

Article Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from Myriactis nepalensis Less.

Jikai Fu¹, Yang Gao² and Xiang Xing^{2,*}

- ¹ Sdu-Anu Joint Science College, Shandong University, Weihai 264209, China; jikai_fu@163.com
- ² Marine College, Shandong University, Weihai 264209, China; gygiang@email.sdu.edu.cn

* Correspondence: xingxiang@email.sdu.edu.cn

Abstract: In response to the need for novel therapeutic strategies to combat the development of microbial resistance, plant essential oils may represent a promising alternative source. This study set out to characterize the chemical composition and assess the antibacterial potential of Myriactis nepalensis Less. essential oil (MNEO). Essential oil isolated from M. nepalensis by hydrodistillation was analyzed using a GC-MS technique. The antibacterial properties of MNEO alone and combined with antibiotics (chloramphenicol and streptomycin) were tested via the disc diffusion, microbroth dilution, and checkerboard methods. MNEO was represented by oxygenated sesquiterpenes (60.3%) and sesquiterpene hydrocarbons (28.6%), with caryophyllene oxide, spathulenol, humulene epoxide II, β-elemene, neointermedeol, and β-caryophyllene as the main compounds. MNEO exhibited a strong antibacterial effect against Gram-positive bacteria, with MIC and MBC values of 0.039 mg/mL and 0.039–0.156 mg/mL, respectively, and synergistic effects were observed in both combinations with chloramphenicol and streptomycin. Furthermore, the antibiofilm and cytotoxic activities of MNEO were also evaluated. The crystal violet assay was used for quantification of Staphylococcus aureus biofilm formation, and an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was conducted to determine cell viability. The results revealed MNEO could dose-dependently inhibit Staphylococcus aureus biofilm formation and possessed potential cytotoxic on both normal and cancer cells (IC₅₀ values from 13.13 ± 1.90 to $35.22 \pm 8.36 \,\mu\text{g/mL}$). Overall, the results indicate that MNEO may have promising applications in the field of bacterial infections.

Keywords: Myriactis nepalensis Less.; essential oil; antibacterial; synergistic; cytotoxic; antibiofilm

1. Introduction

As resistant pathogens develop and spread, antibiotic resistance poses a major threat to the effective treatment of a growing number of infections caused by bacteria [1]. The establishment of resistance among bacterial infections is acknowledged as a major global public health problem [2,3]. Therefore, it is imperative to search for novel antimicrobial agents and alternative therapeutic strategies. The study of plant-derived natural products plays an extremely essential part in the development of new therapeutic agents [4]. Antimicrobial compounds that come from plants have been studied closely in the last few years [5].

Under growth conditions, plants produce a large number of secondary metabolites to adapt to biotic and abiotic stresses [6,7]; these metabolites are now well documented to exhibit broad biological functions and play important roles in the plant defense system against pathogenic assaults and environmental factors [8–11]. Among the plants' secondary metabolites, essential oils could be good candidates for new antimicrobial agents, as researchers have demonstrated that individual essential oils and their separated components exhibit antibacterial properties against a broad spectrum of microorganisms [12,13]. Essential oils are among the most prevalent naturally occurring antibacterial substances,

Citation: Fu, J.; Gao, Y.; Xing, X. Preliminary Study on Phytochemical Constituents and Biological Activities of Essential Oil from *Myriactis nepalensis* Less. *Molecules* **2022**, 27, 4631. https://doi.org/10.3390/ molecules27144631

Academic Editor: Manuela Labbozzetta

Received: 28 June 2022 Accepted: 18 July 2022 Published: 20 July 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). and they are frequently employed as additives, preservatives, and decontaminants [14]. In addition, combination therapy employing both essential oils and classic antimicrobial agents has proven effective in preventing the development of resistant strains [15]. When such interactions result in synergistic effects, they can also be employed to improve therapy efficiency. Another benefit of such combinations is that lower doses are employed, which reduces side effects and treatment costs [16].

Myriactis nepalensis Less. (Compositae) is a perennial herb belonging to the genus *Myriactis* (comprising approximately 10 species) and distributed throughout Southwestern and Southern China, growing at altitudes between 1250 and 3400 m. The plant is 15–100 cm high with a short and procumbent rhizome, erect stem, and simple leaf, with a capitulum type of inflorescence. The flowering and fruiting period is from April to November [17]. To the best of our knowledge, no prior studies have investigated the chemical composition and biological activities of the plant *Myriactis nepalensis* Less. Therefore, the present study aimed to characterize the essential oil composition and evaluate the antibacterial properties of MNEO alone and combined with traditional antibiotics, as well as its antibiofilm and cytotoxic activities.

2. Results

2.1. Chemical Composition of MNEO

The isolation yield for MNEO was 0.68% (w/w based on air-dried plant material). The phytochemical composition determined by GC-MS is presented in Table 1. Altogether, 78 components, accounting for 96.4% of the total composition of the MNEO, were identified (Table 1). Sesquiterpene compounds dominated the chemical composition of MNEO (88.9%), with oxygenated and hydrocarbon components accounting for 60.3% and 28.6%, respectively. The main components were found to be caryophyllene oxide (10.2%), spathulenol (7.3%), and humulene epoxide II (7.2%), followed by β -elemene (6.1%), neointermedeol (4.5%), and β -caryophyllene (4.1%).

Table 1. Chemical composition of *M. nepalensis* essential oil.

Peak No.	Compound	RI ^a	RI ^b	% Area
1	(E)-2-Octenal	1050	1049	1.1
2	Linalool	1098	1095	0.6
3	cis-Verbenol	1141	1137	0.1
4	α-Terpineol	1190	1186	0.1
5	<i>cis</i> -Myrtanol	1252	1250	0.2
6	(E)-2-Decenal	1259	1260	0.1
7	Bornyl acetate	1285	1284	0.1
8	Dihydroedulan	1295	1293	0.2
9	Menthyl acetate	1297	1294	0.1
10	Isomenthyl acetate	1306	1304	0.2
11	δ -Elemene	1338	1335	0.1
12	7-epi-Silphiperfol-5-ene	1346	1345	0.1
13	α-Cubebene	1350	1348	0.1
14	(E)-2-Undecenal	1361	1357	0.1
15	Cyclosativene	1369	1369	0.1
16	α-Ylangene	1373	1373	0.1
17	<i>α</i> -Copaene	1378	1374	0.3
18	β -Bourbonene	1387	1387	0.7
19	β -Elemene	1393	1389	6.1
20	<i>cis-α</i> -Bergamotene	1415	1411	0.8
21	β-Caryophyllene	1420	1417	4.1
22	γ -Elemene	1435	1434	1.0
23	Aromadendrene	1442	1439	0.1
24	α -Himachalene	1448	1449	0.1
25	α-Humulene	1455	1452	3.2
26	Alloaromadendrene	1460	1458	0.1
27	γ -Muurolene	1478	1478	1.5
28	Valencene	1491	1496	1.4
29	Viridiflorene	1493	1496	2.4
30	α-Selinene	1499	1498	2.0

Table 1. Cont.

