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Background. In many studies with longitudinal data, time-dependent covariates can only be measured intermittently (not at all
observation times), and this presents difficulties for standard statistical analyses. This situation is common in medical studies, and
methods that deal with this challenge would be useful. Methods. In this study, we performed the seemingly unrelated regression
(SUR) based models, with respect to each observation time in longitudinal data with intermittently observed time-dependent
covariates and further compared these models with mixed-effect regression models (MRMs) under three classic imputation proce-
dures. Simulation studies were performed to compare the sample size properties of the estimated coefficients for different modeling
choices. Results. In general, the proposed models in the presence of intermittently observed time-dependent covariates showed a
good performance. However, when we considered only the observed values of the covariate without any imputations, the resulted
biases were greater. The performances of the proposed SUR-based models in comparison with MRM using classic imputation
methods were nearly similar with approximately equal amounts of bias and MSE. Conclusion. The simulation study suggests that
the SUR-based models work as efficiently as MRM in the case of intermittently observed time-dependent covariates. Thus, it can
be used as an alternative to MRM.

1. Introduction

Time-dependent covariates are common in longitudinal
studies, and they may be missing thoroughly for some obser-
vations times, along with the outcome variable. This is a
special kind of missing covariate which is called sporadic or
intermittent missing (i.e., subjects with missing observations
between observed time points) [1–5]. Sometimes, these
intermittent missing observations may occur due to the
design of the study, since some of the time-dependent covari-
ates are costly or may not be necessary to be measured at all
time points, especially in medical studies [6–9]. For example,
in determining the prognosis of hospitalized patients, it is
necessary to measure some blood profiles at different time
points because the costs of measurements are high or

frequent measurements may cause harm to the patients.
Moreover, in the case of hemodialysis patients, during the
dialysis session, some factors such as blood pressure or levels
of magnesium may be measured at frequent intervals for each
patient, but others such as blood urea nitrogen (BUN) may
be measured only at the beginning and the end of the study.

Most of the existing standard statistical models typically
require covariates to be completely observed. However, this
assumption is not realistic in the presence of intermittently
observed time-dependent covariates [10]. Lack of simulta-
neous measurement of time-dependent covariates leads to
unobserved covariates and unbalances the design matrix. In
such situations, the covariate is considered to be missing, but
in actuality, it is simply not measured.
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For analyzing incomplete and unbalanced longitudinal
data with numerical response variable, there are several
reasonable methods including mixed-effect regression model
(MRMs). MRM has several desirable features that make it
useful in longitudinal research such as including the subjects
with missing covariate across time in the analysis. While
MRM does allow incomplete data across time, data must be
complete within the given time point (in terms of both the
dependent variable and covariates) for that time point to
be included in the analysis [11]. To handle this problem of
MRM, several naive simple approaches have been developed
including (1) complete case analysis (CC) or list-wise dele-
tion, (2) using baseline observation carried forward (BOCF),
and (3) using last observation carried forward (LOCF) [12–
16].There are some studies that show the application of these
naive methods such as that conducted by Roy and Lin [10]
about their resulting asymptotic bias while we choose them
for dealing with missing covariates. However, little is known
about their performance in spite of the fact that they are a
commonly used ways of imputation for data with missing
time-dependent covariates.

In addition, most of classical analytic techniques for
intermittent observation of time-dependent covariates have
centred on models using an individual formulation of multi-
variate linear models. Examples are the random-effect model
proposed by Jennrich and Schluchter [17] or the proposed
models of Roy and Lin [10, 12]. However, alternate methods
can be expressed with respect to each observation time. This
formulation introduces several correlated models with some
similar and different parameters simultaneously, as in seem-
ingly unrelated regression (SUR) models of Zellner [18].
There are some proposals based on this method for unbal-
anced and incomplete longitudinal data like the proposed
models of Park and Woolson [19]. Although the application
of their model included time-dependent covariates, they
simply assumed that if response variable y for ith subject at
time j is observed, then the covariate vector of ith subject
at time j is always observed. In their study, missing observa-
tions are assumed to be missing at random. However, this
condition is not possible in presence of intermittent observa-
tion of time-dependent covariates.

In the present study, we intend to view the SUR model
in the context of longitudinal data and to examine its per-
formance in presence of intermittently observed time-
dependent covariates which is a common situation in med-
ical studies. For this purpose, we considered the situation
where the outcome variable was observed completely, but the
time-dependent covariates could be only measured at some
of the observation times for all cases. Moreover, we con-
sidered continuous outcome and time-dependent covariate.
We first performed the SUR-based model for longitudinal
data with time-dependent covariates measured at the same
time points, and, further, the performance of this model as
compared with MRM was evaluated. We next proposed some
naive approaches based on SUR model for longitudinal data
with intermittently observed time-dependent covariates.
Furthermore, the capabilities of the proposed models were
compared to MRM under classic approaches for missing
covariate including complete case analysis, BOCF, and LOCF.

2. Methods

2.1. Mixed-Effect Regression Model. Suppose that there are n
subjects and t time points for which data are collected. Let
yi j be a response variable and Xij = (xi j1, ..., xi jq)′ be a co-
variate vector of the ith subject (i = 1, . . . ,n) observed at time
j ( j = 1, . . . , t), where xi jk represents the kth covariate (k =
1, . . . , q) for given i and j. When the outcome is continuous,
the use of MRM for this kind of data is common. A basic
characteristic of these models is the inclusion of random
subject effects into regression models in order to take into
account the effect of subject on their repeated observations.
These random subject effects, thus, describe each subject’s
trend across time and explain the correlational structure of
longitudinal data. The model is written as

yi j = β0 j + β1 jtimei j + β1xi j1 + · · · + βqxi jq + εi j , (1)

where some coefficients including β0 j and β1 j may be ran-
dom [20].

