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Abstract

Purpose

We evaluated that early metabolic response determined by 18F-fluorodeoxyglucose positron

emission tomography/computed tomography (FDG-PET/CT) during radiotherapy (RT), pre-

dicts outcomes in non-small cell lung cancer.

Material and methods

Twenty-eight patients evaluated using pretreatment 18F-FDG-PET/CT (PETpre) and interim
18F-FDG-PET/CT (PETinterim) after 11 fractions of RT were retrospectively reviewed. Maxi-

mum standardized uptake value (SUVmax) was calculated for primary lesion. Predictive

value of gross tumor volume (ΔGTV) and SUVmax (ΔSUVmax) changes was evaluated

for locoregional control (LRC), distant failure (DF), and overall survival (OS). Metabolic

responders were patients with ΔSUVmax >40%.

Results

Metabolic responders showed better trends in 1-year LRC (90.9%) than non-responders

(47.1%) (p = 0.086). Patients with large GTVpre (�120 cc) demonstrated poor LRC (hazard

ratio 4.14, p = 0.022), while metabolic non-responders with small GTVpre (<120 cc) and

metabolic responders with large GTVpre both had 1-year LRC rates of 75.0%. Reduction of

25% in GTV was not associated with LRC; however, metabolic responders without a GTV

response showed better 1-year LRC (83.3%) than metabolic non-responders with a reduc-

tion in GTV (42.9%). Metabolic responders showed lower 1-year DF (16.7%) than non-

responders (50.0%) (p = 0.025). An ΔSUVmax threshold of 40% yielded accuracy of 64% for

predicting LRC, 75% for DF, and 54% for OS. However, ΔGTV > 25% demonstrated inferior

diagnostic values than metabolic response.

Conclusions

Changes in tumor metabolism diagnosed using PETinterim during RT better predicted treat-

ment responses, recurrences, and prognosis than other factors historically used.
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Background

Fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) imaging has become

an important and popular tool for determining the disease stage in patients with non-small-

cell lung cancer (NSCLC). The National Comprehensive Cancer Network recommends the

use of 18F-FDG-PET/computed tomography (CT) for the appropriate staging of lung cancer

[1].

There are several roles of FDG-PET/CT in NSCLC, such as diagnosis, prognosis, and radio-

therapy (RT) planning. Recent investigations have shown that FDG-PET/CT has more than

90% accuracy in diagnosis of malignant nodules, with a low false-positive rate [2]. FDG-PET

also plays a significant role in nodal staging (accuracy 90%, sensitivity 79–85%, and specificity

87–92%) [3, 4] and distant metastasis detection, with previously unsuspected diagnosis of

extrathoracic lesions in up to 10% of patients, beyond CT alone [5]. FDG-PET offers a benefit

over conventional CT after treatment where, for example, although tumor shrinkage may be

observed, inflammation and fibrosis after neoadjuvant chemotherapy or RT make assessment

difficult [1].

In addition, FDG-PET plays an important role in target volume delineation of the gross

tumor volume (GTV), for both the primary tumor and lymph nodes [6]. Its superior contrast

between tumor and non-tumor tissue means that FDG-PET can also decrease inter-physician

contouring variability, compared to delineation with CT alone [7]. It also greatly assists physi-

cians in distinguishing the tumor tissue from atelectasis [8]. Therefore, a consensus report has

been endorsed for target volume delineation using PET imaging [9].

Currently, chemoradiotherapy (sequential or concurrent) is considered as a standard treat-

ment for locally advanced NSCLC. Despite the emergence of immunotherapy, targeted ther-

apy, and new RT techniques, the prognosis of those patients remains poor. Therefore, the

ability to identify non-responders during treatment, in order to change ineffective treatment

early on, is very desirable [10]. Several studies have demonstrated interim PET (PETinterim)

metrics as a prognostic factor, but most of these included conventional three-dimensional con-

formal RT and various chemotherapy regimens, with varied timing of PETinterim. Therefore,

in this study, we focused on metabolic and volumetric parameters, which are easily accessible

during RT, in patients treated with modern RT and certain chemotherapy regimens.

