal.pone.0057636.g005
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the error from 2% to 8%. This impact is even more serious on the

BVf estimate: the same increase in echo time yields an

underestimation of BVf Fit by a factor 2. This is likely related to

the competition which occurs between the varying susceptibility

gradients at the vessel wall and the increasing R1 in the

extravascular space. This balance depends on TE and on DCA.

Versatility
Realistic microvasculature network. To illustrate the

potential of the proposed simulation tool, Fig. 11 shows the results

obtained with a vasculature network extracted from a biological

tissue. The geometry was acquired with a two-photon laser

scanning microscope with 5mm z-step [35]. Image size was

560|560 pixels with a field of view of 300|300 mm. Morpho-

logical processing (erosion/dilatation) were used to fill holes in the

vessels and to remove isolated pixels. A threshold was used for

image segmentation (blood/tissue). A representation of the

vascular network as the 2D binary lattice Gv was eventually

obtained. In Fig. 11, the blood vessels occupy BVf ~1:92% of the

surface. The simulation was performed with kTh
pe ~k0 and

DCA~D0. The lattices C(t) (Fig. 11a) and DB(t) (Fig. 11b) are

presented at t~TF . The concentration profiles derived from the

simulated MR signal using Eqs.[16–17] are shown for 3 different

TE on Fig. 11c. The Toft model was eventually fitted to the data.

The estimates were in agreement with the input values when

TE~0ms (kFit
pe ~0:017s{1,BVFFit~3:0%) and biased for longer

TE (at TE~40ms, kFit
pe ~0:017s{1,BVFFit~{1:6%).

Porosity of the extravascular space. Fig. 12 presents the

results obtained with cells positioned in the extravascular space.

Vessel geometry was the same as displayed on Fig. 3. The

simulation was performed with P~20%, kTh
pe ~k0 and

DCA~Dfree. The lattices C(t) (Fig. 12a) and DB(t) (Fig. 12b) are

presented at t~tF . The concentration profiles derived from the

simulated MR signal using Eqs.[16–17] are shown for 3 different

TE on Fig. 12c. The Toft model was also fitted to the

corresponding data and the results were in agreement with

previously described ones (at TE~0ms,

kFit
pe ~0:018s{1,BVFFit~3:33%) and biased for longer TE (at

TE~40ms, kFit
pe ~0:023s{1,BVFFit~{1:7%)). The difference in

the concentration scale is due to the reduced interstitial volume.

For long echo times, the additional magnetic field perturbations

that arose at the cell membranes reduce the enhancement effect

and inflection points can be noticed in the concentration profiles

(Fig. 12a at TE~40ms and TE~70ms).

Figure 6. Impact of various magnetic field computations on the FID simulation. (a) 1 vessel in 1 B0 orientation (b) N vessels in 1 B0

orientation (c) N vessels in 3 B0 orientations (d) N vessels in 3D. The vessel arrangement is presented in 3D and for display, the magnetic field
perturbation is only presented on each face of the cube but is computed in 3D. (e) Normalized FID for approaches (a)–(d) (averaged across the
geometries for approaches (b–d)).
doi:10.1371/journal.pone.0057636.g006

Figure 7. Vessel radius dependence of DRGE
2 and DRSE

2 .
Parameters values are BVf ~2%, ADC = 1000mm2s{1 , B0~1:5T and
Dx~0:1ppm. Mean+s across 10 geometries. The data presented here
are in excellent agreement with those reported in [37].
doi:10.1371/journal.pone.0057636.g007
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Discussion

In this study we proposed a tool to simulate a DCE-MRI

experiment with intravenous CA injection and altered BBB. The

simulation tool takes into account the blood flow, the CA

extravasation via a controlled vessel wall permeability, the CA

diffusion within the extravascular space, the water diffusion, the

vessels and CA susceptibility effects together with the relaxivity

effects. More realistic models for flow such as plug-flow or not

well-mixed blood compartment are disregarded. Each important

step of the simulation was validated and we discuss the deviation

observed in the following. At various echo times, the impact of the

CA diffusion on the permeability estimate was investigated in the

limit of high flow. The versatility of the algorithm was finally

demonstrated with geometries based on a realistic vascular

network or space constrained by cells. The results obtained were

in agreement with previously described in vivo experiments.

