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Abstract

Background: Ecological characteristics (growth, morphology, reproduction) arise from the interaction between
environmental factors and genetics. Genetic analysis of individuals’ life history traits might be used to improve our
understanding of mechanisms that form and maintain a hybrid zone.

Methodology/Principal Findings: A fish hybrid zone was used to characterize the process of natural selection. Data were
collected during two reproductive periods (2001 and 2002) and 1117 individuals (nase, Chondrostama nasus nasus, sofie C.
toxostoma toxostoma and hybrids) were sampled. Reproductive dates of the two parental species overlapped at sympatric
sites. The nase had an earlier reproductive period than the sofie; males had longer reproductive periods for both species.
Hybridisation between female nase and male sofie was the most likely. Hybrids had a reproductive period similar to the
inherited parental mitochondrial type. Growth and reproductive information from different environments has been
synthesised following a bayesian approach of the von Bertalanffy model. Hybrid life history traits appear to link with
maternal heritage. Hybrid size from the age of two and size at first maturity appeared to be closer to the size of the maternal
origin species (nase or sofie). Median growth rates for hybrids were similar and intermediate between those of the
parental species. We observed variable life history traits for hybrids and pure forms in the different parts of the hybrid zone.
Geometrical analysis of the hybrid fish shape gave evidence of two main morphologies with a link to maternal heritage.

Conclusions/Significance: Selective mating seemed to be the underlying process which, with mitochondrial heritage, could
explain the evolution of the studied hybrid zone. More generally, we showed the importance of studies on hybrid zones and
specifically the study of individuals’ ecological characteristics, to improve our understanding of speciation.
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Introduction

The arrival of a species in a new territory may have many

consequences: modification of the environment, disappearance of

certain species, maintenance of invasive species or hybridisation

phenomena. According to Albert et al [1], interbreeding between

distinct species can result in a variety of evolutionary outcomes

(reinforcement (sensuDobzhansky [2]), genetic extinction [3,4],

speciation [5], enhanced genetic diversity [6] and novel genetic

combinations [7–10]. Different authors [9,11–15] have shown the

influence of natural hybridisation in animal evolution.

Hybridisation mechanisms are well known in cyprinids [16–18].

Several authors [19–21] have analysed the fitness, growth or

survival rate of hybrids, mainly in artificial conditions. They have

therefore measured the genetic component of postzygotic isolation

[22]. More recently, several authors [1,23–25] have estimated

hybrid fitness in natural conditions. The genetic component of

post-zygotic isolation is easier to measure than the ecological

component, because it does not require a special environmental

context. However, measurements of the genetic component reveal

little about the forces giving rise to this component (i.e. natural

selection or genetic drift). A growing number of analyses, generally

based on samples taken directly from hybrid zones, have shown

that there is an extrinsic or ecological component to natural

selection, revealing different adaptations [26]. The outcome of

natural hybridisation depends on the non-exclusive effects of both

pre- and post-mating reproductive barriers [27]. In controlling the

numbers of hybrids produced, premating reproductive barriers

may play an important role in determining the genotype

composition and fate of the hybrid zone [27]. The key to

understanding the spatial patterning of hybridisation and the

relative fitness of hybrids could lie in the ecology and breeding

behaviour [28]. Environmental factors might also influence the

level of hybridisation by reducing the relative reproductive success

for one gender in one of the parental forms [29].

Reduced hybrid fitness may be partly caused by the disruption

of co-adapted gene complexes [1]. Different studies have

highlighted the importance of interactions between the mitochon-

drial and nuclear compartments, particularly for fitness [30,31].

Mitochondria produce most of the energy by a process called

OXPHOS (oxydative phosphorylation system). These organelles

are consequently crucial to the proper growth and functioning of

the cell [32]. But cellular metabolic energy production is critically
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dependent on nuclear mitochondrial interaction [33]. Indeed, the

mitochondrion has its own genome, but more than 98 % of the

proteins in this organelle are encoded by the nuclear genome; the

expression of the nuclear and mitochondrial genomes must be

coordinated [34].

Costedoat et al [35] recently described a hybrid zone in the

River Durance, a tributary of the Rhône, between two species of

cyprinids: Chondrostoma nasus nasus (Linnaeus, 1758), the nase, and

Chondrostoma toxostoma toxostoma, the sofie. These authors demon-

strated a phenomenon of introgressive hybridisation and the

existence of a large number of viable genetic combinations.

Chondrostoma n. nasus originates from Central Europe. It recently

increased its distribution range in France via the Rhine, using

navigation canals constructed in the east and centre of France

from 1860 onwards. It took around 40 years for the species to

colonise all accessible French rivers [36]. In France, the sofie,

Chondrostoma t. toxostoma, currently populates the Rhône catchment

basin, Mediterranean rivers, the Garonne catchment basin,

Atlantic rivers and the upstream part of the Loire catchment

basin [37].

Studies of the ecological characteristics of hybrids and their

comparison with those of parent species appear to be essential to

our understanding of the origin and evolution of hybrid zones.

Growth, reproduction and morphology are the principal ecolog-

ical characteristics of the hybrids facilitating their comparison with

the parent species and assessment of their survival potential and

level of adaptation to the environment. All of these ecological traits

are dependent on genetic and environmental factors. For example,

even if a given species presents strong variability in growth, this

characteristic remains within a given range, reflecting the role of

genetic factors in controlling growth [38]. Other than intrinsic

factors, temperature is the main factor affecting growth [39].

Moreover, analysis of individual shape is useful because it reflects

the expression of both genetic and environmental factors [40]. In

fish, morphometry is one of the simplest ways of assessing the

evolutionary adaptation of a species to its environment [41].

Analyses of the reproductive traits of the parent species and of the

hybrids should make it possible both to define the intervals of time

where reproductive periods overlap and to determine which

mating would be more sensible, therefore enabling us to

understand some factors which might influence the fate evolution

of the hybrid zone.