Materials and methods

Study population

Patients diagnosed with NSCLC who had undergone RT with PETinterim between March 2015

and January 2018 were enrolled. Patients were excluded if they underwent RT with preopera-

tive aim (n = 7), if pre-RT FDG-PET/CT (PETpre) was not available or was performed at

another institution (n = 6), if they did not complete RT (n = 2), and if follow-up details were

missing (n = 4). Ultimately, we retrospectively reviewed medical records and tumor character-

istics of 28 patients, as well as their clinical outcomes. This study was approved by the Health

Institutional Review Board of Yonsei University Hospital (No. 4-2019-0608). The study was

conducted in accordance with the provisions of the 1975 Declaration of Helsinki. The require-

ment for informed consent was waived owing to the retrospective nature of this study. All data

between March 2015 and May 2019 were fully anonymized before authors accessed them.

Treatment

All patients, except three patients who were medically ineligible due to poor performance and

comorbidity, received chemotherapy using a platinum- and taxane-based regimen. Twenty-
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five patients began on RT administered concurrently with weekly paclitaxel (45 mg per square

meter of body-surface area) via intravenous infusion over 1 hour, followed by carboplatin at

an area under the plasma concentration time curve (AUC) of 2 mg/mL � minute, with a total

dose of AUC � (glomerular filtration rate + 25), as an intravenous infusion over 30 minutes.

All patients underwent simulation four-dimensional CT without contrast enhancement

(3-mm slice thickness) for RT planning in both initial plan and interim adaptive plan. The

GTV was delineated by single radiation oncology expert with more than 30 year experience

in lung cancer (C.G.L) at simulation CT with contrast enhancement, including the primary

tumor and involved regional nodes (1 cm or larger in short axis, showing abnormal FDG-avid-

ity on PETpre, or proven on biopsy), based on both CT and pre-RT FDG-PET/CT. The internal

GTV was contoured on all-phase four-dimensional CT scans in order to reflect the effects of

respiration. The clinical target volume was defined as GTV plus a 3-5-mm margin in order to

include microscopic tumor extension. An additional 3-mm margin to both the internal GTV

and clinical target volume was added to planning target volume (PTV1 and PTV2, respec-

tively) based on institutional image-guidance strategies. A simultaneous integrated boost was

utilized in PTV1 for 63 Gy in 30 fractions and PTV2 for 54 Gy in 30 fractions. All patients

were treated with intensity-modulated RT using volumetric-modulated arc therapy (Elekta

VMAT, Elekta, Stockholm, Sweden) [11]. Daily pretreatment imaging using kilovoltage cone-

beam CT was performed for image-guided RT.

18F-FDG-PET/CT method

All PETpre and PETinterim scans were performed using Discovery STE (GE Healthcare, Mil-

waukee, WI, USA) scanner. Every patient fasted for a minimum of 6 hours before 18F-FDG

administration, ensuring a blood glucose level below 140 mg/dL. Patients were then injected

with FDG at 5.5 MBq/kg. After allowing 45–60 minutes for tracer uptake, patients underwent

PET/CT imaging along with a non-contrast low-dose CT scan for attenuation correction (30

mA, 140 kVp). Images were acquired from the base of the skull to the proximal thigh, with

acquisition times of 3 minutes/bed position. The intrinsic spatial resolution of the system was

approximately 5 mm (full width at half maximum) in the center of the field of view. All PET

images were then reconstructed using a three-dimensional row-action maximum likelihood

interactive reconstruction algorithm. All patients started RT median 16.5 days (range, 8–35

days) after the PETpre scan to accurately reflect the tumor metabolism.(9) To minimize inter-

pretation difficulty due to non-specific FDG accumulation from radiation-induced inflamma-

tion during RT, we performed a PETinterim scan at a median of 2 weeks (range 13–22 days)

after initiation of RT [12].

PET metrics

PET/CT images were consistently analyzed by two radiation oncology physicians (N.K. and

C.G.L.) using the MIM Maestro 6.7 (MIM Software Inc., Cleveland, OH, USA). The region of

interest was delineated over the primary tumor on the PETpre and PETinterim scans using PET

Edge, a semi-automatic gradient-based method validated for its superiority over manual or

threshold methods [13]. This algorithm sets the contour boundary at the location where

the signal gradient is highest. Then, deformable registration of delineated GTV in contrast-

enhanced planning CT scans for initial and adaptive plan was performed to adjust the region

of interest generated by two blinded radiation oncologists. Final region of interest for further

analysis regarding PET parameter was approved by single radiation oncologist (C.G.L.). The

SUV was measured in all voxels in the primary tumor region of interest. The maximum SUV

(SUVmax) was defined as the maximum decay-corrected activity concentration in the tumor/
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(injected dose/body weight). Since metabolic target volume or total lesion glycolysis is based

on relative uncertainty compared to maximum value of SUV due to inflammation, fibrosis, or

atelectasis in lung cancer, we only analyzed the SUVmax in the current study.