31 a -Muurolene 1502 1500 0.8 32 β -Bisabolene 1508 1505 0.5 33 γ -Cadinene 1517 1513 0.7 34 Cubebol 1519 1514 0.1 35 a -Cadinene 1525 1522 1.2 36 cis -Secquisabinene hydrate 1538 1542 0.3 37 Selina 3.7(1)-Jeine 1543 1545 0.4 38 a -Calacortene 1546 1544 0.5 39 Dehydronerolidol 1563 1561 0.7 41 Mint oxide 1572 157 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salviai-4(1)-en-1-one 1598 1594 1.8 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1609 1608 7.2 47 1-epi-Cubenol 1624 1627 1.0 <th>Peak No.</th> <th>Compound</th> <th>RI ^a</th> <th>RI ^b</th> <th>% Area</th>	Peak No.	Compound	RI ^a	RI ^b	% Area
32 $β$ -Bisabolene 1508 1503 0.7 33 γ -Cadinene 1517 1513 0.7 34 C Lubebol 1519 1514 0.1 35 b^2 -Cadinene 1525 1522 1.2 36 cis-Sequisabienen hydrate 1538 1542 0.3 37 Selina-3.7(11)-direne 1543 1544 0.5 39 Dehydronerolidol 1553 1551 0.7 40 (L)-Nerolidol 1553 1551 0.7 41 Mint oxide 1572 1577 7.3 42 Spathulenol 1575 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Saltvial-4(14)-en-1-one 1598 1594 1.8 45 Widdrol 1603 1599 0.7 44 Saltvial-4(14)-en-1-one 1598 1.59 1.0 45 Widdrol 1603 1637 1638 0.7 46 Humulene epoxide II 1609 1668	31	<i>α</i> -Muurolene	1502	1500	0.8
33 γ -Cadinene 1517 1513 0.7 34 Cubebol 1519 1514 0.1 35 δ -Cadinene 1525 1522 1.2 36 cis-Sequisabinene hydrate 1538 1542 0.3 37 Selina-3/(11)-direne 1543 1545 0.4 38 a-Calacorene 1546 1544 0.5 39 Dehydronerolidol 1575 1552 1.2 40 (E)-Nerolidol 1563 1561 0.7 41 Mint oxide 1575 1577 7.3 42 Spathulenol 1575 1577 7.3 43 Carryophyllene oxide 1809 1.8 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1609 1609 1.627 1.0 47 1-epi-Cubenol 1637 1638 0.7 49 Carryophylladienol II 1641 1.03 1.1	32	β-Bisabolene	1508	1505	0.5
34	33	γ -Cadinene	1517	1513	0.7
35 δ-Cadimene 1525 1522 1.2 36 cis-Sesquisabinene hydra 1538 1542 0.3 37 Selina-37(11)-diene 1543 1545 0.4 38 a-Calacorene 1546 1544 0.5 39 Dehydronerolidol 1557 1562 1.2 40 (E)-Nerolidol 1575 1577 7.3 41 Mint oxide 1575 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salvial-(U)-enc 1598 1594 1.8 45 Widdrol 1603 1699 0.7 46 Humulene epoxide II 1609 1608 7.2 47 1- <i>epi-Cubenol</i> 1624 1627 1.0 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2<	34	Cubebol	1519	1514	0.1
36 cis-Sesquisabinene hydrate 1538 1542 0.3 37 Selina-3,7(11)-diene 1543 1545 0.4 38 a -Calacorene 1546 1557 1562 1.2 40 $Dehydronerolidol$ 1557 1562 1.2 40 $C(F)$ -Nerolidol 1557 1561 0.7 41 Mint oxide 1572 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salvial-4(14)-en-1-one 1598 1594 1.8 45 Widdrol 1609 1608 7.2 47 1-egri-Cubenol 1642 1649 1.1 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1645 1644 1.0 52 a -Catinol 1662 1660 1658 4.5 54 Zizonol	35	δ -Cadinene	1525	1522	1.2
37 Selina-3,7(11)-diene 1543 1545 0.4 38 a -Calacorene 1546 1544 0.5 39 Dehydronerolidol 1553 1562 1.2 40 (E)-Nerolidol 1553 1574 0.7 41 Mint oxide 1575 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salvial-(14)-en-1-one 1585 1582 10.2 44 Salvial-(14)-en-1-one 1585 1582 10.2 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1603 1699 0.7 48 epi-e-Catinol 1624 1627 1.0 48 epi-e-Catinol 1633 1640 3.2 50 Isospathulenol II 1641 1639 1.1 50 a-Catinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1677 0.7 0.7 <t< td=""><td>36</td><td><i>cis</i>-Sesquisabinene hydrate</td><td>1538</td><td>1542</td><td>0.3</td></t<>	36	<i>cis</i> -Sesquisabinene hydrate	1538	1542	0.3
38 a -Calacorene 1546 1544 0.5 39 Dehydronerolidol 1557 1562 1.2 40 (E)-Nerolidol 1557 1561 0.7 41 Mint oxide 1572 1574 0.7 42 Spathulenol 1575 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salvial-4(14)-en-1-one 1598 1594 1.8 45 Widdrol 1609 1608 7.2 47 1-epi-Cubenol 1624 1627 1.0 48 eqi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1645 1644 1.0 51 a-Adurolol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7	37	Selina-3.7(11)-diene	1543	1545	0.4
39 Dehydronerolidol 1557 1562 1.2 40 (E)-Nerolidol 1553 1561 0.7 41 Mint oxide 1552 1574 0.7 42 Spathulenol 1575 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salvial-4(14)-en-1-one 1598 1594 1.8 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1609 1608 7.2 47 1-epi-Cubenol 1624 1627 1.0 48 epi-ac-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 ac-Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1653 4.5 54 Zizanol 1672 1677 0.7	38	<i>a</i> -Calacorene	1546	1544	0.5
40 (E)-Nerolidad 1563 1561 0.7 41 Mint oxide 1572 1574 0.7 42 Spathulenol 1575 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salvial-4(14)-en-1-one 1598 1594 1.8 45 Wildrol 1603 1599 0.7 46 Humulene epoxide II 1609 1608 7.2 47 1-epi-Cubenol 1624 1627 1.0 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 61 a-Muurolol 1645 1664 1.0 52 a-Cadinol 1652 166 6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z)-A-Santalol 1791 1755 1674 3.6	39	Dehvdronerolidol	1557	1562	12
41 Mintoxide 1572 1574 0.7 42 Spathulenol 1575 1577 7.3 43 Caryophyllene oxide 1585 1582 10.2 44 Salvial-4(14)-en-1-one 1598 1594 1.8 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1603 1599 0.7 47 1-epi-Cubenol 1624 1667 1.0 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1669 1.1 50 Isospathulenol 1643 1640 3.2 51 a-Muurolol 16453 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1674 3.6 55 (C)-a-Santalol 1751 1756 0.7 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β-Santalol 1719 1715 1.5	40	(E)-Nerolidol	1563	1561	0.7
42 Spathulenol 1375 1377 7.3 43 Caryophyllen oxide 1385 1582 10.2 44 Salvial (14)-en-1-one 1598 1594 1.8 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1609 1608 7.2 47 1-epi-Cubenol 1624 1627 1.0 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 a-Muurolol 1645 16644 1.0 52 a-Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (2)-a-Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 1751 1756 </td <td>41</td> <td>Mint oxide</td> <td>1572</td> <td>1574</td> <td>0.7</td>	41	Mint oxide	1572	1574	0.7
43 Caryophyllene oxide 189 1882 10.2 44 Salvial-4(14)-en-1-one 1598 1594 1.8 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1609 1608 7.2 47 1-epi-Cubenol 1624 1627 1.0 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 aMuurolol 1645 1644 1.0 52 aCadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 Eudesma-4(15).7-dien-16-01 1691 1687 2.2 57 Aristol-1(10)-en-9-o1 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vettiselinenol 1726 173 0.2	42	Spathulenol	1575	1577	7.3
1 Caryop phylactic order 1505 1504 1.8 44 Salvial-4(14)-en-1-one 1509 1.603 1599 0.7 45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1603 1599 0.7 47 1-epi-Cubenol 1624 1627 1.0 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 a-Muurolol 1645 1644 1.0 52 a-Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1674 3.6 55 (Z)-a-Santalol 1709 1715 1.5 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 61 a-Vetivol 1751 1756 0.7	43	Carvonhyllene oxide	1585	1582	10.2
45 Widdrol 1603 1599 0.7 46 Humulene epoxide II 1609 1608 7.2 47 1-epi-Cubenol 1634 1627 1.0 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 a-Muurolol 1645 1644 1.0 52 a-Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z)-a-Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ-Costol 1749 1745 0.2 61 a-Vetivol 1751 1756 0.7 62 a-Cyperone 1756 1773 0.3 63 β-Acoradienol 1760 1773 0.3 64 β-Costol </td <td>44</td> <td>Salvial-4(14)-en-1-one</td> <td>1598</td> <td>1594</td> <td>18</td>	44	Salvial-4(14)-en-1-one	1598	1594	18
10 Humulene epoxide II 1600 1608 7.2 47 1-epi-Cubenol 1624 1627 1.0 48 epi- α -Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 α -Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z)- α -Santalol 1675 1674 3.6 56 Eudesma-4(15),7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 α -Vetivol 1751 1756 0.7	45	Widdrol	1603	1599	0.7
10 Humer Quote n 1624 1627 1.0 47 1-epi-Cubenol 1637 1638 0.7 48 epi-a-Cadinol 1637 1638 0.7 49 Caryophylladienol II 1641 1639 1.1 50 Isospathulenol 1645 1644 1.0 51 a-Muurolol 1645 1644 1.0 52 a-Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1674 3.6 55 (Z)-a-Santalol 1671 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 a-Cyperone 1756 1758 0.3 63 β -Costol 1776 1773 0.3 64	46	Humulene enovide II	1609	1608	7.2
1 1 $e_{p-1}^{1} e_{-Catinol}$ 1621 1621 163 48 $e_{p-1} e_{-Catinol}$ 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 a -Muurolol 1645 1644 1.0 52 a -Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z)- a -Santalol 1675 1674 3.6 56 Eudesma-4(15),7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 a -Vetivol 1751 1756 0.7 62 a -Costol 1768 1762 0.7 64 β -Costol 1768 1773 0.3	40	1-eni-Cubenol	1624	1627	1.0
10 Cryophylladienol II 1641 1639 1.1 50 Isospathulenol 1641 1639 1.1 50 Isospathulenol 1643 1640 3.2 51 a -Muurolol 1645 1644 1.0 52 a -Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1675 1674 3.6 56 Eudesma-4(15).7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 61 a -Vetivol 1751 1756 0.7 62 a -Costol 1768 1765 1.2 63 β -Acoradienol 1768 1765 1.2 64 β -Costol 1776 1773 0.3	48	eni- <i>n</i> -Cadipol	1637	1638	0.7