Fourier based approaches
The simulation benefits from the extensive used of the FFT for

the computation of the magnetic field perturbations, the diffusion

of the CA and the diffusion of the water molecules. In addition to

the gain in speed compared to classic convolution algorithms, we

take advantage here of the intrinsic properties of the discrete

Fourier transform: the spatial sampling yields a spatial periodiza-

tion. Thereby, with the diffusion kernel approach, the CA which

leaves the lattice on one edge comes back on the opposite edge, as

if the lattice was surrounded by similar lattices. Consequently, our

model takes into account the contribution of the CA movements

due to diffusion and arriving from adjacent voxels [39].

Interestingly, this approach, which is also relevant in 3D, can be

extended to any geometries with obstacles such as extravascular

cells (Fig. 12). This property also applies to the magnetization

carried by the water molecules, which freely diffuse within the

voxel, and to the magnetic field computation. Note also that the

Figure 8. Change in the MR signal for different kTh
pe and DCA values. (a) S(t) at TE~40ms for 3 kTh

pe values: k1 , k0 and k0=2 with DCA~D0=4. (b)
S(t) at TE~40ms for 7 DCA values: D0=4, D0=2, D0, 2D0, 4D0 , 10D0 and Dfree with kTh

pe ~k0 .

doi:10.1371/journal.pone.0057636.g008

Figure 9. Error on the permeability estimate. When modeling the outputs of blocks b and c with Eq.[14] for various kTh
pe and DCA values: (a)

Error on kTh
pe when modeling ½CA�(t). (b) Error on kTh

pe when modeling S(t) for TE~0ms with Eqs.[16–17].

doi:10.1371/journal.pone.0057636.g009
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Gibbs artifacts at the border were here avoided thanks to the

periodization of the 2D vasculature. These artifacts usually arose

at the border of 3D voxel simulation and compel to reject the

spoiled outer volume of the 3D lattice for the signal computation.

CA diffusion
The main asset for using the kernel approach to model diffusion

is its computational efficiency. The diffusion process appeared

however slightly slower than with the MC approach. This

reduction is related to the use of the weighted lattice WCA: the

amount of CA that diffuses from a pixel located within the

interstitium to pixels located inside a vessel or a cell is sent back to

it initial position. This differs from the MC approach where elastic

collisions are considered. Thus, the CA diffusion modeled with the

kernel approach is more hindered at the vicinity of vessels and cells

than with the MC approach. From a physiological point of view,

note that it has been proposed that diffusion near cells could be

reduced beyond elastic collision due to electrostatic interactions

with cell membranes [40,41].

The kernel must also be narrow enough to avoid ‘jumps’. When

the kernel width, s, is larger than the characteristic obstacle size,

sm, the CA diffusion becomes blind to obstacles. To avoid this

behavior, one must observe svsm. This ‘no-jump’ condition was

respected in this study: s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dfreedt

p
&0:5mm and

sm~2:R~6mm. This condition may be fulfilled for a large range

of DCA values and obstacle sizes by adapting dt accordingly.

It is also worth noting that, by adding kurtosis or skewness terms

to the kernel, the kernel approach offers the opportunity to model

non-Gaussian diffusion and/or active transport.

Magnetic field perturbations
The approach used in this study to compute the magnetic field

perturbations is based on the Fourier transform of the magnetic

susceptibility lattice [20,21]. Most works employed the analytical

form of the magnetic field perturbations generated by an infinite

straight cylinder [23,36,37,42,43]. However, this latter technique,

computationally efficient, fails at computing smooth susceptibility

variations and more realistic vasculatures which vessel calibers,

vessel densities and tortuosity may be significantly modified as in

tumors [2,24,44]. Another approach, based on the perturbation

produced by a single pixel convolved with a geometry lattice (Gv in

our study) [38], has been proposed. This latter approach is

Figure 10. Impact of the echo time on the estimation of kTh
pe and BVf . (a) Evolution of the error on the parameter kTh

pe estimated from S(t) at
different TE for various DCA and various kTh

pe . (b) Evolution of the parameter BVf Fit estimated from S(t) at different TE , for various DCA and for

kTh
pe ~k0=2 or k1 .