As we mentioned earlier, while MRM can handle the
dropout, data must be complete within the given time point
(in terms of both the dependent variable and covariates) for
that time point to be included in the analysis. However, there
are three naive approaches for handling missing in covariate
which enables one to fit MRM models that assume that
covariates are completely observed. These naive approaches
are baseline measure throughout, carrying forward the last
observation, and list-wise deletion (complete case analysis).

In list-wise deletion method, cases with missing data
were simply deleted from the data sets. This is the easiest
approach in handling the missing covariates. In the other
simple naive approach, baseline approach or baseline obser-
vation carried forward (BOCF) unobserved time-depen-
dent covariates were replaced by baseline measure of those
covariates. In this method, we assume that the time-depen-
dent covariates have not changed since baseline. And finally,
LOCF approach which simply fills the missing covariates data
by carrying forward the last observed value and assuming
that the values at the time of dropout are the same as those
of the previous values. The question of interest is how much
bias would arise by doing so.

2.2. Seemingly Unrelated Regression Model. Model (1) can
be presented through a system of related equations by
considering a set of t linear equations for each t time points.
For simplicity, we assumed complete observation of outcome
variables at all t time points.

For expression of the model at each time point, let yj be
an n × 1 observed response vector and Xjk = (x1 jk, . . . , xnjk)
be an n × q known vector at time j. If we assume that we
observe the same number of variables for each time point,
then the model in the population is defined as

yi1 = α01 + α1xi11 + · · · + αqxi1q + εi1,

yi2 = α02 + α1xi21 + · · · + αqxi2q + εi2,

...

yit = α0t + α1xit1 + · · · + αqxitq + εit.

(2)
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Or, generally

yi j = α0 j+ α1xi j1 + · · · + αqxi jq + εi j ,

j = 1, 2, . . . , t, i = 1, 2, . . . ,n.
(3)

This model (2) or (3) is based on Zellner’s seemingly
unrelated regression model. We devised a specific model for
each time point, and this formulation introduced a system of
correlated equations with different covariates at each obser-
vation time, some of which simultaneously could have time-
invariant predictor variables such as sex. Nevertheless, cor-
relation across the errors in different equations can provide
links that can be exploited in estimation.

As presented in models (2) or (3), some restrictions were
placed on the coefficients for each k covariate to be the same
for all time points. By considering these restrictions, we can
have a unique effect for each covariate as in MRM. The
assumptions that we make about εj is that it is uncorrelated
with the explanatory variables in all equations. In other
words, we assumed that εj and xj are orthogonal in the con-
ditional mean sense [21].

In model (2), we assumed that the same set of variables
is observed for each time point which is usually an unreal
assumption especially in medical studies because of intermit-
tent observation of time-dependent covariates. Thus, some
alternative approaches to handle sporadic or intermittent
covariates are introduced.

Consider that there are n subjects and t time points for
which data on 3 variables including continuous outcome
variable Y , a continuous time-dependent covariate X , and
a time-invariant covariate Z were collected. For simplicity,
consider that an outcome variable is measured completely at
all t time points but the time-dependent covariate X is not
measured, for example, at time s. We also assumed complete
data on variable Z. Our proposed methods for this situation
based on model (2) are presented in three models as follows.
The easiest form is

yi1 = α01 + α1zi + α2xi1 + εi1, j = 1,

...

yis = α0s + α1zi + εis, j = s,

...

yit = α0t + α1zi + α2xit + εit, j = t,

(4)

where i represents the subject and j represents the time
index. This is similar to complete case analysis of MRM, in
which only the observed data without any imputations are
used. However, there is a substantial difference; SUR model
(4) uses all the available data, but MRM in complete case
analysis deletes the observed yis when the value of the
covariate at that time point is missing.

Secondly, the application of BOCF to SUR can be exem-
plarily described as

yi1 = α01 + α1zi + α2xi1 + εi1, j = 1,

...

yis = α0s + α1zi + α2xi1 + εis, j = s,

...

yit = α0t + α1zi + α2xit + εit, j = t.

(5)

Its difference from model (4) is in placing xi1 instead of
unobserved covariate xis.

And finally, the third approach is

yi1 = α01 + α1zi + α2xi1 + εi1, j = 1,

...

yis = α0s + α1zi + α2xi(s−1) + εis, j = s,

...

yit = α0t + α1zi + α2xit + εit, j = t,

(6)

which is interpreted as the application of LOCF to SUR
model. The difference between models (5) and (6) is the dif-
ference between xi1 and xi(s−1) as the input in the right-hand
side of yis.

Similar to model (2), we assumed in all models (4), (5),
and (6) that εj is uncorrelated with the explanatory variables
in all equations (i.e., E(εj | xj) = 0, for j = 1, . . . , t) [21]. We
considered the same coefficients for effect of z and x at all
equations as α1 and α2, respectively. Furthermore, the para-
meter α0 j simply denotes a different aggregate time effect in
each time point.