50 Layopy Mutrice In 1041 1643 1640 3.2 50 Isospathulenol 1643 1640 3.2 51 α -Muurolol 1643 1640 3.2 52 α -Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z)-a-Santalol 1675 1674 3.6 56 Eudesma-4(15).7-dien-1β-ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 α -Vetivol 1751 1756 0.7 62 α -Cyperone 1756 1778 0.3 63 β -Acoradienol 1768 1779 0.6 67 (E)-Isovalencenol 1778 173 0.3 </td <td>40</td> <td>Carvonhvlladienol II</td> <td>1641</td> <td>1639</td> <td>11</td>	40	Carvonhvlladienol II	1641	1639	11
50 Isospannation 1045 1044 10 51 a -Muurolol 1645 1644 1.0 52 a -Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z)- a -Santalol 1675 1674 3.6 56 Eudesma-4(15),7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 61 a -Vetivol 1751 1756 0.7 62 a -Cyperone 1768 1762 0.7 64 β -Costol 1768 1765 1.2 65 a -Costol 1776 1773 0.3 66 14-hydroxy- a -muurolene 1801 1840 0.7 67 (E)-Isovalancenon 1788 1793 0.2	50	Isosnathulenol	1643	1640	3.2
51 a -Cadinol 1653 1652 0.6 52 a -Cadinol 1653 1652 0.6 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z) - x -Santalol 1675 1674 3.6 56 Eudesma-4(15),7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 a -Vetivol 1751 1756 0.7 62 a -Cyperone 1756 1758 0.3 63 β -Costol 1768 1765 1.2 64 β -Costol 1768 1779 0.6 67<(E)-Isovalencenol	51	a-Muurolol	1645	1644	1.0
52 $Vecturind$ 1001 1002 0.00 53 Neointermedeol 1660 1658 4.5 54 Zizanol 1672 1677 0.7 55 (Z) - x -Santalol 1675 1674 3.6 56 Eudesma-4(15),7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 61 a -Vetivol 1751 1756 0.7 62 a -Cyperone 1756 1758 0.3 63 β -Acoradienol 1768 1765 1.2 64 β -Costol 1768 1779 0.6 67 (E)-Isovalencenol 1780 1779 0.6 68 Neophytadiene 1836 1840 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1927 1926 0.4 <tr< td=""><td>52</td><td>«-Cadipol</td><td>1653</td><td>1652</td><td>1.0</td></tr<>	52	«-Cadipol	1653	1652	1.0
55 Interfactor 1600 1600 4.5 54 Zizanol 1672 1677 0.7 55 (Z)-a-Santalol 1675 1674 3.6 56 Eudesma-4(15),7-clien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 a -Vetivol 1751 1756 0.7 62 a -Cyperone 1756 1758 0.3 63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1776 1773 0.3 65 a -Costol 1776 1773 0.3 66 14-hydroxy- a -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7	53	Neointermedeol	1660	1658	4.5
54 LLand 167 167 0.7 55 (Z) - α -Santalol 1675 1674 3.6 56 Eudesma-4(15),7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 α -Vetivol 1751 1756 0.7 62 α -Cyperone 1756 1758 0.3 63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1768 1773 0.3 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 70 Rimuene 1901 1886 0.2 71 (5E,9E)-Farnesyl acetone 1843 1847 0.7	54	Zizanol	1672	1677	4.5
55 Eudesma-4(15),7-dien-1 β -ol 1691 1687 2.2 57 Aristol-1(10)-en-9-ol 1708 1704 3.4 58 β -Santalol 1719 1715 1.5 59 Vetiselinenol 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 α -Vetivol 1751 1756 0.7 62 α -Cyperone 1756 1778 0.3 63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1776 1773 0.3 65 α -Costol 1776 1773 0.3 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 <	55	(7)-a-Santalol	1675	1674	3.6
50 Educes in $4(D)$, $r det (P) O i in 100 i in 1000 i in 100 i in 100 i in 100 i in 100 i $	56	Fudesma-4(15) 7-dien-18-ol	1691	1687	2.0
57 Initial Property of the Prop	57	Aristol-1(10)-en-9-ol	1708	1704	3.4
50 P Outlined 1726 1730 2.0 60 γ -Costol 1749 1745 0.2 61 α -Vetivol 1751 1756 0.7 62 α -Cyperone 1756 1758 0.3 63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1768 1765 1.2 65 α -Costol 1776 1773 0.3 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 <td>58</td> <td>B-Santalol</td> <td>1700</td> <td>1715</td> <td>15</td>	58	B-Santalol	1700	1715	15
60 γ -Costol 1749 1745 0.2 61 α -Vetivol 1751 1756 0.7 62 α -Cyperone 1756 1758 0.3 63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1768 1765 1.2 65 α -Costol 1776 1773 0.3 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4	59	Vetiselinenol	1726	1730	2.0
60 μ Cotton 17.17 17.15 0.2 61 α -Vetivol 1751 17.56 0.7 62 α -Cyperone 1756 1758 0.3 63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1768 1765 1.2 65 α -Costol 1776 1773 0.3 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4	60	~-Costol	1749	1745	0.2
61 α -Cyperone 1756 1758 0.3 62 α -Cyperone 1756 1758 0.3 63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1768 1765 1.2 65 α -Costol 1776 1773 0.3 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 <	61	<i>n</i> -Vetivol	1751	1756	0.2
63 β -Acoradienol 1760 1762 0.7 64 β -Costol 1768 1765 1.2 65 α -Costol 1776 1773 0.3 66 14-hydroxy- α -muurolene 1788 1793 0.3 66 14-hydroxy- α -muurolene 1788 1793 0.3 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1	62	<i>«</i> -Cyperone	1756	1758	0.3
64 β -Costol 1768 1765 1.2 65 α -Costol 1776 1773 0.3 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 Sesquiterpene hydrocarbons 28.6 Oxygenated sesquiterpenes 0.7 0.4 0.3	63	B-Acoradienol	1760	1762	0.7
65 a -Costol 1776 1773 0.3 66 14-hydroxy- a -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 Sesquiterpene hydrocarbons 28.6 Oxygenated sesquiterpenes 60.3 0.1 0.4	64	B-Costol	1768	1765	12
66 14-hydroxy- α -muurolene 1770 0.6 66 14-hydroxy- α -muurolene 1780 1779 0.6 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 3 3 60.3 Diterpenes hydrocarbons 0.4 0.6 3	65	r-Costol	1776	1773	0.3
60 171 Hydroforte 1700 1773 0.3 67 (E)-Isovalencenol 1788 1793 0.3 68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 3.6 3.6 3.6 Oxygenated sesquiterpenes 60.3 3.7 3.6 3.6 Otygenated discropones 0.6 3.6 3.6 3.6 <td>66</td> <td>14-bydroxy-<i>n</i>-muurolene</td> <td>1780</td> <td>1779</td> <td>0.5</td>	66	14-bydroxy- <i>n</i> -muurolene	1780	1779	0.5
68 Neophytadiene 1836 1840 0.7 69 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 5 5 58.6 Oxygenated sesquiterpenes 60.3 0.1 1.6 00xygenated sesquiterpenes 60.3 0.1 0.4 01 Oxygenated ditorpones 0.6 0.4	67	(F)-Isovalencenol	1788	1793	0.0
60 Hexahydrofarnesyl acetone 1843 1847 0.7 70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 Sesquiterpene hydrocarbons 28.6 Oxygenated sesquiterpenes 60.3 0.1 0.4	68	Neophytadiene	1836	1840	0.7
70 Rimuene 1901 1896 0.2 71 (5E,9E)-Farnesyl acetone 1901 1896 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 5 5 28.6 Oxygenated sesquiterpenes 60.3 0 0 7 Diterpenes hydrocarbons 0.7 0.4 0 0 Ovygenated ditorponer 0.6 0.4 0 0	69	Hexabydrofarnesyl acetone	1843	1847	0.7
71 $(5E,9E)$ -Farnesyl acetone 1909 1913 0.2 72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E) -Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 Sesquiterpene hydrocarbons 28.6 Oxygenated sesquiterpenes 60.3 0.1 0.7 Ovygenated ditorponer 0.4 0.6 0.4	70	Rimuene	1901	1896	0.2
72 Carissone 1927 1926 0.4 73 Verrucarol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 6 Sesquiterpene hydrocarbons 28.6 0xygenated sesquiterpenes 60.3 0 0 Diterpenes hydrocarbons 0.7 0 Oxygenated ditorponer 0.6	71	(5E.9E)-Farnesvl acetone	1909	1913	0.2
73 Vertucatol 1941 1939 0.1 74 Methyl linolelaidate 1976 1980 0.2 75 (Z,E)-Geranyl linalool 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 Sesquiterpene hydrocarbons 28.6 Oxygenated sesquiterpenes 60.3 Diterpenes hydrocarbons 0.7 Oxygenated ditorpone 0.6	72	Carissone	1927	1926	0.4
74Methyl linolelaidate197619800.275 (Z,E) -Geranyl linalool199619980.476Panaxynone202220182.077Thunbergol206920730.178Phytol210821140.1Oxygenated monoterpenes6Sesquiterpene hydrocarbons28.60xygenated sesquiterpenes60.30Diterpenes hydrocarbons0.70Ovygenated ditorpones0.6	73	Verrucarol	1941	1939	0.1
75 (Z,E)-Geranyl linalol 1996 1998 0.4 76 Panaxynone 2022 2018 2.0 77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 6 Sesquiterpene hydrocarbons 28.6 77 Oxygenated sesquiterpenes 60.3 78 Diterpenes hydrocarbons 0.7	76 74	Methyl lipolelaidate	1976	1980	0.1
76Panaxynone202220182.077Thunbergol206920730.178Phytol210821140.1Oxygenated monoterpenes1.6Sesquiterpene hydrocarbons28.6Oxygenated sesquiterpenes60.3Diterpenes hydrocarbons0.7Ovygenated diferpenes0.7	75	(Z.E)-Geranyl linalool	1996	1998	0.4
77 Thunbergol 2069 2073 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 Sesquiterpene hydrocarbons 28.6 Oxygenated sesquiterpenes 60.3 Diterpenes hydrocarbons 0.7	76	Panaxynone	2022	2018	2.0
78 Phytol 2007 2010 0.1 78 Phytol 2108 2114 0.1 Oxygenated monoterpenes 1.6 Sesquiterpene hydrocarbons 28.6 Oxygenated sesquiterpenes 60.3 Diterpenes hydrocarbons 0.7 Oxygenated diferences 0.6	77	Thunbergol	2069	2073	0.1
Oxygenated monoterpenes1.6Sesquiterpene hydrocarbons28.6Oxygenated sesquiterpenes60.3Diterpenes hydrocarbons0.7Ovurgenated diferpenes0.6	78	Phytol	2108	2114	0.1
Sesquiterpene hydrocarbons28.6Oxygenated sesquiterpenes60.3Diterpenes hydrocarbons0.7Oxygenated diterpenes0.6		Oxygenated monoterpenes			1.6
Oxygenated sesquiterpenes60.3Diterpenes hydrocarbons0.7Oxygenated diterpenes0.6		Sesquiterpene hydrocarbons			28.6
Diterpenes hydrocarbons 0.7		Oxygenated sesquiterpenes			60.3
Oversenated diferences 0.6		Diterpenes hydrocarbons			0.7
Oxygenated unerpenes 0.0		Oxygenated diterpenes			0.6
Total identified 96.4		Total identified			96.4