Here we focus on natural selection processes in the hybrid zone

of Chondrostoma species in the Durance. This zone provides us with

an opportunity to study certain ecological traits of hybrids and

compare them with those of the parent species. We studied:

1) Growth, to determine the potential of the various combi-

nations of hybrids observed by Costedoat et al [42] and

compare them in different environments, based on the

application of the Bayesian approach to the field of

ichthyology;

2) Certain reproductive traits, making it possible to define

reproductive periods and comparisons between different

groups;

3) Morphology, to obtain an insight into the effects of genetics

and environmental factors on individual phenotypes;

4) The mitochondrial DNA (mtDNA) type of each individual,

making it possible to assess the relation of maternally

inherited material with the growth, reproduction and

morphology of individuals.

The extent of this hybrid zone and the variability of

environmental conditions also made it possible to test whether

the differences in ecological characteristics of different types of

hybrids with respect to the parent species were similar in different

environments. The results obtained should improve our under-

standing of the mechanisms underlying the maintenance and

survival of hybrids and of the evolution of this hybrid zone. This

work is novel in that it should provide information about the

influence of maternal inheritance on the variability of individual

ecological traits in the natural environment. Our results are of

interest in terms of species conservation where hybridisation

occurs.

Materials and Methods

The genetic and morphometric data used in this work were

already analysed and published by Costedoat et al [42]. The

growth data and statistical analyses (in particular Bayesian

approach) are unique to this article and in view of the growth

results we reanalysed the morphometric data.

Description of species and sites
The nase, Chondrostoma nasus originates from central Europe. It

colonised the Rhone and Durance via navigation canals in the

nineteenth and twentieth centuries. This species has rapid growth

(max length.500 mm) and a reproductive period occurring

around March–April at an age of around 3 years [36]. The sofie,

Chondrostoma toxostoma is a smaller species (max length,250 mm)

endemic to the South of France that reproduces in May-June from

2 years of age [43].

As hybridisation is frequent among Chrondrostoma species, it

was necessary to identify each individual genetically. Each fish

was identified by Costedoat et al [42] using four DNA markers

and one mtDNA marker (cytochrome b). The four nuclear

introns were: ribosomal protein gene S7 intron 1; triose

phosphate isomerase 1b, Tpi1b intron 4; a-tropomyosin, a-

Trop intron 5; and recombination activating gene 1, Rag 1

intron 2 (for more details see [42]).These markers were used to

define the type (nase, sofie or hybrid) of each individual, and to

determine the mtDNA type of each individual. Based on these

markers, the following groups were identified: the parent species,

C. nasus (N) and C. toxostoma (S), hybrids with C. nasus type

mtDNA (HyN) and hybrids with C. toxostoma type mtDNA

(HyS).

The fish studied were captured in the Durance River. Several

hydroelectric power stations make use of this river, which is

consequently separated into different sections by a number of

dams. Fish were captured at different sites separated upstream

and downstream by dams. Each site corresponded to several

fishing sites separated by a maximum of 4 km. Four sites were

defined. One was on one of the principal tributaries of the

Durance, the Buech, and the other three were on the main

course of the river at Manosque, Pertuis and Avignon (see

Figure 9 [42]).

Data collection
During years 2001 and 2002, 1117 fishes were collected by

electric fishing (Héron, Dream Electronics). The fish were

measured, photographed and a collection of oocytes or gonads,

scales (for scalimetry) and a piece of tissue (genetic analysis) were

sampled.

Fish were mostly caught between May and June, to ensure that

the reproductive periods of each species overlapped. The age

classes extended from one to six years, with a minimum of 35 and

a maximum of 383 fish per age class. The fish could be assigned to

four types at all four sites (Table 1).

Ecological Traits and Hybrids
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Morphology
Fish were photographed with a Nikon Coolpix 995 camera

and saved in the form of landmarks, using TPSdig software

(Figure 1).

Growth
Age of each fish was determined by scalimetry. The back-

calculated fork length (in mm) was determined using the power

model [44] for the 12 type-site groups of fish: nase-avignon (av-N),

nase-buech (bu-N), nase-manosque (ma-N), sofie-buech (bu-S),

sofie-manosque (ma-S), sofie-pertuis (pe-S), hybrids with nase

mitochondrial origin-buech (bu-HyN), hybrids with nase mito-

chondrial origin-manosque (ma-HyN), hybrids with nase mito-

chondrial origin-pertuis (pe-HyN), hybrids with sofie mitochon-

drial origin-buech (bu-HyS), hybrids with sofie mitochondrial

origin-manosque (ma-HyN), hybrids with sofie mitochondrial

origin-pertuis (pe-HyN).

Reproduction
In 2001, the sex of all individuals captured was determined and

the gonadosomatic index (GSI) was calculated. The state of gonad

maturity in females was assessed based on macroscopic and

microscopic observations. In 2002, the same characters were

assessed based on oocytes sampled through a cannula. The size at

which maturity was attained in 50% of the population was

determined based on a logistic regression model.

Statistical analysis
Bayesian approach to the von Bertalanffy model. The

von Bertalanffy model [45] is essentially an older version of the

general model of growth proposed by Schnutte [46]. It is the

preferred model when size is the variable studied and it is

particularly appropriate and widely used in studies of fish [47]. It

was used to model size, as a function of age for each of the 12

groups of fish defined on the basis of type-site combination:

Yi,j~L 1{ exp {Ti j{Dð Þ½ �ð Þzei,j

Where Yi,j and ei,j define estimated size and its variability for fish

i of age class j. The age classes correspond to whole years, from

one to six. The parameters of the model are reproduction date (D,

in years, beginning in January), adult size (L, in mm) of the group

and the individual growth rate of fish i (Ti). By contrast to the

classical use of the von Bertalanffy model, we assumed here that

the parameters were variable and consistent with the notion of a

cohort and the variability observed between studies. In addition, to

allow maximum flexibility we estimated the intrinsic growth rate

individually as for a full model.