doi:10.1371/journal.pone.0057636.g010

Figure 11. Example of the simulation with a vascular geometry extracted from in vivo microvascular microscopy. The simulation
parameters are kpe~k0 and DCA~D0 . Concentration map C (a) and magnetic field perturbation DB (b) are represented at the last simulation time
point (t~TF ). (c) Concentration profiles derived from the simulated MR signal using Eqs.[16–17] at 3 different TE . The black lines correspond to the
fit obtained with the Toft model. Plane size 300|300mm2.
doi:10.1371/journal.pone.0057636.g011

A Simulation Tool for DCE-MRI

PLOS ONE | www.plosone.org 11 March 2013 | Volume 8 | Issue 3 | e57636



adapted for arbitrary vessel geometry, but not for arbitrary

susceptibility distribution.

By adapting the Fourier based approach to 2D, we decreased

the computation time by about 400 times compared to the

analytical approach. In 2D, the single vessel geometry yielded a T�2
shorter than what was obtained with multiple vessels. Note that,

due to the FFT, the single vessel geometry actually models a

periodic vessel distribution. It thus appears that the regularity of

the vessel arrangement has an impact on the eventual T�2 of the

voxel. With a single vessel arrangement, the dipolar effect is spread

uniformly over the plane and does not overlap with that of other

vessels. Additionally, the distance between any pixel of the plane

and a vessel is minimized. Thereby, one maximizes the dipolar

effects of the vessel over every points of the lattice. T�2 appears

sensitive to the vessel arrangements (with constant BVf ), as

observed on Fig. 7 where the standard deviation on T�2 arises from

ten different vessel arrangements. Note that this standard deviation

is relatively modest (about 7%), despite the use of only 5 vessels in

each arrangement. Further studies are required to determine the

optimal number of vessels per arrangement and the optimal

number of arrangements to obtain reliable results in an optimized

computation time.

Single or multi-vessel, 2D, geometries yielded shorter T�2 than

3D vascular geometries with comparable BVf (Fig. 6). This

difference comes from the fact that the magnetic field perturbation

depends on the vessel orientation within B0. When all vessels are

perpendicular to B0, the magnetic field perturbation is maximized

and the T�2 is reduced compared to what would be obtained with a

random distribution of vessel orientations. Interestingly, we

observed that averaging the signal from three orthogonal planes

yielded T�2 comparable to what was obtained with 3D approaches.

One should keep in mind that this pseudo-3D approach requires

the use of microvascular characteristics representative of the 3D

distribution (BVf , vessel diameter, vessel arrangements).

Limitations
The main limitation of the 2D approach is related to the

simulation of the flow within the voxel. Since only a plane is

considered in our approach, one can not model plug-flow where

CA concentration varies along the capillary bed. The study of the

residue function is also harshly limited in our approach. The

dispersion of the bolus brought by limited flow and the leakage can

be modeled but the dispersion along the vascular tree can not be

taken into account easily. With a sufficient number of vessels

spread out within the plane, one way to overcome this limitation

might be to define different residue functions for each vessel which

would model the dispersion of the bolus at different length along

the vascular paths. That is to take a section of a 3D voxel with

mixture of arterioles, capillaries and venules as the one used in

[45]. Note also that the well-mixedness assumption of the blood

compartment may not stand in vivo.

As the expense of computational time, these two restrictions can

be overcome by extending our approach to a 3D voxel. In that

case, vessels are usually modeled by straight cylinders. One could

also used 3D microvascular networks, such as the one recently

studied by Guibert et al [46]. However, the periodic boundary

condition does not stand any longer in 3D. One usually deals with

this limitation by considering only the MR signal provided by an

inner volume where water molecules have not undergoe harsh

distortion of the magnetic field caused by discontinuity at the

border. However, this can not be used with a reasonable voxel size

in the scope of long DCE-MRI simulation where transport of the

water and the CA must remain coherent for several minutes.