Statistical analysis

The percentage change in each parameter between the PETpre and PETinterim was calculated

using the following equation [14]:

D½Parameter� ¼ f½Parameterpre � Parameterinterim�=Parameterpreg � 100%

Since there is limited information for universally accepted the optimal cut-off value for

dynamics in PET parameters, receiver operating characteristics curve analyses regarding any

failures were used to assess the cut-off threshold of SUVmax from PETinterim for identifying

metabolic responders. As a reference, volumetric response was assessed based on GTV changes

(ΔGTV), with a threshold of 25%, which could improve the response assessment compared to

Response Evaluation Criteria in Solid Tumors [15]. Locoregional recurrence (LRR) and dis-

tant failures (DF) were defined as any first recurrence within and outside the PTV until the

last follow-up, respectively. Overall survival (OS) was calculated from the day of first RT to the

date of death or the last follow-up visit. Survival curves were estimated using the Kaplan-Meier

method and compared using the log-rank test. Univariable analysis of LRR and DF was per-

formed using Cox regression analysis. A multivariable analysis was not performed because no

statistically significant factors were identified on univariable analysis. Sensitivity, specificity,

accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated

to assess the diagnostic value of selected parameters. In addition, Delong’s test after bootstrap-

ping 200 times was performed to compare the predictive value of selected cutoff values from

parameters. The α level of 0.05 was used: a p-value <0.05 was regarded as a rejection to the

null hypothesis and therefore considered statistically significant. All statistical analyses were

performed using SPSS version 25.0.0 (IBM Corp., Armonk, NY) and R (version 3.6.3; R Foun-

dation for Statistical Computing, Vienna, Austria).

Results

Cohort characteristics

Details of the patients’ characteristics are presented in Table 1. Males predominated (92.9%)

among the entire group of 28 patients, and the median age was 73.5 years (interquartile range

(IQR) 66.0–88.0). Most patients were diagnosed as having squamous cell carcinoma (64.3%),

followed by adenocarcinoma (35.7%). Median primary tumor size was 4.1 cm (IQR 3.4–5.3)

and more than half of the patients (82.2%) were diagnosed at stage III. The PETinterim was

obtained approximately 11 fractions after treatment initiation, with a median dose of 23.1 Gy

(IQR 23.1–24.7).

Changes during RT

The median GTVpre and SUVmax(pre) were 119.6 cc (IQR 85.7–190.6) and 15.5 (IQR 11.5–

21.4), respectively. Both GTV and SUVmax were generally decreased on PETinterim; median

ΔGTV and ΔSUVmax were 23.6% (IQR 14.0–49.6%) and 32.9% (IQR 8.4–64.6%), respectively.

However, four patients showed an increased GTV and another five showed increased SUVmax.

The quantitative analysis of SUVmax and GTV is summarized in S1 Table.
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Treatment outcomes

Median follow-up was 17.7 months (IQR 11.9–22.2). Twelve patients developed LRR, 15

patients showed DF, and 7 patients experienced both LRR and DF; 4 of them encountered

with simultaneous LRR and DF as a first treatment failure. The overall 1-year LRR rate was

34.3%, while the DF rate was 36.1% for the entire cohort (S1A Fig). One-year OS and progres-

sion-free survival rates were 82.0% and 53.3%, respectively (S1B Fig).

Prognostic factors for treatment outcomes

With an area under the receiver operating characteristics curve of 0.812 for any failures (S2

Table), a threshold of 40% was calculated as the optimal cut-off for ΔSUVmax. With this thresh-

old, there were 12 metabolic responders and 16 non-responders. Metabolic response based on

ΔSUVmax of 40% demonstrated a difference in locoregional control (LRC), but this was not

statistically significant for the entire cohort; 1-year LRC rate for metabolic responders (n = 12)

was 90.9%, compared to 47.1% for non-responders (n = 16, Fig 1A, Table 2). However, large

GTVpre (�120 cc) was identified as a poor prognostic factor for LRC on univariable analysis

(HR 4.14, 95% CI 1.23–13.97; p = 0.022), whereas ΔGTV had little impact on LRC (p = 0.341).