We used a hierarchical approach [48], because we distinguished

three levels of variability:

1) When L, Ti, and D are known, Yij is normally distributed

L(12exp[2Ti (j2D)]), with a variance s2.

2) When the mean and variance of each of the variable

parameters (L, Ti, D) are known, these parameters follow a

normal distribution, N(mL, s2
L), N(mT, s2

T), N(mD, s2
D).

3) The parameters mT and s2
T correspond to the intrinsic

growth rate of the group and its variability within the

group. These two parameters are also assumed to be

variable. When mmT and s2
mT are known, mT is assumed to

follow a log normal distribution (mmT, s2
mT). The mT

parameter corresponds to the intrinsic growth rate of a type

at a given site, and the use of a log normal distribution

makes it possible to restrict its values to real, positive values

[49].

Table 1. Number of fish caught.

Buech Manosque Pertuis Avignon

N 122 23 68

HyN 94 52 28

HyS 31 72 10

S 139 238 240

Fish were caught during the reproductive period (March–June).
N = nase, S = sofie, HyN = hybrids with nase mtDNA, HyS = hybrids with sofie
mtDNA.
doi:10.1371/journal.pone.0005962.t001

Figure 1. Positions of the landmarks used for morphetric analysis. Landmark description – 1: centre of the eye – 2: anterior extremity – 3:
dorsal limit of head – 4: dorsal breakdown due to dorsal fin – 5: anterior dorsal fin insertion – 6: posterior insertion of dorsal fin insertion – 7: anterior
extremity – 8: ventral insertion of caudal fin – 9: anterior anal fin insertion – 10: anterior ventral fin insertion – 11: anterior pectoral fin insertion – 12:
ventral limit of head – 13: mouth insertion.
doi:10.1371/journal.pone.0005962.g001

Ecological Traits and Hybrids
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Just as the mean terms are variable, so the variance terms, such

as s2 and s2
T are assumed to be variable. They follow a non

informative distribution defined according to Winbugs [50] (e.g.

volume I: rats, a normal hierarchical volume) as the inverse of a

gamma distribution (0.001, 0.001) for s2 and a squared standard

distribution [0, 1] for s2
T.

Beyond the third level of variability, the fixed parameters are

known as hyperparameters and their value is fixed by an expert or

based on published results. The use of a Bayesian approach makes

it possible to combine observational data with established known

parameters for a species, to improve the estimation of growth

curves. The values used for hyperparameters and the bibliograph-

ical references used are indicated in Table 2. For hybrids, there are

no previous publications and the assumptions applying to the

parent species were used to check for possible discrepancies in

estimation. Similar results were obtained for the assumptions used.

Growth curves were adjusted without taking sex into account

because the data set for 2002 contained many unknowns. For the

2001 data, back-calculated sizes from age for each type showed

that the data for male and female fish followed similar curves.

The Bayesian approach estimates pre-distribution, based on the

parameters of the model—the density of values taken by growth

parameters for known sizes. This density cannot be calculated

analytically, but can be simulated from prior distribution based on

Monte Carlo-Markov chain algorithms [51]. The posterior

distribution of each parameter was simulated with Winbugs 1.4

(cf. Appendix S1). For each group of 100,000 simulations with two

initial chains (one based on prior mean values for the nase and the

other based on prior mean values for the sofie), we were able to

simulate pre-distributions after a burn-in phase of 10,000

simulations. Winbugs validation criteria were used to check that

the chains mixed well. Autocorrelation problems were limited for

pre-distribution parameters, by making use of only one of the four

simulations carried out in the final analysis.

To fully understand the concept of a posteriori estimation we have

used Ti parameters. In the model definition the Ti parameters

were centred on the mean group value of growth rate with a priori

value. Its standard deviation was derived from a non informative

distribution which allowed large standard deviation values and

thus, the normal distribution could be flat enough to allow a large

range of potential values for simulation. Therefore, the estimation

of Ti a posteriori (ie depending on the observed Yi) was no longer

centred on the mean group but had moved toward a more

probable value with respect to the observed Yi.

Median curves and 95% intervals for each group were

calculated from the von Bertalanffy equation, using post-

distribution quantile (respectively 2.5%, 50% and 97.5%) values

for size at the different ages. For the group curves, Ti was replaced

by mT and for cohort curves (same group, same date of birth), the

mean intrinsic growth rates from all individuals belonging to the

cohort (gI = 1
n Ti/n) were used instead of Ti. In order to state if the

intrinsic growth rate of a cohort differed from the group, its

difference with mT was estimated a posteriori using median values

and its 95% intervals. Moreover, to visualise the impact of cohorts

using conditional environment on fish growth curve, cohort

growth curves were added to the graph of group curves. Only

cohorts with enough sample size (cf. Appendix S2) and which

differed visually from the group curve (estimated using all cohorts)

were added.

Analysis of growth variances at one year. The first year of

life may determine the subsequent development of the fish [52].

Size at one year reflects both the increase in size in the first year

controlled by environment (site) and genetic type (type). We used

the fork length, back-calculated for all fish, to ensure that the

measure of size used was homogeneous. Age influences the back-

calculated length, according to Lee’s phenomenon [53,54], in

which the size of the oldest fish is underestimated. The final factor

to consider is the notion of cohort. The fish captured belonged to

seven different cohorts (1995 to 2001), according to their year of

birth. The notion of a cohort only adds an effect of additional

variability. This variability may be broken down into three terms:

the effect of year of birth (intercept in equation 1) and, for a given

birth year, the effect of site and type. A more complex model

coupling site and type gave no significant improvement and was

not retained. The analysis of variance model included two levels of

variability: individual and cohort. It was a mixed effect model and

could be modelled with the R package nlme [55]. It included fixed

effects on mean back-calculated size (in bold) and variable effects

on back-calculated size (in italics), see equation 1.

Equation 1. Size at one year of a fish (m) back-calculated

from site (i), type (j) and age (k), taking cohort variability (l) into

account. Fixed effects are shown in bold and variable effects are

shown in italics. Individual variability is denoted e.