^a Retention index calculated from n-alkanes (C_7 - C_{30}) on an HP-5MS column; ^b Retention index data from the literature.

2.2. Antibacterial Activity of MNEO

The antibacterial properties of MNEO against ATCC strains were evaluated using the disc agar diffusion method to determine the diameter of inhibition zones (DIZ) and the microtiter broth dilution method to determine the MIC and MBC. Based on the susceptibility testing results (Table 2), the MNEO demonstrated a variable level of inhibitory effect against all bacteria tested. With DIZs ranging from 8.3 ± 0.9 mm (in *Escherichia coli*) to 16.7 ± 1.7 mm (in *Bacillus subtilis*), the disk diffusion assay demonstrated that MNEO exhibited broad-spectrum antimicrobial action. The MNEO showed low activity on the

Gram-negative bacteria *Pseudomonas aeruginosa* (MIC = 0.625 mg/mL, MBC = 2.500 mg/mL) and *E. coli* (MIC = 1.250 mg/mL); however, the MBC for *E. coli* was not determined when the concentration of MNEO reached the maximum tested. Conversely, *M. nepalensis* EO presented significant bacteriostatic effects against Gram-positive bacteria (MIC values of 0.039–0.078 mg/mL and MBC values of 0.039–0.156 mg/mL). In addition, based on the MBC/MIC ratios, a bactericidal effect was confirmed for the *M. nepalensis* oil against *B. subtilis*, *S. aureus*, and *P. larvae* (ratios \leq 4) [18].

Table 2. Diameter of the inhibition zones (DIZ), minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) of the essential oil of *M. nepalensis* (MNEO).

Strain	DIZ (mm) \pm SD		MIC (mg/mL)		MBC (mg/mL)	
Strain	MNEO	Chl	MNEO	Chl	MNEO	Chl
Gram positive						
B. subtilis ATCC 6633	14.0 ± 1.2	25.1 ± 1.0	0.039	0.002	0.156	0.004
S. aureus ATCC 6538	16.7 ± 1.7	23.6 ± 1.3	0.078	0.002	0.078	0.016
P. larvae ATCC 9545	13.4 ± 1.1	28.3 ± 1.7	0.039	0.001	0.039	0.002
Gram negative						
E. coli ATCC 25922	8.3 ± 0.9	25.9 ± 0.8	1.250	0.002	>2.500	0.004
P. aeruginosa ATCC 27853	10.5 ± 1.3	16.7 ± 0.4	0.625	0.031	2.500	0.250

DIZ, diameter of the inhibition zones (mm) is given as the mean \pm SD of triplicate experiments; positive control: Chl, chloramphenicol.

2.3. Combined Effect of MNEO with Chloramphenicol and Streptomycin

Combination therapy employing both essential oils and classic antibiotics has proven effective in preventing the development of resistant strains and improving therapy efficiency [15,16]. Therefore, the combined effect of MNEO with conventional antibiotics (chloramphenicol and streptomycin) against four pathogens was investigated by using a checkerboard microtiter assay [19]. The fractional inhibitor concentration index (FICI) values were calculated to determine the interaction of MNEO with chloramphenicol and streptomycin, and these are reported in Tables 3 and 4, respectively. The FICI values in association with chloramphenicol and streptomycin were, respectively, in the range of 0.13–0.56 and 0.12–0.50 against all tested bacterial strains. The mixtures of essential oil and chloramphenicol exhibited either synergism (FICI \leq 0.5) or an additional synergistic effect (0.5 < FICI \leq 1). The combined application of MNEO and streptomycin showed synergistic interaction against all the tested bacterial strains (FICIs of 0.12–0.50). The decrease in antibiotic MIC values in the presence of essential oil ranged from 4- to 16-fold. This suggested that the antibiotic activity of chloramphenicol and streptomycin was enhanced when combined with MNEO.

Table 3. Fractional inhibitory concentration index (FICI) values of the essential oil of *M. nepalensis* (MNEO) and chloramphenicol combinations.

Microorganism		MICa (µg/mL)	MICc (µg/mL)	FICI
Bacillus subtilis	MNEO Chl	39.10 3.90	9.76 0.48	0.37 (S)
Staphylococcus aureus	MNEO Chl	78.13 3.90	4.88 1.95	0.56 (A)
Escherichia coli	MNEO Chl	1250.00 3.90	312.50 0.24	0.31 (S)
Pseudomonas aeruginosa	MNEO Chl	625.00 15.60	39.10 0.98	0.13 (S)

MICa: MIC alone; MICc: MIC combined; Chl: chloramphenicol. S, synergy; A, additivity.

Microorganism		MICa (µg/mL)	MICc (µg/mL)	FICI
Bacillus subtilis	MNEO SM	39.00 0.49	4.88 0.12	0.37 (S)
Staphylococcus aureus	MNEO SM	78.13 1.95	4.88 0.12	0.12 (S)
Escherichia coli	MNEO SM	1250.00 3.90	312.50 0.98	0.50 (S)
Pseudomonas aeruginosa	MNEO SM	625.00 1.95	39.00 0.12	0.12 (S)

Table 4. Fractional inhibitory concentration index (FICI) values of the essential oil of *M. nepalensis* (MNEO) and streptomycin combinations.

MICa: MIC alone; MICc: MIC combined; SM: streptomycin. S, synergy.

2.4. Antibiofilm Activity of MNEO

The microtiter-plate technique was conducted to assess *S. aureus* biofilm formation in the presence of MNEO, and a crystal violet (CV) staining assay based on a previously reported methodology was used to quantify biofilm biomass [20]. As shown in Figure 1, *S. aureus* demonstrated a statistically significant reduction in biofilm development when exposed to *M. nepalensis* essential oil. When *M. nepalensis* essential oil at concentrations of 1/16 MIC to 4 MIC was used, 7–88% of *S. aureus* biofilm formation was inhibited.

The concentration of EO

Figure 1. The effect of different concentrations of essential oil from M. nepalensis against biofilm formation of Staphylococcus aureus. Differences were statistically significant in relation to the control for * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.001.

2.5. Cytotoxicity of MNEO

To study the possible cytotoxic activity of MNEO, in vitro metabolic analysis using an MTT colorimetric assay on four human cancer cell lines (colorectal carcinoma HCT-116 cells, hepatocellular carcinoma HepG2 cells, lung adenocarcinoma A-549 cells, and breast cancer MCF7 cells), and one normal cell line (HL-7702 human liver cells) was performed. The cytotoxic activity of MNEO is shown in Table 5 as IC_{50} values. The IC_{50} values obtained from MNEO were $19.53 \pm 2.84 \ \mu g/mL$, $13.13 \pm 1.90 \ \mu g/mL$, $19.19 \pm 3.08 \ \mu g/mL$, and $35.22 \pm 8.36 \ \mu g/mL$ for HepG2, MCF-7, A-549, and HCT-116 cells, respectively. For HL-7702, the IC_{50} of MNEO was determined as $19.14 \pm 0.63 \ \mu g/mL$.

Cell Line	Essential Oil	Doxorubicin
HepG2	19.53 ± 2.84	0.46 ± 0.02
MCF-7	13.13 ± 1.90	0.70 ± 0.05
HL-7702	19.14 ± 0.63	0.60 ± 0.13
A-549	19.19 ± 3.08	0.48 ± 0.01
HCT-116	35.22 ± 8.36	0.57 ± 0.03

Table 5. IC₅₀ (μ g/mL) \pm SD values to the essential oil of *M. nepalensis* and positive control doxorubicin against cell lines.

3. Discussion

As one of the main sources of phytochemical active ingredients, essential oils have been the object of increased interest from researchers, especially regarding their phytochemical profiles and biological activities. Essential oils comprise a range of compounds from diverse classes, including phenolics, terpenoids, aldehydes, ketones, ethers, and epoxides [21–23]. These complex mixtures contribute to the broad bioactivity of essential oils. In the present study, the major fraction of MNEO was represented by oxygenated sesquiterpenes (60.3%) and sesquiterpene hydrocarbons (28.6%), with caryophyllene oxide (10.2%), spathulenol (7.3%), humulene epoxide II (7.2%), β -elemene (6.1%), neointermedeol (4.5%), and β caryophyllene (4.1%) as the main compounds. Among them, β -caryophyllene oxide, β -spathulenol, β -elemene, and β -caryophyllene are the most studied. β -Caryophyllene oxide is frequently found to co-occur with natural bicyclic sesquiterpene β -caryophyllene in many plant essential oils as its metabolite. Several reports have shown that both β caryophyllene oxide and β -caryophyllene possess significant anti-cancer properties, inhibit the growth and proliferation of numerous cancer cell lines [24–28], and are able to enhance the antiproliferative effect of classical anticancer agents, such as 5-fluorouracil, oxaliplatin, paclitaxel, and doxorubicin [29–32]. In addition, both of these compounds were found to exhibit anti-inflammatory [33,34], analgesic [26,35], antifungal [36,37], and antibacterial activities [28,38,39].

Spathulenol, a tricyclic sesquiterpenoid with an aromadendrane carbon skeleton, due to its broad spectrum of biological properties, has also been extensively studied in recent years [40], showing antioxidant, anti-inflammatory, antiproliferative, and antimycobacterial activities [41]; insecticidal efficacy [40]; and immunomodulatory response effects [42]. In addition, spathulenol was also demonstrated to be a significantly effective repellent against *Aedes aegypti* and *Anopheles stephensi* [43]. Furthermore, a recent in vivo study showed the acute and persistent antiedematogenic, antihyperalgesic, and anxiolytic activities of spathulenol [44].