Since the properties of SUR model in the presence of
intermittently observed time-dependent covariates had not
been evaluated in the previous studies, we investigated the
behaviour of this model under various conditions by means
of simulation studies and also compared its performance
with MRM under three classic imputation methods, includ-
ing complete case analysis, BOCF, and LOCF.

2.3. Simulation Study. We studied the performances of the
previously mentioned models, in terms of the amount of bias
and MSE of the estimators, by simulation in SAS statistical
package V 9.1 (SAS Inst., Cary, USA). The bias is the devia-
tion in an estimate from the true quantity, which can indicate
the performance of the methods being assessed, and the
MSE provides a useful measure of the overall accuracy, as it
incorporates both measures of bias and variability [22].

For simulation design, we used data from a psychiatric
study by Hedeker et al. [23] which is extensively used in many
methodological studies to examine the validity of the pro-
posed models [24]. The objective of the study was to describe
the longitudinal relationship between imipramine (IMI) and
desipramine (DMI) plasma levels and clinical response in 66
depressed inpatients. Following a baseline placebo period of
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1 week, patients received 225 mg/day doses of IMI for 4 weeks
of the study. Additionally, the patients were rated with the
Hamilton Depression Rating Scale (HDRS) [23] twice during
the baseline placebo week (at the start, and end of this week)
as well as at the end of each of the four treatment weeks of the
study. These HDRS scores represent the dependent variables
measured across time. Higher scores on HDRS represent
higher levels of depression. Blood samples, drawn weekly for
4 weeks, 15 hours after the last drug intake of each patient,
were assayed for IMI and DMI concentrations; these will be
treated as time-dependent covariates.

The sex and baseline depression were recorded for each
patients. Diagnosis of the baseline depression classified as
two types. The first type, nonendogenous or reactive depres-
sion, is associated with some tragic life events such as be-
reavement, whereas the second type, endogenous depression,
is not a result of any specific event and appears to occur
spontaneously.

A log transformation is used for IMI and DMI, since an
inspection of the data indicated that the magnitude of these
measurements varied greatly between individuals (from 4 to
312 mg/L for IMI and from 1 to 740 mg/L for DMI).

Although the total number of subjects in this study was
66, we only considered 52 subjects that had all the measures
at the end of four weeks, and it was coded as 0, 1, 2, and 3 for
these respective time points. Because the purpose of the
present study is to examine the performance of the proposed
models for intermittently observed time-dependent covari-
ates, other kinds of missing data such as attrition or missing
in response variable were omitted. We applied different
mixed-effect regression model for these data, but the best
model (it has the smallest Akaike information criterion
(AIC)) was random coefficient model.

We generated complete data with different sample sizes
(n = 20, 60, 120, and 240) from the random coefficient
model

HDRSi j =
(
β0 + u0

)
+
(
β1 + u1

)∗week

+ β2 ∗ sex + β3 ∗Diag + β4 ∗ IMIi j

+ β5 ∗DMIi j + εi j .

(7)

Here u0 and u1 are subject-specific random effects for inter-
cept and slope, respectively, which are from a normal dis-
tribution with a mean of 0 and variance of σ2

0 and σ2
1 , respec-

tively. εi j is the random error from a normal distribution with
a mean of 0 and a variance of σ2.

The regression parameters β0, β1, β2, β3, β4, and β5 are
the fixed effects for intercept, week, sex, Diag, IMI, and DMI,
respectively. The estimated parameters of model (7) based on
restricted maximum likelihood estimation (REML) method
for 52 subjects are obtained as
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20.63 0.48
0.48 2.59

)

,

εi j ∼ N(0, 10.10),

(8)

respectively. For this simulation study, we assumed both
a continuous response and continuous time-dependent
covariates. In order to simulate the trajectories of HDRSi j , it
was necessary to simulate the trajectories of longitudinal
covariates IMIi j and DMIi j . We generated two time-depen-
dent covariates of interest (IMIi j and DMIi j) from linear
regression against week with a random intercept,

IMIi j =
(
γ01 + r01

)
+ γ11week + εi j1,

DMIi j =
(
γ02 + r02

)
+ γ12week + εi j2,

(9)

where γ01, γ02, γ11, and γ12 are the fixed intercepts and slopes,
respectively; r01, r02, εi j1, and εi j2 are from normal distribu-
tion with a mean of 0 and a variance of δ01, δ02, δ11 and δ12,
respectively. We set

(
γ̂01

γ̂11

)

=
(

3.39
0.02

)

, r01 ∼ N(0, 0.43),

εi j1 ∼ N(0, 0.04),
(
γ̂02

γ̂12

)

=
(

4.62
0.07

)

, r02 ∼ N(0, 0.57),

εi j2 ∼ N(0, 0.04),

(10)

for generating trajectories of IMI and DMI (based on REML
estimated parameters of models (9)). Using these estimates
and estimates from model (7), 500 simulations are carried
out to generate complete data with different sample sizes.

The intermittent observations of time-dependent covari-
ates are determined as follow. For simplicity, we assumed that
all the subjects had complete data for their response variables
and also for their time-dependent covariates at baseline and
at the end. However, our interested time-dependent covari-
ates, IMIi j and DMIi j , might not be measured at weeks 1 or 2
or both time points for each covariate. By considering these
kinds of missing data points and t = 4, we had 15 different
scenarios for intermittent observation of time-dependent
covariates. Table 1 presents these scenarios.