However, metabolic response showed a borderline impact on LRC, along with GTVpre

Table 1. Patient and treatment characteristics.

Patient characteristics N %

Age at treatment (yrs, median [IQR]) 73.5 [66.0–80.0]

Sex

Female 2 7.1

Male 26 92.9

ECOG PS

0–1 26 92.9

2 2 7.1

Pathology

Squamous cell carcinoma 18 64.3

Adenocarcinoma 10 35.7

Primary tumor size (cm, median [IQR]) 4.1 [3.4–5.3]

�4 cm 17 60.7

<4 cm 11 39.3

Stage

IB—IIB 5 17.8

IIIA—IIIC 23 82.2

Treatment characteristics N %

Aim

Definitive 28 100.0

Concurrent chemotherapy 25 89.3

Intensity-modulated radiation therapy 28 100.0

Median total dose (Gy, median [IQR]) 63 [61.5–63.0]

Median fraction dose (Gy, median [IQR]) 2.1 [2.1–2.2]

Fractions of RT completed before interim PET (fractions, median [range]) 11 [10–14]

Dose of RT completed before interim PET (Gy, median [range]) 23.1 [23.1–24.7]

Abbreviations: IQR, interquartile range; ECOG PS, Eastern Cooperative Oncology Group performance status; RT,

radiation therapy

https://doi.org/10.1371/journal.pone.0236350.t001
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(Fig 1B). Metabolic responders with a small GTVpre (n = 4) showed the best 1-year LRC rate,

of 100%. In contrast, metabolic non-responders with a large GTVpre (n = 8) showed the worst

1-year LRC rate, of 15%. There was no difference in LRC between metabolic non-responders

with a small GTVpre (n = 8) and metabolic responders with a large GTVpre (n = 8) (1-year LRC

rate 75.0% vs. 75%, p = 0.584).

Fig 1. Locoregional control rate according to the SUVmax change: A—according to the SUVmax reduction rate, and

B—stratified by pretreatment GTV (GTVpre). Responders were patients with SUVmax reduction rates�40%,

whereas non-responders were those with SUVmax reduction rates<40%.

https://doi.org/10.1371/journal.pone.0236350.g001

Table 2. Predictors of locoregional recurrence identified using a Cox proportional hazards model.

1-yr LRC Univariable analysis

% HR 95% CI p-value

Age (yrs) <70 57.1 ref

�70 70.6 0.51 0.16–1.6 0.252

Pathology Adenoca 57.1 ref

SqCCa 70.6 0.61 0.19–1.92 0.395

Size <4 cm 77.8 ref

�4 cm 58.8 1.31 0.39–4.38 0.659

T T1-2 64.6 ref

T3-4 66.7 0.64 0.19–2.15 0.473

Stage I-II 50.0 ref

III 68.3 0.84 0.18–3.87 0.819

Total dose <60 Gy 0.0 ref

�60 Gy 68.1 0.18 0.02–1.79 0.145

GTVpre <120 cc 86.7 ref

�120 cc 37.0 4.14 1.23–13.97 0.022

SUVmax(pre) <15 50.8 ref

�15 78.6 0.97 0.9–1.05 0.447

GTVpre−GTVint (+) 88.9 ref

(-) 42.9 1.39 0.22–4.28 0.093

SUVmax(pre)−SUVmax(int) (+) 67.1 ref

(-) 60.0 0.77 0.16–3.67 0.747

ΔGTV � 25% 71.8 ref

< 25% 58.3 0.57 0.18–1.81 0.341

ΔSUVmax � 40% 90.9 ref

< 40% 47.1 3.02 0.8–11.32 0.101

Abbreviations: yr, year; LRC, locoregional control rate; HR, hazard ratio; CI, confidence interval; Adenoca, adenocarcinoma; SqCCa, squamous cell carcinoma; Gy, gray;