Sizeijklm = site-type(ij)+agek+cohortl+eijklm, with

cohortl = interceptl+sitei/l+typej/l

with the variable terms following normal distributions:

sitei/l,N(0, s2
i), typej/l,N(0,s2

j), interceptl,N(0,s2) and eijklm,N(0,

s2
individual)

Discriminant analysis of morphological data. Geometric

analysis makes use of the notion of fish shape, in the form of a

representation of points, invariant as a function of the position and

size of the fish, and their measurement on photographs. Shapes

are obtained using geometrical analysis and projection into the

tangent space for the application of discriminant analysis to the 12

site-type groups [56], shapes package and the ADE4 protocol of

R). Before carrying out discriminant analysis, we corrected for

allometric effects within chondrostome types (nase, hybrids with

nase mitochondrial origin HyN, hybrids with sofie mitochondrial

origin HyS, sofie) by multivariate linear regression of the tangent

co-ordinates of shapes as a function of fish size. As sofie and nase

were known to have different adult sizes, we also adjusted the

tangent coordinates from size (cf. Appendix S3). The tangent

coordinates are synthetic variables and cannot be interpreted

individually. [56] suggested studying changes in shape with

deformation grids (package shapes of R). Two mean shapes were

defined along each discriminant axes, associated respectively to

negative and positive canonical scores, by using multivariate

regression of the tangent coordinates upon the canonical score

[57]. Based on the representation of this deformation grid between

the two shapes, the distance between the points most sensitive to

Table 2. Values of hyperparameters for prior distributions.

Parameters Distribution Hyperparameters

mD N: 3.5/12

D (year) N(mD, s2
D) mD S: 545/12

sD: 1/12

mL N: 500

L (mm) N(mL, s2
L) mL S: 200

sL:!(100 000)

mT LN(mmT, s2
mT) mmT: 0.26, smT: 0.5

Ln(mT) N(22,0.6)

Nase (N) [59,82,83] and Sofie (S) [60,61] values were defined according to
previous publications.
doi:10.1371/journal.pone.0005962.t002
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deformation were identified. Several key distances were found to

distinguish between differences due to genetic type and/or

environment (site). The discriminating power of the distances

used was validated by Fisher’s linear discriminant analysis [58].

Results

Reproductive date
Parent species overlap. Considering all sites together, the

state of male and female maturity in the nase indicated a

reproductive period potentially extending from the end of March

to the end of April. For the sofie, the period extended from mid-

April to the end of May, with the females tending to mature over a

shorter period than the males (with an optimal reproductive period

of about 10 days). Accordingly, the overlap favoured mating

between nase female with sofie male.

Hybrid position. The smaller number of hybrids resulted in

the collection of more sporadic information, particularly for males.

The female HyN hybrids had a reproductive period similar to that

of nase (end of March to end of April), whereas the female HyS

hybrids had a reproductive period similar to that of the sofie (mid-

April to end of May).

Differences in size
Two distinct parental groups above two years old. The

median growth curves estimated with the von Bertalanffy model

clearly distinguished the type at the age of two years old (Figure 2

for Buech and Manosque, Appendix S2 for all type, site and

cohorts). At all sites, we observed two distinct parental growth

curves: the lower one for sofie and the higher for nase. From age 2

and above, the 95% intervals of the two species growth curves

were distinct and at age 3, the median size difference is around

40 mm.
Position of hybrid growth curves above two years

old. The hybrid growth curves were between the two parental

curves with a gradient from hybrids HyS to HyN. Hybrids HyN

Figure 2. Median growth curves and 95% interval calculated from the von Bertalanffy model for all cohorts. Parameters of the model
(adult size, intrinsic growth rate and date of reproduction) were estimated from the quantiles of a posteriori values generated by the Bayesian
approach. N = nase, S = sofie, HyN = hybrids with nase mitochondria, HyS = hybrids with sofie mitochondria. Cohort growth curves of years 1997 to
2000 were added to the graphs: 2000 with full triangle, 1999 with full circle, 1998 with star and 1997 with empty square.
doi:10.1371/journal.pone.0005962.g002
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median size was higher than S and hybrids HyS as its 95% curve

intervals were distinct above age 2, except in Pertuis. At the Pertuis

site, the intrinsic HyN growth rate was twice lower than at the

other site. Nevertheless, HyN hybrids exhibited growth curves and

values near nase curves and above those of sofie and HyS hybrids

(Figure 2 and 3). Similar observations could be applied to HyS

hybrids which had growth curves and values near sofie and below

those of hybrids HyN and nase.

Back-calculated size at one year. This method was used to

refine the results obtained with the von Bertalanffy growth model.

At one year old, the existence of a gradient in size of types (S,

hybrids HyS, hybrids HyN,N) was not so clear and size differed

between sites (Table 3). There was a significant interaction (log

ratio between model with interaction and without: df = (28,22),

L.ratio = 27.7, p-value = 1e-04) between types and sites (Avignon,

Manosque, Pertuis, Buech). Depending on the site, multiple

comparisons of size between types seemed to indicate two groups:

N and HyN were never significantly different and neither were S

and HyS. Hybrid mean sizes seemed closer to the inherited

parental mitochondrial type (N or S). Moreover N and HyN

showed similar conclusions for multiple t-test comparisons. They

differed from HyT at Buech with a normal approximate p-

value = 0.04 for nase and 0.007 for hybrids HyN, and from HyT

and T at Manosque with a normal approximate p-value = 0.04 for

nase and HyN hybrids and a normal approximate p-value = 0.03

for nase and similar for HyN hybrids.

Gradient in size at first reproduction from sofie to

nase. Median size at reproduction was estimated by a logistic

regression for all individuals at Buech (Table 4). We thus observed

a gradient from the sofie, through HyS hybrids, followed by HyN

hybrids, ending with the nase. Although incomplete, the data for

the other sites were consistent with this gradient.