We based all the simulations reported on 500 replications
as before. Each simulated data set with intermittently obser-
ved covariates was analyzed using different methods includ-
ing MRM with complete case analysis, baseline value
throughout, and last observation carried forward and also
SUR models (4), (5), and (6). We indicated these methods
by MRMCC, MRMBOCF, MRMLOCF, SURCC, SURBOCF, and
SURLOCF, respectively. Additionally, the performances of
these methods were compared for all scenarios of intermit-
tent observation of time-dependent covariates IMI and DMI.
Moreover, we compared the performance of the proposed
model with MRM for complete simulated data (simulated
data sets with completely observation of time-dependent
covariates and response variable).

The relative bias and mean square error of both the pro-

posed models and MRM were computed in each step by β̂−β
and (β̂−β)2 +(SE(β̂))

2
, respectively. The estimation methods

for the mixed model and the proposed SUR model were
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Table 1: Specification of all situations of intermittently observed time-dependent covariates to be imposed on IMI and DMI.

Situation

Covariate

IMI DMI

Week

0 1 2 3 0 1 2 3

1 O O O O O O U O

2 O O U O O O O O

3 O O O O O U O O

4 O U O O O O O O

5 O O O O O U U O

6 O U U O O O O O

7 O U O O O U O O

8 O O U O O O U O

9 O U U O O U U O

10 O O U O O U O O

11 O U O O O O U O

12 O U U O O U O O

13 O U U O O O U O

14 O U O O O U U O

15 O O U O O U U O
∗

Note: “O” means that the covariate at that time point was “Observed”, and “U” means that it was “Unobserved” at that time point.

Table 2: Simulation results (summary of estimated parameters, bias, and MSE) for complete observation of time-dependent covariates with
different sample sizes (n = 20, 60, 120, and 240).

Parameter
(true value)

Method
Sample size = 20 Sample size = 60 Sample size = 120 Sample size = 240
↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

β2 REML −1.01 .12 7.24 −1.14 −.009 1.89 −1.12 .01 .828 −1.14 −.006 .42

(−1.13) ITSUR −1.003 .13 7.37 −1.14 −.009 1.89 −1.12 .01 .829 −1.14 −.006 .42

β3 REML .18 −.04 7.33 .14 −.09 1.90 .21 −.02 .864 .25 .02 .42

(.23) ITSUR .18 −.05 7.40 .14 −.09 1.89 .21 −.02 .863 .25 .02 .42

β4 REML .03 .04 3.32 −.01 −.004 .82 −.02 −.009 .39 −.02 −.009 .18

(−.01) ITSUR .02 .03 3.39 −.009 .0004 .83 −.02 −.008 .39 −.02 −.009 .18

β5 REML −1.11 .006 2.25 −1.12 −.003 .57 −1.08 .04 .26 −1.10 .02 .13

(−1.12) ITSUR −1.11 .01 2.36 −1.12 −.005 .58 −1.09 .03 .27 −1.10 .02 .13
∗Note: REML represents the estimated parameters from MRM, and ITSUR represents that of the SUR model.

restricted maximum likelihood estimation (REML) and iter-
ated seemingly unrelated regression (ITSUR), respectively.
The ITSUR method uses information about contempora-
neous correlation among error terms across equations in
an attempt to improve the efficiency of parameter estimates
[25]. It is drawn from the iteration of SUR method of esti-
mation by recomputing the estimate of the cross-equation
covariance matrix from the SUR residuals and then com-
puting new SUR estimates based on this updated covariance
matrix estimate. Continuing this iteration until convergence
produces ITSUR estimates.

3. Results

Tables 2, 3, 4, and 5 show the results from the simulation
study. Table 2 presents the findings based on complete
observation of time-dependent covariate, and Tables 3 to 5

show the findings based on three situations of intermittent
observation of IMI and DMI from Table 1. The mean of
estimated coefficients of interest, the amount of bias, and the
mean square errors of these estimated coefficients based on
different sample sizes of 20, 60, 120, and 240 quantify these
findings. In addition, we calculate and report the naive
approaches of handling intermittently observed time-depen-
dent covariates IMI and DMI in Tables 3 to 5. The results
from other situations of Table 1 were similar (not shown).

In general, when the data are complete, the estimated
parameters through the proposed model are similar to those
of MRM for small, medium, and large sample sizes; also, it
has little bias (less than 0.13) and MSE for all estimators of
interest. Moreover, the differences between the two models
become negligible as the sample size increases. The amount
of bias of the proposed model for large sample sizes (120 or
240) is less than 0.04.
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Table 3: Simulation results (summary of estimated parameters, bias, and MSE) for intermittent observation of time-dependent covariates
(situation 1 from Table 1) with different sample sizes (n = 20, 60, 120, and 240).