Another important compound in *M. nepalensis* essential oil is β -elemene, a noncytotoxic broad-spectrum antitumor drug utilized in Chinese traditional medicine (TCM) for more than 20 years to treat various cancer types, including lung, gastric, cervical, breast, liver, and bladder cancers, etc., including tyrosine kinase inhibitor (TKI)-resistant nonsmall-cell lung cancer [45–53]. Apart from its anticancer activity, β -elemene also possesses antioxidative and anti-inflammatory activities [54,55].

The results obtained from the antibacterial assays demonstrated the promising potential growth-inhibiting effect of MNEO against the tested gram-positive bacteria strains. The tested gram-negative stains were less sensitive to MNEO than tested gram-positive strains, which may be due to the structural differences in their outer membranes. The gram-negative outer membrane is surrounded by an outer layer composed of lipopolysaccharide, which provides an effective barrier of permeability to prevent the diffusion of hydrophobic essential oils [56,57]. The activity of MNEO could be contributed to by the presence of the main components, such as caryophyllene oxide, spathulenol, β -caryophyllene, (Z)- α -santalol, and α -humulene, which exhibit moderate or strong antimicrobial activity [28,39,41,58–65]. However, the possible synergistic effect of all components in the essential oil should also be considered.

Combination therapy using natural and antibacterial agents has been reported as an effective strategy to combat the development of bacterial resistance. Thus, we evaluated the combined effect of MNEO and two conventional antibiotics, namely, chloramphenicol and streptomycin. The most interesting result was obtained for *P. aeruginosa*, for which the MIC value of chloramphenicol was found to decrease from 15.60 to 0.98 μ g/mL (FICI = 0.13), and that of streptomycin decreased from 1.95 to $0.12 \,\mu\text{g/mL}$ (FICI = 0.12). The most prevalent nosocomial pathogen, P. aeruginosa, is intrinsically resistant to numerous drug classes and has the ability to acquire resistance to all available treatment options [66]. Reduced cell permeability, efflux pumps, modifications to the target enzymes, and antibiotic inactivation are some of the primary mechanisms of drug resistance development [67,68]. Moreover, a promising result was also obtained against S. aureus (FICI = 0.12)—a 16-fold reduction in streptomycin's MIC was observed when used with MNEO. The considerable synergistic interaction observed between chloramphenicol and *M. nepalensis* essential oil against the gram-negative *P. aeruginosa* and *E. coli* is also worthy of note. However, the combination of *M. nepalensis* essential oil and chloramphenicol showed only additive interaction when tested against S. aureus, as FICI = 0.56 for this combination; it should be considered that the additive manner is similar to a synergistic one, since lower dosages of drugs produce desirable results with additive effects [69].

As far as the microtiter plate biofilm assay results are concerned, interestingly, *M. nepalensis* essential oil revealed a significant effect in inhibiting *S. aureus* biofilm formation at the tested concentrations. Biofilm refers to multicellular surface-attached communities of bacteria embedded in a self-produced extracellular matrix consisting of polysaccharides, protein, and DNA [70]. It is widely acknowledged that bacteria are shielded from antibiotics and the hostile environment of the host by living in biofilms. There is proof that planktonic cells are 1000 times more susceptible to conventional medications than cells in biofilms on biotic or abiotic surfaces. [71–75]. Biofilm is difficult to eliminate once formed, systemic infections are more likely to occur, and the bacteria also become more resistant to treatment with traditional antibiotics [76–78]. Among bacteria, staphylococci, especially *S. aureus*, are the major causes of biofilm-associated infections [79,80]. *S. aureus* can colonize and develop biofilms in a variety of host environments [79–81]. Bacterial cells in biofilms may evade the host immunological response and tolerate much higher concentrations of antimicrobials compared with planktonic bacteria, making biofilm-related infections particularly difficult to eradicate [82–84].

It is worth noting that the biofilm responses to *M. nepalensis* essential oil were demonstrated to be concentration-dependent; even at sub-MICs, the essential oil exhibits inhibitory efficacy on biofilm formation. On the contrary, several studies have demonstrated that biofilm formation can still occur in the presence of sub-inhibitory levels of several conventional antibiotic agents [85–90]. This phenomenon was not observed with *M. nepalensis* essential oil, which emphasizes the fact that the essential oil has good therapeutic potential against biofilms.

Given the presence of β -elemene, caryophyllene oxide, β -caryophyllene, and β -spathulenol and their related cytotoxic effects, we also analyzed the metabolic activity of *M. nepalensis* essential oil on four cancer cell lines, as well as its cytotoxicity on a non-cancerous cell line, HL-7702. As expected, the *M. nepalensis* essential oil possessed significant cytotoxic activity on HepG2, MCF-7, and A-549, with IC₅₀ values less than 20 µg/mL, and moderate activity on HCT-116. Unfortunately, the essential oil showed a cytotoxic effect on HL-7702 cells, with IC₅₀ values of 19.14 ± 0.63 µg/mL. The cytotoxic activity of *M. nepalensis* essential oil could be attributed to the above-mentioned main compounds, as their cytotoxic effects on numerous cell lines have been widely reported [24–28,41,45–53,91].

4. Materials and Methods

4.1. Plant Material

The plant *Myriactis nepalensis* was collected in August 2020 from Badong County in Hubei Province, China. Plant material was identified by Professor Hong Zhao (Shandong

8 of 14

University, Weihai, China). Samples (voucher specimen NO.020017) are stored in the herbarium of the Department of Biological Sciences, Shandong University, Weihai, China.

4.2. Extraction of Essential Oils

The aerial parts of *M. nepalensis* (300 g) were submitted to hydrodistillation using a Clevenger-type apparatus for 3.5 h to extract the essential oil, then dried with anhydrous Na_2SO_4 and kept at 4 °C until use.

4.3. Identification of Oil Components

The obtained essential oil was characterized through GC/MS (Agilent Technology 6890/5975C, St. Clara, CA, USA), and the relative percentage amounts of compounds in MNEO were assessed by GC/FID. An HP-5MS capillary column ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$, Agilent, St. Clara, CA, USA) was used for the separation. Helium was used as the carrier gas with a flow rate of 1.3 mL/min. A 0.2 µL sample of essential oil was injected with split ratio 50:1, and the temperature was programmed from 60 °C (1 min) to 240 °C (12 min) at a rate of 8 °C/min. MS parameters: EI mode at 70 eV; mass range 50 to 550 amu. The identification of compounds of *M. nepalensis* oil was carried out by comparing their retention indices relative to C₇-C₃₀ n-alkanes and mass spectra with those reported in the literature and by comparing their mass spectra with the NIST and Wiley libraries [92–94].

4.4. Antibacterial Susceptibility Test

The strains studied are five reference strains of microorganisms from American Type Culture Collection (ATCC) and are representative of gram-positive and -negative strains—namely *Staphylococcus aureus* (ATCC 6538), *Bacillus subtilis* (ATCC 6633), and *Paenibacillus larvae* (ATCC 9545) representative of the gram-positive; and *Escherichia coli* (ATCC 25922) and *Pseudomonas aeruginosa* (ATCC 27853) with characteristics of gram-negative bacteria. The bacterial strains were cultured overnight at 37 °C on Mueller–Hinton (MH) medium before each experimental procedure. Before conducting susceptibility assays, the bacterial suspension was standardized versus 0.5 McFarland turbidimetrically and diluted with MH broth medium to reach the required concentration for each procedure.

A disc agar diffusion assay was applied to antibacterial susceptibility tests [95]. Briefly, filter paper discs were soaked with 20 μ L of essential oil (10 mg/mL) or chloramphenicol positive control (1 mg/mL), and placed in triplicate on the plates in which the bacteria were inoculated. The plates were then kept at 37 °C for 24 h in an incubator. The results were determined by measuring the diameter of the zone of growth inhibition (DIZ, in millimeters) and are presented as the means of three measurements.

4.5. MIC and MBC Determination by a Microdilution Broth Method

The minimum inhibitory concentrations (MICs) of the essential oil and antibiotics were assessed according to the recommendations of CLSI, using the microdilution broth method in 96-well plates [96]. Stock solutions of the essential oil and antibiotics were prepared with dimethyl sulfoxide (DMSO). In 96-well microtiter plates, 100 μ L of essential oil or antibiotic was serially two-fold diluted in Mueller–Hinton broth, and an equal volume of approximately 10⁶ CFU× mL⁻¹ bacterial suspension was added in each well. A mixture of culture medium and bacteria, 1% 2,3,5-triphenyl tetrazolium chloride aqueous solution was added to each well (20 μ L per well). The plates were incubated at 37 °C for 30 min, and the MIC values were visually determined as the minimal concentrations that did not produce a red color.

Samples (100 μ L) from the MIC experiment wells with no color change were placed on MH agar plates and incubated for 18–24 h at 37 °C. The minimum bactericidal concentration (MBC) was defined as the lowest concentration at which no bacterial growth was observed.

To evaluate the combined action of MNEO and antibiotics (chloramphenicol and streptomycin), the microbroth checkerboard method was conducted to determine the fractional inhibitory concentration (FIC) index (FICI) [19]. The concentrations tested for each essential oil and antibiotic were selected from $4 \times \text{MIC}$ to $1/32 \times \text{MIC}$. A 50 µL volume of essential oil was added at decreasing concentrations into the columns of the 96-well plates, and 50 µL of antibiotic was similarly distributed among the rows. Volumes of 100 µL of bacterial suspensions (10^6 CFU/mL) were then added to each well. The plates were incubated at 37 °C for 24 h. The FIC values were obtained following the same method for obtaining the MIC values, detailed above. The interaction of the association between the MNEO and antibiotics was evaluated by determining the FICI using the following equation:

$$FICI = \frac{MIC \text{ of EO in combination}}{MIC \text{ of EO alone}} + \frac{MIC \text{ of antibiotic in combination}}{MIC \text{ of antibiotic alone}}$$
(1)

The results were considered synergistic if FICI ≤ 0.5 and additive when 0.5 < FICI < 1 [97].