Growth rate variability
Relative position of the four types. Regardless of the types

of mitochondrial DNA present, hybrids had a similar median

intrinsic growth rate (0.12 at Manosque, 0.19 at Buech) except for

the Pertuis site (cf. Appendix S2 for all values). Hybrid median

intrinsic growth rates were intermediate between those of the nase

(0.09 at Manosque, 0.13 at Buech) and of the sofie (0.30 at

Manosque, 0.28 at Buech). Whilst there was a clear gradient in

terms of size, in terms of intrinsic growth rate the gradient existed

for the parental species but was less pronounced for HyN hybrids

to HyS hybrids (Figure 3). The 95% credible set overlapped

between hybrids.

Type variability. Overall, variability in intrinsic growth rate

was greater than variability in size, except for the nase at

Manosque (Figure 3). The sofie displayed low levels of variability,

whereas the nase and HyN hybrids were more variable for both

the bayesian approach (Figure 3 and Appendix S2) and the linear

growth model at one year (Table 3, 63.7 and 2.6 cm, respectively

for nase and hybrids HyN).

Site variability. The growth model used at one year old

distinguished between the proportion of variability due to the

species and that due to the environment (site) within cohorts (based

on year of birth) (Table 3). The highest level of variability for

growth during the first year was observed at the Pertuis site (64.9),

followed by Buech (61.3). The bayesian approach also showed a

high variabilty of HyS hybrids at Pertuis (Appendix S2).

Impact of cohorts. Based on the bayesian estimation, the

intrinsic growth rates of some cohorts were distinct from the group

at 95% but the differences were small and the impact on growth

curves was limited (cf. Appendix S2 for all values). Overall, cohort

growth curves could correspond to a group curve at 95% (Figure 2)

and had no impact on the observed gradient in size or growth rate.

Morphometry
Discriminant analysis of fish shape as a function of group (av-N,

bu-N, ma-N, bu-S, ma-S, pe-S, bu-HyN, ma-HyN, pe-HyN, bu-

HyS, ma-HyN, pe-HyN) distinguished fish principally according

to their mitochondrial origin (N or S; Figure 4). The first axis of

the discriminant analysis accounted for 51.4% of variability

between groups and separated fish according to mitochondrial

origin; genetic information therefore appeared to be the most

Figure 3. Isocontours of the growth parameters of the bayesian
model. The isocontours for four types (nase, sofie, hybrids with nase
mitochondria, hybrids with sofie mitochondria) were estimated for each
site (Manosque and Buech) using a Gaussian node: the isocontour
indicates the range of values around the median accounting for 95% of
estimations.
doi:10.1371/journal.pone.0005962.g003

Table 3. Back-calculated size at one year old.

N HyN HyS S s

Avignon 7763.0 0.08

Buech 6563.0 6963.9 5564.1 6262.3 2.3

Manosque 6365.1 5963.1 5162.1 5062.4 0.01

Pertuis 4967.0 6466.0 5863.4 6.0

s 2.7 2.0 0.03 0.01

Back-calculated size (in mm) adjusted for the analysis model used and
expressed6the standard error. Standard errors were calculated as a function of
the analysis model used, from the residuals, the variability within cohorts
according to site (italic), type (italic) and the intercept (s= 161022). Interaction
between sites and types were significant, results and multiple t-test
comparisons are detailed in the text.
N = nase, S = sofie, HyN = hybrids with nase mtDNA, HyS = hybrids with sofie
mtDNA.
doi:10.1371/journal.pone.0005962.t003
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important. Information associated with site began to play a role

from the second axis (accounting for only 16% of variability

between groups) onwards. The correlation coefficient for the first

axis showed that 43.4% of variation along this axis could be

accounted for by the origin of the mitochondrial DNA, with the

rest of the variation corresponding to residual intragroup

variation.

Transformations along axis 1 mostly concerned the ventral

width of the fish and the length of the caudal fin as a proportion of

total length (Figure 5). This transformation corresponded to the

deformation of a quadrilateral based on points 9 (insertion of the

anal fin), 11 (insertion of the pectoral fin), 4 (insertion of the dorsal

fin) and 7 (end of the lateral line) (Figure 1). This quadrilateral is

defined using the distances between points 9 and 7, 9 and 4 and 9

and 11, divided by total length (the distance between points 2 and

7). This analysis generates three coefficients of allometry, the mean

values of which seemed to distinguish between the two classes of

fish defined by their mitochondrial origin. Therefore a Fisher’s

discriminant analysis was carried out with these three distance

variables and the two mitochondrial classes. Results are shown in

Table 5; information for subgroups (hybrids and parental species

for each mitochondrial class) was also given. Fisher’s discriminant

analysis classified the fish with percentages of correct classification

greater than 90%: 93.4% and 93.8% of fish correctly classified by

cross-validation and by classification of fish in 2002 based on 2001

data, respectively. Details of this analysis as a function of

mitochondrial origin and also for subgroups are provided in

Table 5. Correct classification percentages for parental types

exceeded 95%, whereas in 2002 those for HyN hybrids and HyS

hybrids were only about 77%.

Discussion

Characteristics of the parent species
In the Durance River, the nase displays higher growth rates

than the sofie, as in allopatric conditions [59,60]. The maximum

size observed in our study was 49 cm for the nase (50 cm in the

study by Nelva [36]) and 22 cm for the sofie (24 cm in the study by

Gozlan [61]). Maturity was acquired at the age of about three

years in the nase and about two years for the sofie, one year earlier

than [36] for the nase and [61] for the sofie.

In the Durance, the female nase had an optimal reproductive

period of about three weeks at the end of March and beginning of

April. Keith and Allardi [37] reported reproduction during a

three-week period in March and April (water temperatures of 8 to

11uC) at shallow sites with a strong current, with the eggs laid on

gravel or large pebbles.