Parameter
(true value)

Method
Sample size = 20 Sample size = 60 Sample size = 120 Sample size = 240
↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

β2

(−1.13)

SURCC −.94 .19 7.25 −1.15 −.02 1.87 −1.12 .008 .83 −1.13 −.006 .43

MRMCC −1.003 .13 6.39 −1.14 −.01 1.86 −1.12 .009 .84 −1.14 −.01 .43

SURBOCF −.99 .13 7.26 −1.14 −.01 1.89 −1.12 .01 .83 −1.14 −.007 .42

MRMBOCF −1.01 .12 6.05 −1.16 −.03 1.83 −1.12 .007 .82 −1.14 −.009 .42

SURLOCF −.98 .14 7.40 −1.14 −.01 1.88 −1.12 .01 .83 −1.14 −.007 .42

MRMLOCF −1.01 .12 6.18 −1.16 −.03 1.82 −1.12 .009 .83 −1.14 −.01 .42

β3

(.23)

SURCC .20 −.03 7.22 .15 −.08 1.90 .20 −.03 .87 .24 .009 .43

MRMCC .17 −.06 6.08 .14 −.09 1.90 .20 −.03 .87 .24 .01 .43

SURBOCF .21 −.02 7.29 .14 −.09 1.90 .21 −.02 .86 .24 .01 .42

MRMBOCF .12 −.11 5.88 .12 −.11 1.83 .20 −.03 .85 .24 .01 .42

SURLOCF .21 −.02 7.37 .12 −.10 1.85 .21 −.02 .85 .24 .01 .42

MRMLOCF .13 −.1 5.91 .12 −.11 1.82 .19 −.04 .85 .24 .01 .42

β4

(−.01)

SURCC .002 .01 3.42 −.02 −.006 .82 −.02 −.01 .39 −.02 .39 .18

MRMCC −.02 −.01 3.24 −.05 −.04 .91 −.03 −.02 .43 −.02 −.009 .18

SURBOCF .03 .04 3.39 −.01 −.001 .83 −.02 −.01 .39 −.02 −.01 .18

MRMBOCF −.03 −.02 2.67 −.02 −.007 .77 −.02 −.01 .37 −.02 −.01 .17

SURLOCF .02 .02 3.39 −.009 .0004 .83 −.02 −.008 .39 −.02 −.01 .18

MRMLOCF −.03 −.02 2.68 −.02 −.0006 .76 −.02 −.01 .37 −.02 −.01 .17

β5

(−1.12)

SURCC −.45 .67 1.56 −.49 .63 .66 −.45 .67 .58 −.46 .66 .51

MRMCC −1.16 −.04 2.20 −1.13 −.009 .61 −1.08 .04 .28 −1.10 .02 .14

SURBOCF −1.03 .09 2.37 −1.03 .09 .60 −.99 .13 .29 −1.02 .10 .14

MRMBOCF −.97 .15 1.81 −.98 .14 .55 −.95 .17 .29 −.97 .14 .14

SURLOCF −1.06 .06 2.48 −1.05 −.07 .58 −1.006 .11 .27 −1.02 .09 .14

MRMLOCF −1.06 .06 1.96 −1.03 −.09 .54 −.99 .13 .27 −1.01 .10 .14
∗Note: SURCC, MRMCC, SURBOCF, MRMBOCF, SURLOCF, and MRMLOCF represent the estimated parameters from MRM and SUR models under complete
case (CC) analysis, baseline observation carried forward (BOCF), and last observation carried forward (LOCF) method, respectively.

Table 3 presents the findings of MRM and the SUR model
for the situation 1 for which we have complete observed
values for HDRS and IMI, but DMI was measured only at
baseline (0), 1, and 3 weeks.

Table 4 presents the coefficients, bias, and MSE of the
estimators from both the proposed model and MRM for the
situation 4. All values for HDRS and DMI were available for
this situation, but IMI was measured only at baseline (0), 2
and 3 weeks.

Table 5 presents the performance of the proposed model
compared to naive approaches of handling intermittent
observed time-dependent covariates IMI and DMI for situa-
tion 9 for which we have measured HDRS at all weeks;
however, DMI and IMI were measured only at baseline (0)
and 3 weeks.

Generally, the results for the parameters of interest are
almost the same when we fit MRM and SUR models with
BOCF and LOCF imputation methods, respectively. How-
ever, the best performance of these models in the simulated
data for all sample sizes was fitted models based on LOCF
imputation method.

The proposed BOCF and LOCF based on SUR model
yielded nearly unbiased estimates of parameters (the amount
of bias less than 0.15 in all cases). The LOCF approach in
SUR model outperforms CC in every instance. However, the
performance of LOCF and BOCF based methods for the SUR
model was similar because, in our simulated data, there is a
linear relationship between IMI and DMI through the weeks
of the study.

As shown in Tables 3, 4, and 5, the proposed SUR model
by last observed measure of the covariate carried forward in
the model yielded parameters with low bias even in situation
9 for which we observed IMI and DMI only at two time
points. The amount of bias for SUR model based on LOCF
approach was 0.07 or less for effects of IMI and DMI.
Not surprisingly, parameters from the baseline approach are
nearly as unbiased as the LOCF approaches; the amount of
bias is less than 0.13.

In MRM model, three naive approaches were used, and
their performances were compared to each other and also to
the proposed SUR model. MRM based on the complete case
analysis led to bias of less than 0.2 for estimated parameters
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Table 4: Simulation results (summary of estimated parameters, bias, and MSE) for intermittent observation of time-dependent covariates
(situation 4 from Table 1) with different sample sizes (n = 20, 60, 120, and 240).