GTV, gross tumor volume; SUVmax, maximum standardized uptake value; Xpre, pre-treatment value; Xint, interim value

https://doi.org/10.1371/journal.pone.0236350.t002
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Patients with a favorable metabolic response showed better 1-year DF-free rate than non-

responders: 83.3% for good responders and 50.0% for non-responders (p = 0.025) (Fig 2A,

Table 3). However, GTVpre, SUVmax(pre), and ΔGTV were not associated with DF. Metabolic

responders showed prolonged survival than non-responders, but this was not statistically

Fig 2. Clinical outcomes according to reduction in SUVmax: A—Distant failure-free rate of patients, and B—

overall survival rate. Responders were patients with SUVmax reduction rates�40%, whereas non-responders were

those with SUVmax reduction rates<40%.

https://doi.org/10.1371/journal.pone.0236350.g002

Table 3. Predictors of distant failures identified using a Cox proportional hazards model.

1-yr DFFR Univariable analysis

% HR 95% CI p-value

Age (yrs) <70 50.0 ref

�70 72.2 0.77 0.27–2.19 0.626

Pathology Adenoca 60.0 ref

SqCCa 72.2 0.87 0.30–2.50 0.800

Size <4 cm 53.0 ref

�4 cm 70.6 0.5 0.17–1.50 0.219

T T1-2 56.3 ref

T3-4 75.0 0.66 0.22–1.94 0.450

Stage I-II 40.0 ref

III 69.0 0.57 0.18–1.83 0.349

Total dose <60 Gy 50.0 ref

�60 Gy 64.9 0.67 0.09–5.27 0.705

GTVpre <120 cc 61.9 ref

�120 cc 66.7 1 1.00–1.01 0.249

SUVmax(pre) <15 61.5 ref

�15 66.0 0.98 0.91–1.05 0.490

GTVpre−GTVint (+) 62.2 ref

(-) 75.0 0.54 0.07–4.19 0.556

SUVmax(pre)−SUVmax(int) (+) 64.6 ref

(-) 60.0 1.68 0.56–5.06 0.355

ΔGTV � 25% 61.5 ref

< 25% 65.2 0.62 0.22–1.74 0.368

ΔSUVmax � 40% 83.3 ref

< 40% 50.0 3.93 1.09–14.15 0.036

Abbreviations: yr, year; DFFR, distant failure free rate; HR, hazard ratio; CI, confidence interval; Adenoca, adenocarcinoma; SqCCa, squamous cell carcinoma; Gy, gray;

GTV, gross tumor volume; SUVmax, maximum standardized uptake value; Xpre, pre-treatment value; Xint, interim value

https://doi.org/10.1371/journal.pone.0236350.t003
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significant (1-year OS rate 91.7% vs. 74.5%, p = 0.449) (Fig 2B). No statistically significant

prognostic factor was found to influence OS (S3 Table).

Diagnostic tests

The diagnostic test results are presented in Table 4. Using the threshold of 40%, ΔSUVmax pro-

vided a sensitivity of 56.3%, specificity of 75.0%, accuracy of 64.3%, PPV of 75.0%, and NPV

of 56.3% for predicting LRR. GTVpre with a threshold of 120 cc was identified as a tool for pre-

dicting LRR, with a diagnostic accuracy of 71.4%. ΔSUVmax showed better diagnostic ability

for predicting DF than GTVpre, with a sensitivity, specificity, and accuracy of 75.0%; PPV of

80.0%; and NPV of 69.2%. There was no statistical difference in AUC value for LRR between

ΔSUVmax and GTVpre criteria (0.656 and 0.708, p = 0.681, S2 Fig). The AUC was 0.766 and

0.603 for DF based on ΔSUVmax and GTVpre criteria, respectively (p = 0.043, S2 Fig).

Discussion

In this study, we investigated the predictive value of using 18F-FDG-PET parameters before

and during RT for predicting treatment outcomes in patients with NSCLC. Although there

was a significant difference in LRC according to GTVpre, metabolic response showed some

degree of impact based on subgroup analysis. However, changes in SUVmax were signifi-

cantly associated with DF, and this criterion has proved its diagnostic value to predict

response to RT.