Female sofie in the Durance had an optimal reproductive period

of about 10 days during the month of May. According to Gozlan

[61], female sofie laid their eggs at the end of May or start of June,

some 30 to 40 days after the nase, on gravel in small tributaries or

on stones in principal water courses.

In contrast to published observations, particularly [61], we

observed an overlap in the Durance between the zones and

periods of reproduction of the two species. In addition, as in many

other species, males began to mature earlier and over a longer

period than females. These phenomena make hybridisation

possible. Results for reproductive periods of the parent species

reveal that certain combinations were more likely than others.

Hybridisation between female nase and male sofie was the most

likely because the female nase matured earlier than the female

sofie and the male sofie had a longer, earlier period of maturity

than the female sofie.

Ecological characteristics of hybrids and evolution of the
hybrid zone

The partial overlap in reproductive periods and zones of nase

and sofie in the Durance has generated hybridisation. However,

hybridisation can only be maintained if the hybrids, or certain

hybrid combinations, are viable and if their ecological character-

istics do not result in their being less fit than the parent species.

The ecological characteristics of hybrids may be influenced by

intrinsic factors (complex interactions between parental genomes

[6]) or by environmental factors.

One frequently cited reason for the poor adaptation of hybrids

is difficulty feeding. Such problems occur when the parental types

have different alimentary specialisations of morphological types, as

is the case for benthic and limnetic sticklebacks [62] or whitefishes

[63]. By contrast to these examples of alimentary counterselection,

the isotopic values obtained for the nase, sofie and hybrids did not

differ significantly (Durbec et al 2007, Symposium on Non-Native

Fishes of the Fisheries Society of the British Isles).There is

therefore no evidence for different alimentary specialisations

between these types.

Hybrid viability observed in the sampled fish was demonstrated

by the presence of five- to six-year-old hybrids. Most of the time,

Table 4. Size at reproduction at the four sites studied.

Buech Manosque Pertuis Avignon

N S HyN HyS N S HyN HyS S HyN HyS N

Size (mm)

M 210 119 151 125 - 107 - 108 106 186 - 234

F 232 122 198 121 - 96 - 80 108 198 - -

F Fisher’s Test

? with all N all N ns ns ns ns

HyN HyN

M Fisher’s test

? with all N N N ns ns HyN S

Sizes (median) were estimated from the logistic regression model. Fisher’s test was applied separately to females (F Fisher’s Test) and males (M Fisher’s Test) to compare
median sizes, all p-values were around 0.005 or non significant (ns) The table indicates where a type is significantly differente. N = nase, S = sofie, HyN = hybrids with
nase mtDNA, HyS = hybrids with sofie mtDNA.
doi:10.1371/journal.pone.0005962.t004
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hybrid growth was intermediate between the growth of the two

parental species. Examples of natural hybrids with a higher

relative fitness exist (review in [1]), but no heterosis effect was

observed on hybrids in this study. Growth, considered as an

integral factor, demonstrated that the habitat was adequate and

highlighted the high level of adaptation of the hybrids caught.

These results differed from those of Hatfield [64], who found that

F1 hybrid sticklebacks grew less rapidly than the parent species,

and those of Hagen and Taylor [65], who demonstrated that

intermediate hybrid phenotypes were disadvantaged in the

parental niche.

The diversity of life history traits in hybrids is often

accounted for by the diversity of possible associations of

different parts of the parent genome by recombination [6,13].

For wild caught specimens, different combinations of nuclear

parental genetic information would coexist and could influence

life history traits. But, an analysis of the ecological character-

istics of the different groups showed that for the ecological

characteristics studied (growth, reproduction and morphology),

hybrids showed more similarities to the inherited parental

mitochondrial type. If we consider the different genetic

combinations, the von Bertalanffy growth curves allowed a

gradient in size after two years of age: nase, HyN hybrids,

HyS hybrids and sofie. Hybrid growth most closely matched

that of the parent with the same mitochondrial origin. Size at

first reproduction and reproductive periods of the hybrids were

also closer to those of the inherited parental mitochondrial

type. Eventually, discriminant analysis on shape tangent

coordinates indicated two distinct shapes depending on

maternal mitochondrial inheritance (Figure 4).

Figure 4. Discriminant analysis of fish shapes projected into the tangent space. Axes 1 and 2 account for 41.4 and 16%, respectively, of the
variability between groups. Fish with sofie-type mitochondria are shown in blue, with nase-type in dark.
doi:10.1371/journal.pone.0005962.g004
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Therefore, ecological characteristics seemed related to maternal

inheritance. Even if the involvement of nuclear gene could not be

ruled out, it appeared more likely to be a mitochondrial influence

on hybrid recombination and/or on hybrid phenotypes.

The role of maternally inherited mitochondrial genomes in

hybrids has not been widely examined [66]. Indeed, mitochondrial

DNA contains several important genes able to interact with the

nuclear genome. Notably the OXPHOS system complexes (five-

multi subunit enzymes complexes) consist of both mitochondrial

and nuclear polypeptides [67]. For example a single amino acid

substitution in cytochrome c from copepods Trigriopus californicus

has had a detrimental effect on complex IV activity of OXPHOS

(key aspect of mitochondrial bioenergetics) [68]. Other authors

have also demonstrated that fitness loss in copepod hybrids by

reduced ATP synthesis by OXPHOS was linked to nuclear-

mitochondrial interactions [66]; maternal backcross hybrids have

shown a recovery of the OXPHOS system and concomitant

recovery of fitness, suggesting that mitochondrial function may be

correlated with fitness. Another study [69] was consistent with a

causative role for mtDNA variations in phenotypic differences (egg

size, fecundity, cold resistance and starvation resistance), among fly

line. However, the authors did not completely rule out the

involvement of nuclear genes.