Parameter
(True value)

Method
Sample size = 20 Sample size = 60 Sample size = 120 Sample size = 240
↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

β2

(−1.13)

SURCC −1.002 .13 7.13 −1.14 −.01 1.87 −1.12 .01 .83 −1.13 −.005 .42

MRMCC −1.01 .13 6.75 −1.17 −.04 1.94 −1.13 .002 .87 −1.14 −.007 .44

SURBOCF −1.02 .11 7.42 −1.14 −.01 1.88 −1.12 .01 .83 −1.14 −.006 .42

MRMBOCF −1.03 .10 6.22 −1.16 −.03 1.82 −1.12 .01 .83 −1.14 −.009 .42

SURLOCF −1.02 .11 7.42 −1.14 −.01 1.88 −1.12 .01 .83 −1.14 −.006 .42

MRMLOCF −1.03 .10 6.22 −1.16 −.03 1.82 −1.12 .01 .83 −1.14 −.009 .42

β3

(.23)

SURCC .18 −.05 7.17 .14 −.09 1.88 .21 −.02 .86 .24 .01 .43

MRMCC .16 −.07 6.32 .12 −.11 1.94 .19 −.03 .89 .23 .004 .44

SURBOCF .18 −.05 7.59 .14 −.08 1.89 .21 −.02 .86 .25 .01 .42

MRMBOCF .15 −.08 5.97 .13 −.10 1.81 .20 −.03 .85 .24 .01 .42

SURLOCF .18 −.05 7.59 .14 −.08 1.89 .21 −.02 .86 .25 .01 .42

MRMLOCF .15 −.08 5.97 .13 −.10 1.81 .20 −.03 .85 .24 .01 .42

β4

(−.01)

SURCC −.08 −.07 1.79 −.02 −.009 .47 −.02 −.01 .23 −.01 −.004 .10

MRMCC −.02 −.01 3.36 .01 .02 .93 −.01 −.004 .45 −.02 −.008 .19

SURBOCF .04 .05 3.62 −.02 .02 .81 −.01 −.0004 .41 −.02 −.008 .18

MRMBOCF −.02 −.01 2.76 .009 .02 .76 −.01 −.004 .39 −.02 −.008 .17

SURLOCF .04 .05 3.62 −.02 .02 .81 −.01 −.0004 .41 −.02 −.008 .18

MRMLOCF −.02 −.01 2.76 .009 .02 .76 −.01 −.004 .39 −.02 −.008 .17

β5

(−1.12)

SURCC −1.10 .02 2.27 −1.12 −.005 .57 −1.08 .03 .27 −1.10 .02 .13

MRMCC −1.13 −.01 2.40 −1.15 −.03 .64 −1.09 .03 .32 −1.10 .02 .15

SURBOCF −1.11 .006 2.39 −1.12 −.004 .57 −1.08 .03 .27 −1.10 .02 .13

MRMBOCF −1.14 −.02 1.87 −1.13 −.006 .54 −1.08 .04 .26 −1.10 .02 .13

SURLOCF −1.11 .006 2.39 −1.12 −.004 .57 −1.08 .03 .27 −1.10 .02 .13

MRMLOCF −1.14 −.02 1.87 −1.13 −.006 .54 −1.08 .04 .26 −1.10 .02 .13
∗Note: SURCC, MRMCC, SURBOCF, MRMBOCF, SURLOCF, and MRMLOCF represent the estimated parameters from MRM and SUR models under complete
case (CC) analysis, baseline observation carried forward (BOCF), and last observation carried forward (LOCF) method, respectively.

in each scenario. Complete case analysis based on SUR
model in some of the situations performed unstable for
parameters, with bias ranging from 0.01 to 0.93. This can
occur because when we ignored some independent variables
in the regression models, it decreased the determination
coefficient of the model. However, the amount of bias that
is considered troublesome has varied from (1/2)SE(β̂) [26]

to 2SE(β̂) [27] in different studies. The amounts of bias for
most of the estimated coefficients in the present study were

even smaller than (1/2)SE(β̂).
The MRM based on LOCF approach performs as well as

SUR model based on LOCF approach, with amount of bias
less than 0.16. The baseline value carried forward in MRM
performed similar to LOCF approach. The amount of bias
was not substantially decreased if we increased the sample
size from 20 to 240.

In general, when the bias is nearly the same, the MSEs
of the estimated coefficients in SUR model are slightly
larger than those in MRM. However, this difference becomes
smaller and smaller as the sample size increases.

4. Worked Example

This example is motivated by our research on evaluating the
changes of biochemical levels of magnesium (Mg), blood
urea nitrogen (BUN), and full history and clinical assessment
of serum creatinine (Cr), albumin, hemoglobin, calcium
(Ca), sodium (Na), potassium (K), and phosphorous (P)
and their relation to intradialytic hypotension (IDH) in 21
chronic hemodialysis patients in a midweek single dialysis
session. According to national kidney foundation guideline
(NFK-DOQI guideline), IDH was defined as a decrease of
systolic blood pressure of more than 20 mmHg of the basal
value [27, 28]. Systolic blood pressure and serial assessment
of magnesium, potassium, phosphorus, calcium, and sodium
were measured at the start of the hemodialysis session, 2
hours later, and at the end of the session. Among biochemical
determining factors, the levels of BUN and weight were
measured at the start and the end of the session and clinical
examination of the other factors such as serum creatinine,
albumin, and haemoglobin were measured only at the start
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Table 5: Simulation results (summary of estimated parameters, bias, and MSE) for intermittent observation of time-dependent covariates
(situation 9 from Table 1) with different sample sizes (n = 20, 60, 120, and 240).