Tumor burden, measured by GTV, is important in tumor control models of RT; a given

dose induces a log cell kill, assuming that the larger the tumor, the more cells and, therefore,

the more radiation needed for LRC [16]. Given that GTVpre defined on CT was significantly

associated with LRR at the RT dose (total dose of 60–63 Gy) used in the present study, it can

be assumed that dose escalation is needed to achieve local control in NSCLC [17]. Secondary

Table 4. Diagnostic tests for response criteria based on ΔSUVmax and GTVpre.

Locoregional recurrence Distant failure Overall survival

Value 95% CI Value 95% CI Value 95% CI

ΔSUVmax (40%)

Sensitivity 56.3 (31.9–80.6) 75.0 (53.8–96.2) 43.8 (19.4–68.1)

Specificity 75.0 (50.5–99.5) 75.0 (50.5–99.5) 66.7 (40–93.3)

False-positive rate 25.0 (5.0–49.5) 25.0 (0.5–49.5) 33.3 (6.7–60)

False-negative rate 43.8 (19.4–68.1) 25.0 (3.8–46.2) 56.3 (31.9–80.6)

Diagnostic accuracy 64.3 (46.5–82) 75.0 (59–91) 53.6 (35.1–72)

PPV 75.0 (50.5–99.5) 80.0 (59.8–100.2) 63.6 (35.2–92.1)

NPV 56.3 (31.9–80.6) 69.2 (44.1–94.3) 47.1 (23.3–70.8)

GTVpre (120cc)

Sensitivity 66.7 (40–93.3) 41.7 (13.8–69.6) 58.3 (30.4–86.2)

Specificity 75.0 (53.8–96.2) 37.5 (13.8–61.2) 75.0 (53.8–96.2)

False-positive rate 25.0 (3.8–46.2) 62.5 (38.8–86.2) 25.0 (3.8–46.2)

False-negative rate 33.3 (6.7–60) 58.3 (30.4–86.2) 41.7 (13.8–69.6)

Diagnostic accuracy 71.4 (54.7–88.2) 39.3 (21.2–57.4) 67.9 (50.6–85.2)

PPV 66.7 (40–93.3) 33.3 (9.5–57.2) 63.6 (35.2–92.1)

NPV 75.0 (53.8–96.2) 46.2 (19.1–73.3) 70.6 (48.9–92.3)

Abbreviations: CI, confidence interval; SUVmax, maximum standardized uptake value; GTV, gross tumor volume; PPV, positive predictive value; NPV, negative

predictive value.

https://doi.org/10.1371/journal.pone.0236350.t004
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analysis of the RTOG 9311 study revealed that increasing GTV (>45 cm3) was related to poor

OS and progression-free survival [18]. Several other series [19, 20] have also suggested that

tumor volume is a significant prognostic factor for survival. However, a recent prospective,

observational factor study of TROG 99.05 [21] found that a large primary tumor volume was

not associated with poor survival, after adjusting for the effects of T and N stage. Instead, large

primary tumor volume had an adverse impact on survival only within the first 18 months

(comparable to the median follow-up period for the present study). In addition, changes in

GTV had no impact on the treatment outcomes, and metabolic response could help stratify

patients: those with a large GTVpre and favorable metabolic response showed an LRC rate

comparable to that of patients with a small GTVpre and poor metabolic response. Several series

provide evidence for a correlation between SUV and tumor cell proliferation [22]. An early

reduction in FDG uptake during treatment can predict tumor response. In addition, SUVmax

represents the enhanced tapping of 18F-FDG into the tumor cells, due to biological mecha-

nisms, tumor aggressiveness, and hypoxia [23].

Owing to the heterogeneity of patient populations with NSCLC at an advanced stage, there

is no concrete evidence regarding the prognostic value of PETpre. A recent meta-analysis of 13

studies with 1474 patients demonstrated that high SUVmax(pre) in the primary tumor was asso-

ciated with reduced survival [24]. Another meta-analysis of 36 studies on 5807 patients with

surgically treated NSCLC also identified SUVmax(pre) as a prognostic factor for disease-free sur-

vival, with an HR of 1.52 (95% CI 1.16–2.00). However, the retrospective study by Hoang et al.

[25] with a homogeneous population did not find a correlation between metabolic parameters

on PETpre and survival, which is consistent with the findings of the present study.