Based on the work of Costedoat et al [42], HyN hybrid

combinations with a larger number of nuclear N markers are more

frequent than expected under Hardy-Weinberg equilibrium

(Table 6). The same applied although less pronounced for HyS

hybrid combinations. Indeed, according to observed maturity

state, HyN hybrids had reproduction dates most similar to those of

the nase, favouring the introgression of nase genes. In the same

way, morphometric analysis showed that the nase and HyN

hybrids were closer to the ‘‘cruiser’’ type described by Webb and

Weihs [70], enabling them to swim and to maintain their position

in upper currents [71]. This ability may be important during

reproduction, because the nase reproduces in more rapid currents

than the sofie [72].

Figure 5. TPS grid deformation from mean shape along axis 1 of the discriminant analysis. i.e. from fish with sofie mitochondrial origin
up to nase, the deformation is amplified by a magnitude coefficient of 4.
doi:10.1371/journal.pone.0005962.g005

Table 5. Discriminant analysis for determining mitochondria
origin from morphology.

Mitochondria

Mean (s) allometric
coefficient

% correctly
classified

9_7 9_4 9_11 CV 2002

Nase: 0.27 (0.016) 0.28 (0.022) 0.46 (0.03) 87.2 90.0

N 0.27 0.29 0.47 96.7 97.1

HyN 0.27 0.27 0.45 77.6 78.0

Sofie: 0.29 (0.016) 0.25 (0.013) 0.43 (0.019) 93.4 95.9

S 0.29 0.25 0.43 97.9 97.9

HyS 0.28 0.25 0.43 91.8 75.7

The mean and standard deviations of allometric coefficients used and the
quality of classification by the linear model, as assessed by cross-validation (CV)
or by calculating data for 2002 based on data for 2001.
N = nase, S = sofie, HyN = hybrids with nase mtDNA, HyS = hybrids with sofie
mtDNA.
doi:10.1371/journal.pone.0005962.t005
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Some studies have highlighted the role of shoaling in the

dynamics of fish populations [73–75]. For the nase, video

observations by Ahnelt and Keckeis [76] showed strong compe-

tition and territorial fighting between males at mating time. This

fighting may favour the formation of groups of individuals of

similar size (individuals with the dominant N genome) during

mating, potentially accounting for the high likelihood of mating

between individuals of the same size, and thus with the same

inherited parental mitochondrial type.

Various phenomena (selective mating and nuclear-mitochon-

drial genome interaction) may account for the hybridisation,

hybrid fitness and hybrid combinations observed. The different

roles in the observed phenomenon are difficult to quantify. Our

findings for this hybrid zone suggest that the frequency of the pure

species will decrease, but that two groups—one with traits

resembling those of the nase and the other with traits resembling

those of the sofie—will be maintained.

Site and cohort effects
The results obtained revealed a certain variability of ecological

traits in the different groups between the different parts of the

hybrid zone of the Durance, demonstrating the plasticity of

different hybrid combinations. Spatial variation in hybrid zone

dynamics has been reported in several species [27,29,77,78].

Various environmental factors may affect the ecological charac-

teristics of fish from the Chondrostoma genus. In addition to

temperature, habitat characteristics may influence fish growth.

Growth seemed to be more rapid at Buech than at the other sites

during the first year (except for Avignon nase). Bouchard et al [79]

also observed a slower growth for the chub in the Durance at

Manosque; they also demonstrated the value of habitat charac-

teristics for the growth of large species. This phenomenon seemed

to account for the higher growth rates observed at Buech for nase

and HyN hybrids both for growth in the first year and for overall

growth.

For the Manosque and Buech sites, the 1998 cohort exhibited

growth curves which differed from the group (estimated with all

cohorts). Nevertheless, all previous comparisons between groups

remained true for this cohort. Environmental factors might impact

on fish growth but annual variations did not upset the described

group pattern for growth.

Our findings showed a lower level of fitness at the Pertuis site

(slower growth and maximal variability despite high temperatures),

potentially accounting for the lower frequency of nase and HyN

hybrids. This point was also stressed by Costedoat et al [42], who

reported that this site seemed to be unfavourable for nase and

HyN hybrids. At this site growth of the HyS hybrids was inferior to

that of the sofie. However, it is difficult to identify precise causes

from the environmental characteristics. These findings showed the

plasticity of hybrids and provide evidence of the combined effects

of environment and genetics on the phenotype and life history

traits of fish.

Influence of genetics and environment
As reported by Stearns [40], the observed variability between

sites showed that genetic and environmental factors control

phenotype. Robinson et al [80] reported that 53% of variability

was due to the environment and 14% to genetics. In the Durance,

in morphometric analysis, the first axis in discriminant analysis

accounted for 51.4% of inter-group variability and separated fish

as a function of their mitochondrial origin. Genetic information

therefore appears to be of prime importance. The capture site of

fish began to have an effect from the second axis, accounting for

only 16% of inter-group variability, onwards.

Cohort growth variability in the first year can be broken down

into variability due to type and variability due to site. For example,

Table 6. Genetic combinations of fish with respect to Hardy-Weinberg equilibrium.

mtDNA marker

Number of nDNA markers: N S

Same as mtDNA Hybrids Different from mtDNA 2001 2002 2001 2002

4 + + + +

3 1 + + 2

3 1 + + +

2 2 2 2

2 2 +

2 1 1 2 2

1 3

1 3

1 2 1

1 1 2

3 1

1 3 2 2

2 2 2

4 2 2

4 + +

Genetic combinations of over-represented (+) or under-represented (2) fish with respect to Hardy-Weinberg equilibrium, calculated for the Durance in 2001 and 2002.
This table was based on the genetic analyses published by Costedoat et al. [42] for the same fish sampling campaign. The hatched box for 2001 corresponds to a
mixture of combinations of under-represented genetic markers with one over-represented marker.
doi:10.1371/journal.pone.0005962.t006
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at Buech, 42% of variability for nase was due to site, whereas

almost 100% of variability for sofie was accounted for by site

(Table 2). These findings confirm those of Caumul and Polly [81],

who showed that phenotype is the product of phylogenetic history

and its recent adaptation to local environments, although the

relative importance of these two factors remains unclear.