Parameter
(true value)

Method
Sample size = 20 Sample size = 60 Sample size = 120 Sample size = 240

↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

↼
β Bias MSE

β2

(−1.13)

SURCC −.95 .18 6.64 −1.14 −.01 1.86 −1.12 .01 .83 −1.13 −.003 .43

MRMCC −.99 .14 7.43 −1.16 −.03 2.007 −1.13 .002 .89 −1.14 −.01 .46

SURBOCF −1.04 .09 7.90 −1.14 −.01 1.92 −1.12 .008 .83 −1.14 −.006 .42

MRMBOCF −1.03 .10 6.53 −1.16 −.03 1.85 −1.12 .006 .82 −1.14 −.01 .42

SURLOCF −1.04 .09 7.90 −1.14 −.01 1.92 −1.12 .008 .83 −1.14 −.006 .42

MRMLOCF −1.03 .10 6.53 −1.16 −.03 1.85 −1.12 .006 .82 −1.14 −.01 .42

β3

(.23)

SURCC .20 −.03 6.77 .14 −.09 1.90 .20 −.02 .88 .24 .007 .44

MRMCC .20 −.02 6.70 .12 −.11 2.008 .19 −.04 .93 .23 −.002 .45

SURBOCF .24 .01 7.53 .14 −.08 1.93 .21 −.02 .87 .24 .01 .42

MRMBOCF .17 −.05 5.95 .12 −.11 1.85 .19 −.03 .86 .24 .01 .43

SURLOCF .24 .01 7.53 .14 −.08 1.93 .21 −.02 .87 .24 .01 .42

MRMLOCF .17 −.05 5.95 .12 −.11 1.85 .19 −.03 .86 .24 .01 .43

β4

(−.01)

SURCC −.11 −.10 1.58 −.007 .003 .41 −.02 −.01 .20 −.02 −.005 .09

MRMCC −.02 −.008 4.16 .01 .003 1.13 −.03 −.02 .56 −.02 −.02 .25

SURBOCF .02 .03 4.10 .02 .02 .93 −.007 .002 .46 −.01 −.001 .20

MRMBOCF −.03 −.02 3.38 .02 .03 .88 .002 .01 .44 .005 .01 .20

SURLOCF .02 .03 4.10 .02 .02 .93 −.007 .002 .46 −.01 −.001 .20

MRMLOCF −.03 −.02 3.38 .02 .03 .88 .002 .01 .44 .005 .01 .20

β5

(−1.12)

SURCC −.19 .93 2.02 −.28 .84 1.001 −.27 .85 .86 −.26 .86 .80

MRMCC −1.14 −.02 2.89 −1.16 −.04 .77 −1.09 .03 .37 −1.10 .02 .18

SURBOCF −1.05 .07 2.82 −1.02 −.09 .71 −.96 .15 .34 −.99 .13 .17

MRMBOCF −.95 .16 2.27 −.97 .15 .65 −.92 .20 .35 −.94 .18 .18

SURLOCF −1.05 .07 2.82 −1.02 −.09 .71 −.96 .15 .34 −.99 .13 .17

MRMLOCF −.95 .16 2.27 −.97 .15 .65 −.92 .20 .35 −.94 .18 .18
∗Note: SURCC, MRMCC, SURBOCF, MRMBOCF, SURLOCF, and MRMLOCF represent the estimated parameters from MRM and SUR models under complete
case (CC) analysis, baseline observation carried forward (BOCF), and last observation carried forward (LOCF) method, respectively.

of the session. This fact motivated us to examine the per-
formance of the mentioned methods of the present study in
this data set.

In the first step of the analysis, covariates that have P
value under 0.25 in the univariate analysis (the results were
not shown) were considered in the last model which are levels
of Cr, K, P, BUN, and weight. The intermittently observed
time-dependent covariate of interest in this example is blood
urea nitrogen and weight. Based on AIC index, the best fitted
model is mixed-effect regression model with random effect
of intercept.

Table 6 presents the estimated coefficients and standard
error (SE) of each covariate from different proposed models.
As seen in the table, there is similarity between both esti-
mated coefficients and their standard errors from the pro-
posed model as compared with the mixed-effect regression
model in spite of small sample size (n = 21). These findings
are consistent with the results from our simulation study.
Consider the point that SUR model based on LOCF and
BOCF leads to the same result due to the fact that for unob-
served value of BUN after 2 hours the last observation and
baseline observation being the same. This situation also

happens for MRM. Thus, we only present the findings for
BOCF method in Table 6.

Additionally, among considered variables in the last
model, the effect of blood urea nitrogen is significant through
all models.

5. Discussion

Intermittently observed time-dependent covariates are rel-
atively common situation in practice. Sometimes, these
covariates are measured intermittently for all of the subjects.
This situation happens in medical applications commonly.
This specific research question about analyzing longitudinal
data with a special kind of intermittently observed time-
dependent covariate was our motivation for the present
study. We proposed a general class of multivariate linear
model with respect to each observation time. The proposed
model is based on SUR model, and it introduces several
correlated multivariate linear models with some similar
and different covariates at each observation time, like the
model proposed by Park and Woolson [19]. However, they
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Table 6: Summary of the estimated parameters and standard errors of different models for risk factors of intradialytic hypotension among
hemodialysis patients during a dialysis session.