Discriminating non-responders from responders can help physicians to avoid unnecessary

toxicity in patients expected to have a poor prognosis, by early interruption of ineffective ther-

apy. Because changes in FDG uptake were associated with tumor shrinkage, PETinterim can

also help physicians decide when to modify the RT plan, with PTV modification or dose esca-

lation. Several series with various sample sizes (10–77 patients) have shown the prognostic

value of PETinterim in patients with NSCLC treated with RT [26, 27] and in those with other

solid tumors [28, 29]. And secondary analysis of ESPATUE study revealed that remaining

SUVmax in the primary tumor after induction chemotherapy was associated with survival and

freedom from extracranial progression in consistent to the current study [30]. Furthermore, a

recent meta-analysis of 21 studies on 627 patients reported PETinterim as a promising tool for

the early judgment of treatment [12]. However, because most of these studies were retrospec-

tive and examined multiple outcomes, concerns around the statistics include the fact that there

were multiple comparisons and selective reporting of endpoints. More importantly, definite

criteria or standard parameters have not yet been determined, and prognostic metrics range

from SUVmax [27] and ΔSUVmax [31] to total lesion glycolysis [32] and metabolic tumor vol-

ume [14]. In our series, ΔSUVmax was associated with DF and LRR, suggesting that this param-

eter helps to stratify patients. Metabolic response based on ΔSUVmax was not significantly

associated with LRC on univariable analysis, possibly due to the lack of statistical power.

However, SUV as a semiquantitative index has limitations owing to poor reproducibility

[24], making it difficult to adopt a threshold among different centers. In place of the SUV

value itself, we calculated a cut-off value for ΔSUVmax (a 40% reduction), which was predictive

of both LRR and DF. Criteria for the relative change in SUVmax can be a tool for predicting

early treatment response in the same institution, which, in turn, can minimize the issue of vari-

ability and enhance the prognostic value of this metabolic parameter.

Early response appears to be an indicator of tumor biology and a predictor of the likelihood

of treatment failure. Thus, the assessment of early response makes it easier to identify poor

responders who are eligible for the intensification or modification of treatment, instead of
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continuation of the initial treatment (the so-called 18F-FDG-PET/CT-guided treatment algo-

rithm). A recent phase II trial proved that adaptive RT with escalated doses accompanied by

PETinterim is feasible and results in favorable LRC [33]. A further ongoing clinical trial (RTOG

1106) is examining adaptive RT with dose escalation for FDG-avid tumors on PETinterim.

Another promising area of research that needs further prospective trials is the early switching

of systemic chemotherapy in patients with a small decrease in SUVmax. Recently, there are sev-

eral on-going trials in other solid tumors investigating the role of immune checkpoint block-

ade stratified by PET parameters (NCT 03829007, NCT 03853187, NCT 02760225).

Our study had several limitations. First, as a retrospective analysis, the results should be

interpreted with caution. Although we have analyzed an optimal cut-off value for SUVmax, we

used a median value of GTV and 25% criteria for ΔGTV as previously reported to minimize

statistical overfitting. Optimal threshold could be derived from further investigation with large

number of patients and it should be externally validated. Second, there are inherent biases

since this study was carried out in a single institution. However, our analysis was strengthened

using consistent modern 18F-FDG-PET/CT, imaging analyses, chemotherapy regimen, and

RT techniques. Other limiting factors include possible inflammatory changes caused by irradi-

ation, which may mimic changes in tumor glucose metabolism associated with treatment.

We evaluated the PETinterim at 2 weeks after initiation of RT to minimize the overlapping of

inflammation and residual tumor [12]. In addition, there is a possibility of overestimation of

changes in SUV, because of the partial-volume effect; tumor reduction may underestimate the

FDG uptake. Lastly, lack of a univocal parameter remains a challenge in dealing with the meta-

bolic parameters as a universal prognostic or predictive factor. Although FDG uptake is gener-

ally used as a parameter to reflect the proportion of viable tumor cells, new tracers are now

available for specifically detecting apoptosis and proliferation to provide a highly accurate pre-

diction of treatment response.

Conclusions

We could cautiously assume that response criteria based on changes in SUVmax during RT

could be useful for identifying responders to current treatment among patients with NSCLC.

The optimal management of poor responders identified on PETinterim remains to be deter-

mined. Furthermore, a prospective study to confirm the efficacy of 18F-FDG-PET/CT-guided

algorithms in patients with NSCLC is warranted.
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