Growth rate appeared to be more variable than size within a

type, indicating a higher plasticity. Estimated values also showed

differences between sites for a same type, for example hybrids HyS

(Figure 3). Fish growth rate allows size at first reproduction to be

adjusted according to environmental variations or species survival

strategy [39]. Nevertheless, a range of growth rate from sofie to

nase including intermediate hybrids was observed, highlighting a

genetic component.
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évolution’’ team from research UMR 6116 and the ‘‘Office National des

Eaux et Milieux Aquatiques’’ for their help with fieldwork. We particularly

thank Caroline Costedoat for the genetic determination of specimens. Our

English was corrected by Joanna Gozlan, Link translations.

Author Contributions

Conceived and designed the experiments: NS LC. Performed the

experiments: NS MDS LC. Analyzed the data: NS BNT. Wrote the

paper: BNT MDS LC.

References

1. Albert V, Jónsson B, Bernatchez L (2006) Natural hybrids in Atlantic eels

(Anguilla Anguilla, A. rostrata): evidence for successful reproduction and fluctuating

abundance in space and time. Mol Ecol 15: 1903–1916.

2. Dobzhansky T (1937) Genetics and the Origin of Species. New York: Columbia

University Press.

3. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression.

Annu Rev Ecol Syst 27: 83–109.

4. Huxel GR (1999) Rapid displacement of native species by invasive species:

effects of hybridization. Biol Conserv 89: 143–152.

5. Templeton AR (1981) Mechanisms of speciation—a population genetic

approach. Annu Rev Ecol Syst 12: 23–48.

6. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation,

adaptation and speciation. Heredity 83: 363–372.

7. Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus.

Evolution 8: 378–388.

8. Lewontin RC, Birch LC (1966) Hybridization as a source of variation for

adaptation to new environments. Evolution 20: 315–336.

9. Arnold ML (1992) Natural hybridization as an evolutionary process. Annu Rev

Ecol Syst 23: 237–261.

10. Seehausen O (2004) Hybridization and adaptative radiation. Trends Ecol Evol

19: 198–207.

11. Arnold ML (1997) Natural Hybridization and Evolution. Oxford, UK: Oxford

University Press. pp 232.

12. Arnold ML (2004) Transfer and origin of adaptations through natural

hybridization: were Anderson and Stebbins right? Plant Cell 16: 562–570.

13. Dowling TE, Secor CL (1997) The role of hybridization and introgression in the

diversification of animals. Annu Rev Ecol Syst 28: 593–619.

14. Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10: 551–568.

15. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol

20: 229–237.

16. Dowling TE, Demarais D (1993) Evolutionary significance of introgressive

hybridization in cyprinid fishes. Nature 362: 444–446.

17. Crespin L, Berrebi P, Lebreton JD (1999) Asymmetrical introgression in a

freshwater fish hybrid zone as revealed by a morphological index of

hybridization. Biol J Linn Soc 67: 57–72.

18. Chenuil A, Crespin L, Pouyaud L, Berrebi P (2000) Movements of adult fish in a

hybrid zone revealed by microsatellite genetic analysis and capture-recapture

data. Fresh Biol 43: 121–131.

19. Vamosi SM, Hatfield T, Schluter D (2000) A test of ecological selection against

young-of-the-year hybrids of sympatric sticklebacks. J Fish Biol 57: 109–121.

20. Klumb RA, Bozek MA, Frie RV (2001) Validation of three back-calculation

models by using multiple oxytetracycline marks formed in the otoliths and scales

of bluegill x green sunfish hybrids. Can J Fish and Aquat Sci 58: 352–364.

21. Rundle HD (2002) A test of ecologically dependent postmating isolation between

sympatric sticklebacks. Evolution 56: 322–329.

22. Dobzhansky T (1951) Genetics and the Origin of Species. New York: Columbia

University Press. pp 364.

23. Kimball S, Campbell DR, Lessin C (2008) Differential performance of reciprocal

hybrids in multiple environments. J Ecol 96: 1306–1318.

24. Fitzpatrick BM, Shaffer HB (2007) Hybrid vigor between native and introduced

salamanders raises new challenges for conservation. Proc Natl Acad of Sci USA

40: 15793–15798.

25. Shields JL, Barnes P, Heath DD (2008) Growth and survival differences among
native, introduced and hybrid blue mussels (Mytilus spp.): genotype, environ-

ment and interaction effects. Mar Biol 154: 919–928.

26. Crespin L, Berrebi P, Lebreton JD (2002) Spatially varying natural selection in a
fish hybrid zone. J Fish Biol 61: 696–711.

27. Aldridge G (2005) Variation in frequency of hybrids and spatial structure among
Ipomopsis (Polemoniaceae) contact sites. New Phytologis 167: 279–288.

28. Grant BR, Grant PR (1996) High survival of Darwin’s finch hybrids: effects of
beak morphology and diets. Ecology 77: 500–509.

29. Williams JH, Boecklen WJ, Howard DJ (2001) Reproductive processes in two

oak (Quercus) contact zones with different levels of hybridization. Heredity 87:
680–690.

30. Das J (2006) The role of mitochondrial respiration in physiological and
evolutionary adaptation. Bioessays 28: 890–901.

31. Willett CS (2006) Deleterious epistatic interactions between electron transport
system protein-coding loci in the copepod Tigriopus californicus. Genetics 173:

1465–1477.

32. Dykens JA, Davis RE, Moos WH (1999) Introduction to mitochondrial function
and genomics. Drug Dev Res 46: 2–13.

33. Ellison CK, Burton RS (2006) Disruption of mitochondrial function in
interpopulation hybrids of Tigriopus californicus. Evolution 60: 1382–1391.

34. Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Ann
Rev Biochem 76: 701–722.

35. Costedoat C, Pech N, Salducci MD, Chappaz R, Gilles A (2005) Evolution of

mosaic hybrid zone between invasive and endemic species of Cyprinidae
through space and time. Biol J Linn Soc 85: 135–155.
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