4.7. Biofilm Formation Inhibition

The potential of essential oil to inhibit biofilm formation by *S. aureus* (ATCC 6538) was assessed using the microtiter-plate technique [20,98]. The plates were assembled in a process similar to the MIC test. A suspension of approximately 10^6 CFU/mL *S. aureus* and different concentrations of essential oil ($1/4 \times$ MIC to $4 \times$ MIC) were added to each well (100μ L per well) of a 96-well microtiter plate, with 3 parallel wells at each concentration, and the plate was incubated at 37 °C for 24 h. The nontreated bacterial suspension was used as the negative control. After biofilm formation, the supernatant was discarded and the wells were washed thrice with PBS (phosphate-buffered saline) to remove the planktonic and weakly attached cells. The remaining attached biofilms were fixed with 200 μ L of methanol per well for 15 min. After discarding the supernatant, each well in the plate was stained with crystal violet (2%) for 10 min and washed with distilled water until the water was colorless. The residual CV, which represented the quantity of biofilm, was discolved in 95% ethanol (200 μ L). Finally, an ELISA microtiter plate reader was utilized to determine the optical density (OD) of each well at 570 nm.

4.8. Cytotoxic Activity Evaluation

Four human cancer cell lines (colorectal carcinoma HCT-116 cells, hepatocellular carcinoma HepG2 cells, lung adenocarcinoma A-549 cells, and breast cancer MCF7 cells) and one normal human cell line (HL-7702 human liver cells) were obtained from the Shanghai Institute for Biological Sciences (SIBS, Shanghai, China) and were developed in DMEM and RPMI 1640 (for HL-7702 cells) culture medium supplemented with 2 mM glutamine, 10% fetal bovine serum, 100 units/mL of streptomycin, and 100 units/mL of penicillin, cultured at 37 °C in 5% CO₂. Cells were detached from the monolayer using 0.25% trypsin for 5 min once cells had grown to near confluence.

The metabolic activity of the cells was detected by an MTT-based assay [99]. Briefly, cells were seeded into 96-well microtiter plates (5×10^4 cells/well) and incubated for 24 h for cell adherens. The essential oil was first dissolved in DMSO (final concentration was 0.1%) and then diluted in culture medium. Subsequently, the cells were treated with essential oil or positive control (doxorubicin) for 48 h. Then, 20 µL of MTT (5 mg/mL) solution was added to all wells for 4 h to form formazan, which was then dissolved in 150 µL of DMSO. Absorbances were read at 570 nm. Cell viability in response to treatment was calculated as a percentage of control cells treated with DMSO at the final concentration 0.1%. The results are expressed as 50% inhibitory concentration of cell growth (IC₅₀) values.

4.9. Statistical Analysis

All the experiments were carried out in triplicate and the data were presented as the mean \pm SD. Data were statistically analyzed using GraphPad Prism 8.0 software (GraphPad Software, Inc., San Diego, CA, USA). One-way analysis of variance (ANOVA) was used to analyze the differences among the treatments, and the level of significance was 0.05.

5. Conclusions

The present study investigated the components of *M. nepalensis* essential oil, as well as the potential antibacterial activities of the essential oil, for the first time. The results show that *M. nepalensis* essential oil is rich in caryophyllene oxides (10.2%), spathulenol (7.3%), and humulene epoxide II (7.2%), followed by β -elemene (6.1%), neointermedeol (4.5%), and β -caryophyllene (4.1%). The essential oil of *M. nepalensis* demonstrated antibacterial activities against representative Gram-positive and -negative strains. Furthermore, the ability of *M. nepalensis* essential oil combined with traditional antibiotics to increase the sensitivity of the tested strains to chloramphenicol and streptomycin was investigated. Inhibitory activity was observed against *S. aureus* biofilm formation. Additionally, cytotoxic potential of *M. nepalensis* essential oil was observed on both normal and cancer cells. Considering all the results obtained, *M. nepalensis* essential oil could be a promising alternative for the treatment of various pathogenic bacterial strains; however, further detailed investigations in vitro and in vivo on the biological effects of this essential oil are required to elucidate the mechanism of action and evaluate safety.

Author Contributions: Conceptualization, X.X.; methodology, X.X., J.F. and Y.G.; formal analysis, X.X., Y.G. and J.F.; investigation, X.X. and J.F.; resources, X.X. and Y.G.; data curation, X.X. and J.F.; writing—original draft preparation, X.X. and J.F.; writing—review and editing, X.X. and J.F.; visualization, X.X. and J.F.; supervision, X.X.; project administration, X.X.; funding acquisition, X.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained in this article.

Acknowledgments: The authors are thankful to Xia Li for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the essential oils are available from the authors.

References

- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. *Nat. Med.* 2004, 10, 122–129. [CrossRef] [PubMed]
- Mandal, S.; Pal, N.K.; Chowdhury, I.H.; Debmandal, M. Antibacterial activity of ciprofloxacin and trimethoprim, alone and in combination, against *Vibrio cholerae* O1 Biotype El Tor serotype Ogawa isolates. *Pol. J. Microbiol.* 2009, 58, 57–60. [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. *Molecules* 2020, 25, 1340. [CrossRef]
- 4. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [CrossRef]
- 5. Ibrahim, H.; Elgindi, M.; Ibrahim, R.; El-Hosari, D. Antibacterial activities of triterpenoidal compounds isolated from *Calothamnus quadrifidus* leaves. *BMC Complement. Altern. Med.* **2019**, *19*, 102. [CrossRef] [PubMed]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. *Molecules* 2018, 23, 762. [CrossRef] [PubMed]
- Kessler, A.; Kalske, A. Plant secondary metabolite diversity and species interactions. *Annu. Rev. Ecol. Evol. Syst.* 2018, 49, 115–138. [CrossRef]
- 8. Erb, M.; Kliebenstein, D.J. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. *Plant Physiol.* **2020**, *184*, 39–52. [CrossRef]
- Piasecka, A.; Jedrzejczak-Rey, N.; Bednarek, P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. *New Phytol.* 2015, 206, 948–964. [CrossRef]

- 10. Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [CrossRef]
- 11. Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. *J. Atmos. Chem.* **1999**, *33*, 23–88. [CrossRef]
- 12. Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents—Myth or real alternative? *Molecules* 2019, 24, 2130. [CrossRef] [PubMed]
- El-Tarabily, K.A.; El-Saadony, M.T.; Alagawany, M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Elwan, H.A.; Elnesr, S.S.; Abd El-Hack, M.E. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. *Saudi J. Biol. Sci.* 2021, 28, 5145–5156. [CrossRef] [PubMed]
- 14. Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. *Int. J. Food Microbiol.* **2004**, *94*, 223–253. [PubMed]
- 15. Cho, T.J.; Park, S.M.; Yu, H.; Seo, G.H.; Kim, H.W.; Kim, S.A.; Rhee, M.S. Recent advances in the application of antibacterial complexes using essential oils. *Molecules* **2020**, *25*, 1752. [CrossRef]
- Visan, D.C.; Oprea, E.; Radulescu, V.; Voiculescu, I.; Biris, I.A.; Cotar, A.I.; Saviuc, C.; Chifiriuc, M.C.; Marinas, I.C. Original contributions to the chemical composition, microbicidal, virulence-arresting and antibiotic-enhancing activity of essential oils from four coniferous species. *Pharmaceuticals* 2021, 14, 1159. [CrossRef]
- 17. Lin, R.; Chen, Y.L. Flora of China; Science Press: Beijing, China, 1985; Volume 74, pp. 87-88.
- 18. Levison, M.E. Pharmacodynamics of antimicrobial drugs. Infect. Dis. Clin. N. Am. 2004, 18, 451–465. [CrossRef]
- 19. Moody, J. Synergism testing: Broth microdilution checkerboard and broth macrodilution method. In *Clinical Microbiology Procedures Handbook*, 1st ed.; American Society for Microbiology: Washington, DC, USA, 2004; Volume 18, pp. 1–28.
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [CrossRef]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. *Microb. Pathog.* 2021, 152, 104620. [CrossRef]
- 22. Dagli, N.; Dagli, R.; Mahmoud, R.S.; Baroudi, K. Essential oils, their therapeutic properties, and implication in dentistry: A review. *J. Int. Soc. Prev. Community Dent.* **2015**, *5*, 335–340. [CrossRef]
- 23. Di Sotto, A.; Mancinelli, R.; Gullì, M.; Eufemi, M.; Mammola, C.L.; Mazzanti, G.; Di Giacomo, S. Chemopreventive potential of caryophyllane sesquiterpenes: An overview of preliminary evidence. *Cancers* **2020**, *12*, 3034. [CrossRef] [PubMed]
- Jun, N.J.; Mosaddik, A.; Moon, J.Y.; Ki-Chang, J.; Dong-Sun, L.; Ahn, K.S.; Cho, S.K. Cytotoxic activity of β-caryophyllene oxide isolated from jeju guava (*Psidium cattleianum* sabine) leaf. *Rec. Nat. Prod.* 2011, *5*, 242–246.
- Park, K.R.; Nam, D.; Yun, H.M.; Lee, S.G.; Jang, H.J.; Sethi, G.; Cho, S.K.; Ahn, K.S. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. *Cancer Lett.* 2011, 312, 178–188. [CrossRef] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. *Cancer Med.* 2016, *5*, 3007–3017. [CrossRef]
- Kim, C.; Cho, S.K.; Kim, K.D.; Nam, D.; Chung, W.S.; Jang, H.J.; Lee, S.G.; Shim, B.S.; Sethi, G.; Ahn, K.S. β-Caryophyllene oxide potentiates TNFα-induced apoptosis and inhibits invasion through down-modulation of NF-κB-regulated gene products. *Apoptosis* 2014, *19*, 708–718. [CrossRef] [PubMed]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of *Aquilaria crassna*. *Molecules* 2015, 20, 11808–11829. [CrossRef] [PubMed]
- Ambrož, M.; Boušová, I.; Skarka, A.; Hanušová, V.; Králová, V.; Matoušková, P.; Szotáková, B.; Skálová, L. The influence of sesquiterpenes from *Myrica rubra* on the antiproliferative and pro-oxidative effects of doxorubicin and its accumulation in cancer cells. *Molecules* 2015, 20, 15343–15358. [CrossRef]
- Ambrož, M.; Šmatová, M.; Šadibolová, M.; Pospíšilová, E.; Hadravská, P.; Kašparová, M.; Hanušová Skarková, V.; Králová, V.; Skálová, L. Sesquiterpenes α-humulene and β-caryophyllene oxide enhance the efficacy of 5-fluorouracil and oxaliplatin in colon cancer cells. *Acta Pharm.* 2019, 69, 121–128. [CrossRef]
- Hanušová, V.; Caltová, K.; Svobodová, H.; Ambrož, M.; Skarka, A.; Murínová, N.; Králová, V.; Tomšík, P.; Skálová, L. The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. *Biomed. Pharmacother.* 2017, 95, 828–836. [CrossRef]
- Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2007, 59, 1643–1647. [CrossRef]
- Tung, Y.T.; Chua, M.T.; Wang, S.Y.; Chang, S.T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (*Cinnamomum osmophloeum*) twigs. *Bioresour. Technol.* 2008, 99, 3908–3913. [CrossRef] [PubMed]
- Medeiros, R.; Passos, G.; Vitor, C.; Koepp, J.; Mazzuco, T.; Pianowski, L.; Campos, M.; Calixto, J. Effect of two active compounds obtained from the essential oil of *Cordia verbenacea* on the acute inflammatory responses elicited by LPS in the rat paw. *Br. J. Pharmacol.* 2007, 151, 618–627. [CrossRef] [PubMed]
- Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J.Z.; Xie, X.Q.; Altmann, K.H.; Karsak, M.; Zimmer, A. β-caryophyllene is a dietary cannabinoid. *Proc. Natl. Acad. Sci. USA* 2008, 105, 9099–9104. [CrossRef] [PubMed]