Covariate
MRMCC SURCC MRMBOCF SURBOCF

coefficient (SE) coefficient (SE) coefficient (SE) coefficient (SE)

Cr (mg/dL) 0.20 (0.18) 0.18 (0.18) 0.19 (0.18) 0.17 (0.17)

Weight (kg) 0.39 (0.26) 0.12 (0.16) 0.49 (0.25) 0.44 (0.24)

BUN (mg/dL) −0.42 (0.15) −0.31 (0.15) −0.33 (0.10) −0.29 (0.16)

K (mg/dL) 7.19 (6.66) 8.13 (6.19) 6.87 (5.33) 6.01 (6.05)

P (mg/dL) 1.23 (2.58) −1.72 (1.70) −0.66 (1.52) −1.39 (1.72)
∗Note: Cr: creatinine; BUN: blood urea nitrogen; K: potassium; P: phosphorus.

considered that if yi j is observed, then xi j is always observed,
and missing observations are assumed to be missing at
random. We considered some restrictions on the parameters
to be the same for all similar covariates at each observation
time, and it led to fewer parameters and obtaining a unique
estimate for each covariate as mixed model. Furthermore, the
advantages of this model are its simple applicability, faster
speed of convergence, and the ease of estimation. The other
desirable feature of this method is that it does not require
any knowledge about the covariance structure and the dis-
tribution of random effects unlike mixed-effect regression
model. The presented models are quite standard and are not
novel, but we attempt to expose these models to medical
applications. Up to our knowledge, there is no comprehen-
sive approach for such intermittent observation of time-
dependent covariates in medical studies based on the pro-
posed SUR models.

Besides the main objectives of the study to handle inter-
mittent observation of time-dependent covariates in longi-
tudinal data, we examined the performance of SUR based
model for longitudinal data with covariates measured at the
same time points. For complete data, our simulation study
showed that the SUR model performs as efficient as the
MRM even in a small sample size. Moreover, SUR models
converge faster than MRM. These simulation results are
consistent with the models of Patel [29] and Verbyla and
Venables for complete and balanced longitudinal data [30].
However, they considered other estimation methods, and
also they did not compare models to MRM.

Park and Woolson proposed a SUR model for handling
incomplete and unbalanced longitudinal data [19]. They
considered two methods of estimation: one method is the
generalized least square (GLS) and the other iterative max-
imum likelihood estimation (MLE) using the EM algorithm.
In this study, we used ITSUR method as our estimation
method, and other kinds of classic imputation methods such
as BOCF or LOCF. In SUR model when we have both differ-
ent variables and some similar ones simultaneously for dif-
ferent response variables, ITSUR is one of the best methods
of estimation. Moreover, the two main motivations for the
use of ITSUR as our estimation method are (1) the use of
information about contemporaneous correlation among
error terms across equations in an attempt to improve the
efficiency of parameter estimates, and (2) imposition of re-
strictions in the involved parameters in different equations.

In the case of longitudinal data with intermittent obser-
vation of time-dependent covariates, at each time points, we
considered a univariate model for each measured response
and also the observed measure of each time-dependent co-
variate as an independent variable at that time point. For un-
observed value of the time-dependent covariate at that
specific time point, we considered 3 easy methods. Similar to
SUR models for complete observed time-dependent covari-
ate, we imposed restriction on the parameters to be the same
at all time points for that covariate. We put this restriction on
all the time-invariant covariates such as sex as well. Our find-
ings demonstrate that sometimes some bias can arise from
fitting the SUR model. However, based on the study of
Sinharay et al., this amount of bias could be negligible

because in all situations it is smaller than 2SE(β̂).
Among the introduced model for intermittent covariates

in longitudinal data, SUR model with last observation car-
ried forward has the best desirable performance. Moreover,
through this method, in all situations of Table 1, the amount

of bias was less than (1/2)SE(β̂). These findings are consistent
with MRM with LOCF method.

There many situations in medical and behavioral
research in which variables of interest are measured intermit-
tently. Oftentimes, these kinds of data are analyzed through
MRM. However, it is common place for educational re-
searchers to conduct SUR model for analyzing these kinds of
datasets. SUR models are underutilized and should be given
more consideration as an analytic technique due to their
elegant features.

There are some further points which are worth noting
to mention here. Firstly, in generating time-dependent co-
variates, we considered the linear relationship between var-
iable week and time-dependent covariates of interest (IMI
and DMI) based on Reisby’s dataset. Even so, sometimes
the time-dependent covariates change through the time by
curve linear relation. These kinds of relationships should
be a consideration of future investigations. Secondly, we
restricted our study to only continuous response and time-
dependent covariates. The application of the proposed
method for categorical responses or covariates could be
investigated in future studies.

Thirdly, we considered three classic imputation
approaches, and performances of other kinds of imputation
methods such as multiple imputations could be studied in
the forthcoming investigations. Finally, we simply assumed
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complete observation of the response variable, and we
did not address other kinds of missing covariates such as
attrition. Thus, future studies could examine the perfor-
mance of the proposed models in the presence of other kinds
of missing covariate in addition to intermittent observation
of the covariates in more depth.

6. Conclusion

The SUR model performs useful analysis of longitudinal data
with completely observed time-dependent covariates as
MRM. This model also shows desirable performance in pre-
sence of intermittently observed time-dependent covariates
even for small to medium sample sizes. Moreover, the
desirable features of these models including simplicity, faster
speed of convergence, and no need for knowledge about the
covariance structure and the distribution of random effects
unlike mixed-effect regression model make these models
applicable in experimental and medical studies.
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