Recently, an elegant solution to this problem has been considered

in modeling the vascular network generated by a random walker

moving with a significant inertia under periodic boundary

conditions [47].

Another strong assumption of our model is related to the free

diffusion of water molecules. The permeability of the membranes

to water affects the contrast of the MR signal. Different regimes

have been considered into the past [7] and means to measure

water permeability at the vascular wall are still under development

[48]. Based on the approach used for CA transport in this study,

the water transport across membranes could be modeled.

Thereby, transcytolemnal water exchange could be accounted

for [49] at the expense of computational time.

The specific saturation-recovery sequence used in this study

may appear very specific. In particular TR is longer that usual.

This is due to the specific requirements of DCE-MRI experiments

acquired with spirals readout [26]. This however may lead to peak

saturation when estimating the AIF in vivo. Other MR sequences

can be modeled with our approach such as spoiled GE or

inversion-recovery sequences. RF spoiling can easily be imple-

mented. For gradient spoiling, the gradient strength must be

Figure 12. Example of the simulation with impermeable cells placed in the extravascular space. The simulation parameters are: kpe~k0

and DCA~Dfree. At t~TF (a) Concentration map C(TF ) with vessels in black and cells in grey. (b) Magnetic field perturbation DB(TF ). (c)
Concentration profiles derived from the simulated MR signal and using Eqs.[16–17] at 3 different TE . The black lines correspond to the fit obtained
with the Toft model. Note the fluctuations in the concentration profiles obtained at long TE . This can be ascribed to the additional magnetic field
perturbations induced by the cell interfaces which balance the signal enhancement. Plane size 70|70mm2 .
doi:10.1371/journal.pone.0057636.g012
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adapted to the lattice size so that the phase evolution of the water

molecules remains coherent at the edges of the lattice. Such a

sequence is provided with the source code but additional

validation steps are required.

When applying the Tofts model for the analysis, an exact AIF

was assumed. The AIF estimation is critical in DCE and is often

considered as the main source of error in the permeability

estimate. An alternate way is to derive the AIF from the MR signal

provided by the blood compartment. This would be more similar

to an in vivo situation and the AIF peak saturation effect could be

investigated depending on the MR sequence used.

To be more practical the simulation should also incorporate a

noise model for the signal. This was not included in the model

since the aims was to disentangle the various contributions to the

signal. Given the small impact of the CA diffusion on the

permeability, it might be worthwhile to confirm if the effects

described are observed in presence of noise.

The MR simulation strategies proposed in this study could also

be associated to other physiological simulation environments

which take into account more complex and realistic compartment

models (for instance MMID4, Multiple indicator, Multiple path,

Indicator Dilution 4 region model, National Simulation Resource,

Department of Bioengineering, University of Washington, Seattle,

WA, USA). Extensions of the algorithm to the fields of DSC-MRI

or arterial spin labeling could also be considered.

This simulation source code is under the GNU GPL license and

is available at http://neurosciences.ujf-grenoble.fr/equipe5.

Conclusion

We proposed a versatile 2D simulation tool to model the MR

signal in DCE-MRI experiments. We presented how we combined

the compartment approach used for DCE-MRI analysis with the

physical mechanisms involved in MR contrast. Additionally, we

provided a means to efficiently simulate the diffusion of the CA in

presence of impermeable compartments. While our results are

consistent with in vivo results, some improvements and optimiza-

tions are still required. The variability of the MR signal across

different sets of vascular networks must be studied (number of

vessels and distribution in space). The model of the blood flow can

be refined and the effect of the arising magnetic field perturbations

due to extravascular cell interfaces and CA leakage requires

further investigations.

Many other perfusion studies may be foreseen using the

proposed approach. Different MRI sequences can be investigated.

Different biophysical models used to analyze DCE experiments

can be compared. Various techniques employed to correct for CA

extravasation in DSC experiments can be evaluated. The shape of

the AIF can also be optimized. These studies may be performed at

all magnetic fields and for different tissue types, adjusting

parameters such as cell porosity, cell magnetic susceptibility, vessel

radius or density. These numerical approaches, in addition to

providing a means to deepen our understanding of DCE-MRI, are

extremely desirable from an ethical and a financial points of view.
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