- 36. Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. *Mycopathologia* **1999**, *148*, 79–82. [CrossRef] [PubMed]
- Hilgers, F.; Habash, S.S.; Loeschcke, A.; Ackermann, Y.S.; Neumann, S.; Heck, A.; Klaus, O.; Hage-Hülsmann, J.; Grundler, F.M.; Jaeger, K.E. Heterologous production of β-caryophyllene and evaluation of its activity against plant pathogenic fungi. *Microorganisms* 2021, 9, 168. [CrossRef] [PubMed]
- Souza, A.B.; Martins, C.H.; Souza, M.G.; Furtado, N.A.; Heleno, V.C.; de Sousa, J.P.; Rocha, E.M.; Bastos, J.K.; Cunha, W.R.; Veneziani, R.C. Antimicrobial activity of terpenoids from *Copaifera langsdorffii* Desf. against cariogenic bacteria. *Phytother. Res.* 2011, 25, 215–220. [CrossRef]
- Moo, C.L.; Yang, S.K.; Osman, M.A.; Yuswan, M.H.; Loh, J.Y.; Lim, W.M.; Lim, S.H.E.; Lai, K.S. Antibacterial activity and mode of action of β-caryophyllene on *Bacillus cereus*. *Pol. J. Microbiol.* 2020, *69*, 49–54. [CrossRef]
- Benelli, G.; Pavela, R.; Drenaggi, E.; Desneux, N.; Maggi, F. Phytol, (E)-nerolidol and spathulenol from *Stevia rebaudiana* leaf essential oil as effective and eco-friendly botanical insecticides against *Metopolophium dirhodum*. *Ind. Crops Prod.* 2020, 155, 112844. [CrossRef]
- Do Nascimento, K.F.; Moreira, F.M.F.; Santos, J.A.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; do Carmo Vieira, M.; Ruiz, A.L.T.G.; Foglio, M.A.; de Carvalho, J.E. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of *Psidium guineense* Sw. and spathulenol. *J. Ethnopharmacol.* 2018, 210, 351–358. [CrossRef]
- 42. Ziaei, A.; Ramezani, M.; Wright, L.; Paetz, C.; Schneider, B.; Amirghofran, Z. Identification of spathulenol in *Salvia mirzayanii* and the immunomodulatory effects. *Phytother. Res.* 2011, 25, 557–562. [CrossRef]
- Cantrell, C.L.; Klun, J.A.; Bryson, C.T.; Kobaisy, M.; Duke, S.O. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (*Callicarpa americana*) and Japanese (*Callicarpa japonica*) beautyberry. J. Agric. Food Chem. 2005, 53, 5948–5953. [CrossRef] [PubMed]
- Dos Santos, E.; Radai, J.A.S.; do Nascimento, K.F.; Formagio, A.S.N.; de Matos Balsalobre, N.; Ziff, E.B.; Castelon Konkiewitz, E.; Kassuya, C.A.L. Contribution of spathulenol to the anti-nociceptive effects of *Psidium guineense*. *Nutr. Neurosci.* 2022, 25, 812–822. [CrossRef] [PubMed]
- Zhai, B.; Zhang, N.; Han, X.; Li, Q.; Zhang, M.; Chen, X.; Li, G.; Zhang, R.; Chen, P.; Wang, W. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. *Biomed. Pharmacother.* 2019, 114, 108812. [CrossRef]
- 46. Wang, B.; Peng, X.X.; Sun, R.; Li, J.; Zhan, X.R.; Wu, L.J.; Wang, S.L.; Xie, T. Systematic review of β-elemene injection as adjunctive treatment for lung cancer. *Chin. J. Integr. Med.* **2012**, *18*, 813–823. [CrossRef]
- Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. *Int. J. Nanomed.* 2018, 13, 6279–6296. [CrossRef]
- Luo, H.; Vong, C.T.; Chen, H.; Gao, Y.; Lyu, P.; Qiu, L.; Zhao, M.; Liu, Q.; Cheng, Z.; Zou, J. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. *Chin. Med.* 2019, 14, 48. [CrossRef] [PubMed]
- 49. Pan, Y.; Wang, W.; Huang, S.; Ni, W.; Wei, Z.; Cao, Y.; Yu, S.; Jia, Q.; Wu, Y.; Chai, C. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. *J. Cell. Mol. Med.* **2019**, *23*, 6846–6858. [CrossRef]
- Wang, J.; Xu, C.; Chen, Y.; Shao, L.; Li, T.; Fan, X.; Yu, L.; Zhang, R.; Chen, B.; Chen, H. β-elemene enhances the antitumor activity of erlotinib by inducing apoptosis through AMPK and MAPK pathways in TKI-resistant H1975 lung cancer cells. *J. Cancer* 2021, 12, 2285–2294. [CrossRef]
- Liu, Y.; Jiang, Z.Y.; Zhou, Y.L.; Qiu, H.H.; Wang, G.; Luo, Y.; Liu, J.B.; Liu, X.W.; Bu, W.Q.; Song, J. β-elemene regulates endoplasmic reticulum stress to induce the apoptosis of NSCLC cells through PERK/IRE1α/ATF6 pathway. *Biomed. Pharmacother.* 2017, 93, 490–497. [CrossRef]
- 52. Zhang, X.; Zhang, Y.; Li, Y. β-elemene decreases cell invasion by upregulating E-cadherin expression in MCF-7 human breast cancer cells. *Oncol. Rep.* **2013**, *30*, 745–750. [CrossRef]
- Lin, L.; Li, L.; Chen, X.; Zeng, B.; Lin, T. Preliminary evaluation of the potential role of β-elemene in reversing erlotinib-resistant human NSCLC A549/ER cells. Oncol. Lett. 2018, 16, 3380–3388. [CrossRef] [PubMed]
- 54. Liu, M.; Chen, X.; Ma, J.; Hassan, W.; Wu, H.; Ling, J.; Shang, J. β-Elemene attenuates atherosclerosis in apolipoprotein E-deficient mice via restoring NO levels and alleviating oxidative stress. *Biomed. Pharmacother.* **2017**, *95*, 1789–1798. [CrossRef] [PubMed]
- 55. Fang, Y.; Kang, Y.; Zou, H.; Cheng, X.; Xie, T.; Shi, L.; Zhang, H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. *Fitoterapia* **2018**, *124*, 92–102. [CrossRef] [PubMed]
- 56. De Almeida, C.G.; Garbois, G.D.; Amaral, L.M.; Diniz, C.C.; Le Hyaric, M. Relationship between structure and antibacterial activity of lipophilic N-acyldiamines. *Biomed. Pharmacother.* **2010**, *64*, 287–290. [CrossRef]
- 57. Wilson, A.; Ruiz, N. Transport of lipopolysaccharides and phospholipids to the outer membrane. *Curr. Opin. Microbiol.* **2021**, 60, 51–57. [CrossRef]
- 58. Schmidt, E.; Bail, S.; Friedl, S.M.; Jirovetz, L.; Buchbauer, G.; Wanner, J.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Geissler, M. Antimicrobial activities of single aroma compounds. *Nat. Prod. Commun.* **2010**, *5*, 1365–1368. [CrossRef]
- 59. Woo, H.J.; Yang, J.Y.; Lee, M.H.; Kim, H.W.; Kwon, H.J.; Park, M.; Kim, S.K.; Park, S.Y.; Kim, S.H.; Kim, J.B. Inhibitory effects of β-caryophyllene on *Helicobacter pylori* infection in vitro and in vivo. *Int. J. Mol. Sci.* **2020**, *21*, 1008. [CrossRef]

- De Jesús Dzul-Beh, A.; García-Sosa, K.; Uc-Cachón, A.H.; Bórquez, J.; Loyola, L.A.; Barrios-García, H.B.; Peña-Rodríguez, L.M.; Molina-Salinas, G.M. In vitro growth inhibition and bactericidal activity of spathulenol against drug-resistant clinical isolates of Mycobacterium tuberculosis. Rev. Bras. Farmacogn. 2020, 29, 798–800. [CrossRef]
- Jang, H.I.; Rhee, K.J.; Eom, Y.B. Antibacterial and antibiofilm effects of α-humulene against *Bacteroides fragilis*. *Can. J. Microbiol.* 2020, *66*, 389–399. [CrossRef]
- Pichette, A.; Larouche, P.L.; Lebrun, M.; Legault, J. Composition and antibacterial activity of *Abies balsamea* essential oil. *Phytother. Res.* 2006, 20, 371–373. [CrossRef]
- 63. De Lacerda Leite, G.M.; de Oliveira Barbosa, M.; Lopes, M.J.P.; de Araújo Delmondes, G.; Bezerra, D.S.; Araújo, I.M.; de Alencar, C.D.C.; Coutinho, H.D.M.; Peixoto, L.R.; Barbosa-Filho, J.M. Pharmacological and toxicological activities of α-humulene and its isomers: A systematic review. *Trends Food Sci. Technol.* 2021, *115*, 255–274. [CrossRef]
- 64. Shafi, P.M.; Rosamma, M.K.; Jamil, K.; Reddy, P.S. Antibacterial activity of the essential oil from *Aristolochia indica*. *Fitoterapia* **2002**, 73, 439–441. [CrossRef]
- Ochi, T.; Shibata, H.; Higuti, T.; Kodama, K.-H.; Kusumi, T.; Takaishi, Y. Anti-Helicobacter pylori compounds from Santalum album. J. Nat. Prod. 2005, 68, 819–824. [CrossRef] [PubMed]
- 66. Rossolini, G.M.; Mantengoli, E. Treatment and control of severe infections caused by multiresistant *Pseudomonas aeruginosa*. *Clin. Microbiol. Infect.* **2005**, *11*, 17–32. [CrossRef] [PubMed]
- 67. Lambert, R.J.; Joynson, J.; Forbes, B. The relationships and susceptibilities of some industrial, laboratory and clinical isolates of *Pseudomonas aeruginosa* to some antibiotics and biocides. *J. Appl. Microbiol.* **2001**, *91*, 972–984. [CrossRef]
- Matsuo, Y.; Eda, S.; Gotoh, N.; Yoshihara, E.; Nakae, T. MexZ-mediated regulation of *mexXY* multidrug efflux pump expression in *Pseudomonas aeruginosa* by binding on the *mexZ-mexX* intergenic DNA. *FEMS Microbiol. Lett.* 2004, 238, 23–28.
- 69. Yang, S.K.; Yusoff, K.; Mai, C.W.; Lim, W.M.; Yap, W.S.; Lim, S.H.E.; Lai, K.S. Additivity vs. synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. *Molecules* **2017**, *22*, 1733. [CrossRef]
- 70. Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. *Science* **1999**, 284, 1318–1322. [CrossRef]
- Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogensis. *Annu. Rev. Microbiol.* 2003, 57, 677–701. [CrossRef]
- 72. Verderosa, A.; Totsika, M.; Fairfull-Smith, K. Bacterial biofilm eradication agents: A current review. *Front. Chem.* **2019**, *7*, 824. [CrossRef]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. *Int. J. Antimicrob. Agents* 2010, 35, 322–332. [CrossRef] [PubMed]
- 74. Kazemzadeh-Narbat, M.; Kindrachuk, J.; Duan, K.; Jenssen, H.; Hancock, R.E.; Wang, R. Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. *Biomaterials* **2010**, *31*, 9519–9526. [CrossRef] [PubMed]
- Arciola, C.R.; Campoccia, D.; Montanaro, L. Implant infections: Adhesion, biofilm formation and immune evasion. *Nat. Rev. Microbiol.* 2018, 16, 397–409. [CrossRef]
- Bowler, P.G. Antibiotic resistance and biofilm tolerance: A combined threat in the treatment of chronic infections. *J. Wound Care* 2018, 27, 273–277. [CrossRef]
- Haaber, J.; Cohn, M.T.; Frees, D.; Andersen, T.J.; Ingmer, H. Planktonic aggregates of *Staphylococcus aureus* protect against common antibiotics. *PLoS ONE* 2012, 7, e41075. [CrossRef]
- 78. Hall-Stoodley, L.; Stoodley, P. Evolving concepts in biofilm infections. Cell. Microbiol. 2009, 11, 1034–1043. [CrossRef]
- 79. Otto, M. Staphylococcal biofilms. In *Current Topics in Microbiology and Immunology;* Romeo, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 322, pp. 207–228.
- Bhattacharya, M.; Wozniak, D.J.; Stoodley, P.; Hall-Stoodley, L. Prevention and treatment of *Staphylococcus aureus* biofilms. *Expert Rev. Anti-Infect. Ther.* 2015, 13, 1499–1516. [CrossRef] [PubMed]
- 81. Brady, R.A.; Leid, J.G.; Calhoun, J.H.; Costerton, J.W.; Shirtliff, M.E. Osteomyelitis and the role of biofilms in chronic infection. *FEMS Immunol. Med. Microbiol.* **2008**, *52*, 13–22. [CrossRef]
- 82. Del Pozo, J.L.; Patel, R. The challenge of treating biofilm-associated bacterial infections. *Clin. Pharmacol. Ther.* **2007**, *82*, 204–209. [CrossRef]
- Thurlow, L.R.; Hanke, M.L.; Fritz, T.; Angle, A.; Aldrich, A.; Williams, S.H.; Engebretsen, I.L.; Bayles, K.W.; Horswill, A.R.; Kielian, T. *Staphylococcus aureus* biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. *J. Immunol.* 2011, 186, 6585–6596. [CrossRef]
- 84. Nadell, C.D.; Xavier, J.B.; Foster, K.R. The sociobiology of biofilms. FEMS Microbiol. Rev. 2009, 33, 206–224. [CrossRef] [PubMed]
- 85. Ranieri, M.R.; Whitchurch, C.B.; Burrows, L.L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. *Curr. Opin. Microbiol.* **2018**, 45, 164–169. [CrossRef] [PubMed]
- 86. Kaplan, J.B.; Izano, E.A.; Gopal, P.; Karwacki, M.T.; Kim, S.; Bose, J.L.; Bayles, K.W.; Horswill, A.R. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in *Staphylococcus aureus*. *mBio* 2012, *3*, e00198-12. [CrossRef]
- Kuehl, R.; Al-Bataineh, S.; Gordon, O.; Luginbuehl, R.; Otto, M.; Textor, M.; Landmann, R. Furanone at subinhibitory concentrations enhances staphylococcal biofilm formation by *luxS* repression. *Antimicrob. Agents Chemother.* 2009, 53, 4159–4166. [CrossRef]

- Weiser, J.; Henke, H.A.; Hector, N.; Both, A.; Christner, M.; Büttner, H.; Kaplan, J.B.; Rohde, H. Sub-inhibitory tigecycline concentrations induce extracellular matrix binding protein Embp dependent *Staphylococcus epidermidis* biofilm formation and immune evasion. *Int. J. Med. Microbiol.* 2016, 306, 471–478. [CrossRef] [PubMed]
- 89. Jin, Y.; Guo, Y.; Zhan, Q.; Shang, Y.; Qu, D.; Yu, F. Subinhibitory concentrations of mupirocin stimulate *Staphylococcus aureus* biofilm formation by upregulating cidA. *Antimicrob. Agents Chemother.* **2020**, *64*, e01912–e01919. [CrossRef]
- Ma, H.; Bryers, J.D. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: Effects of substrate loading and antibiotic selection. *Appl. Microbiol. Biotechnol.* 2013, 97, 317–328. [CrossRef]
- Dai, Z.J.; Tang, W.; Lu, W.F.; Gao, J.; Kang, H.F.; Ma, X.B.; Min, W.L.; Wang, X.J.; Wu, W.Y. Antiproliferative and apoptotic effects of β-elemene on human hepatoma HepG2 cells. *Cancer Cell Int.* 2013, *13*, 27. [CrossRef]
- 92. Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017.
- 93. Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. *J. Phys. Chem. Ref. Data* 2011, 40, 1–47. [CrossRef]
- 94. Linstrom, P.J.; Mallard, W.G. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Available online: http://webbook.nist.gov/chemistry (accessed on 8 October 2021).
- 95. Clinical and Laboratory Standards Institute. Document M02-A11. Performance Standards for Antimicrobial Disk Susceptibility Tests, 11th ed.; CLSI: Wayne, PA, USA, 2012.
- 96. Clinical and Laboratory Standards Institute. *Document M7-A7. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard,* 7th ed.; CLSI: Wayne, PA, USA, 2006.
- 97. Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [CrossRef]
- Peng, L.; Xiong, Y.; Wang, M.; Han, M.; Cai, W.; Li, Z. Chemical composition of essential oil in *Mosla chinensis* Maxim cv. Jiangxiangru and its inhibitory effect on *Staphylococcus aureus* biofilm formation. *Open Life Sci.* 2018, 13, 1–10. [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [CrossRef]