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Transcription factor and microRNA are two types of key regulators of gene expression. eir regulatory mechanisms are highly
complex. In this study, we propose a computational method to predict condition-speci�c regulatory modules that consist of
microRNAs, transcription factors, and their commonly regulated genes. We used matched global expression pro�les of mRNAs
and microRNAs together with the predicted targets of transcription factors and microRNAs to construct an underlying regulatory
network. Our method searches for highly scored modules from the network based on a two-step heuristic method that combines
genetic and local search algorithms. Using two matched expression datasets, we demonstrate that our method can identify highly
scoredmodules with statistical signi�cance and biological relevance.e identi�ed regulatorymodules may provide useful insights
on the mechanisms of transcription factors and microRNAs.

1. Introduction

Transcription factors (TFs) and microRNAs exert a
widespread impact on gene expression. Most genes in
genome are regulated by the TFs, which account for about
10% of the protein-coding genes in humans andmice [1]. TFs
function by interacting with genomic cis-regulatory DNA
elements. MicroRNAs primarily bind to regulatory elements
located in the 3′ untranslated region (3′UTR) of their target
mRNAs.ere are more than 1000 microRNAs, which target
60% of protein-encoding genes in the human genome, and
each microRNA regulates about 200 transcripts (miRBase
2011 [2]). e identi�cation of TF and microRNA targets
is a key in understanding their roles in gene regulation.
However, it is a laborious task. e availability of large
amount of matched condition-speci�c microRNA and
mRNA expression data for a speci�c cell or tissue type has
provided a good resource for the prediction of microRNA
functional target. Variousmethods usingmatched expression
pro�les coupled with se�uence-based predictions of targets
of microRNAs have been proposed [3]. On the other hand,
the interplay between TFs and microRNAs was recently
recognized [4]. However, there are only a limited number
of integrated analysis tools [5–7]. Integrated analysis tools

for identifying functional regulatory modules involving
microRNAs and TFs targets are still needed.

2. Materials andMethods

e proposed method starts with a matched global mRNA
and microRNA expression dataset; that is, mRNA and
microRNA expression levels were measured from the same
sample. e method consists of four steps. (1) Perform
differential expression analyses for microRNA and mRNA
pro�les. (2) Calculate correlations of expression for pairs
of microRNAs, pairs of mRNAs, and pairs of microRNAs
and mRNAs. (3) Predict TF and microRNA targets. (4)
Predict microRNA-gene modules based on the information
obtained from (1) to (3) by a heuristic method, which is the
combination of a genetic algorithm and a local search. e
framework of our proposed method is presented in Figure 1.

2.1. Datasets and Preprocessing. Two datasets were used in
our study. e �rst dataset contains the expression pro�les
of 98 primary cancer, 13 metastatic cancer, and 28 nor-
mal prostate samples [8]. e mRNA expression pro�les
were measured using the Affymetrix Human Exon 1.0 ST
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F 1: Method scheme.

Array which includes 26,447 mRNAs, and the microRNA
expression pro�les were measured by the Agilent Human
microRNA Microarray 2.0 which includes 368 microRNAs.
e normalized data were obtained from the NCBI Gene
Expression Omnibus (GEO) [9] through GEO accession
number GSE21032. e second dataset includes a wide
variety of tumor and normal tissue types: 218 tumor samples
of 14 common tumor types and 90 normal tissue samples
[10]. e mRNA expression pro�les were measured with
the Affymetrix Hu6800 and the Hu35KsubA Genechips
and contained 16,063 genes. e corresponding microRNA
expression pro�les were measured with the bead-based
�ow cytometric microRNA expression pro�ling method on
217 mammalian microRNAs and 334 samples [11]. Among
them, 68 cancer tissue samples on 11 tumor types and
21 normal samples have both mRNA expression pro�le
and microRNA expression pro�le. ese matched pro�les
were selected in our study. e normalized and log2-
transformed data were obtained from the Broad Institute
website (http://www.broad.mit.edu/cancer/pub/migcm/).

e differential expression analysis was performed on
both mRNA and microRNA expression pro�les. Prior to the
analysis, 25% probes with the lowest variation (measured by
coefficient of variation) for both mRNAs and microRNAs
were discarded. e differential expression analysis was
performed using limma package in Bioconductor, and the
false discovery rate (FDR) was controlled by adjusting 𝑃𝑃
values based on the Benjamini andHochbergmultiple testing
procedure [12]. Since functional TFs are not necessarily
differentially expressed, all genes whose protein products are
TFs (TF genes) were kept in our analysis. For the rest of the

genes (nTF genes), a stringent cutoff of 0.001 for the adjusted
𝑃𝑃 values was applied. Since a slight change of microRNA
expresses can affect gene expression drastically, microRNAs
with the adjusted 𝑃𝑃 values less than 0.05 were de�ned as
differentially expressed.

Pearson correlation coefficients (PCCs) were used to
measure correlations of expression of (1) mRNA pairs, (2)
microRNA pairs, and (3) mRNA-microRNA pairs. A permu-
tation test on PCCs was employed for signi�cance analysis.
Speci�cally, random expression pro�les were generated by
shuffling the mRNA labels in the original datasets for 10,000
times, and the PCCwas recalculated for each shuffled dataset.
e 𝑃𝑃 value was determined as the percentage of times that
the PCC obtained from a shuffled dataset exceeded that
obtained from the observed data.

Predicted microRNA targets were retrieved from the
http://www.microRNA.org/ website, which provides access
to the comprehensive database of predicted and exper-
imentally validated microRNA targets [13–15]. e pre-
dicted targets for the conserved microRNAs with 𝑃𝑃 value
less than 0.05 were selected, resulting in a �nal set of
879,049microRNA-gene pairs.e corresponding alignment
scores associated with the microRNA targets were scaled to
(0, 1).

e predicted transcription factor binding sites (TFBSs)
were obtained by mapping position weight matrices (PWMs)
fromTRANSFAC (ver. 2010.1) [16] of transcription factors to
the promoter regions of genes using the MATCH algorithm
[17]. We de�ned 10KB upstream and 2KB downstream of
the transcription start site (TSS) as the promoter region of
a gene. TFBSs were obtained from bindSDb [18], a database
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Input: Parameter list of the genetic algorithm
Parameter list of local search
Score matrix ScoreM.
Number of ModulesModN

Output: Module chromosomesM
Formal steps:
(1) Set𝑚𝑚 𝑚 𝑚
(2) while m !=ModN do
(3) Perform the genetic algorithm to identify co-expressed gene set and save to Gco
(4) Apply the local search to Gco and save solution toM
(5) Update PCC matrix
(6) end while
(7) ReturnM

A 1: Pseudocode for module identi�cation.

developed to store both experimentally validated and pre-
dicted TFBSs based on the RefSeq gene information from
the UCSC RefSeq track of the Human Genome Assembly
(hg19) and the NCBI mRNA annotations. In case there are
multiple PWMs for a TF, themaximum alignment score of all
its PWMs to the predicted TFBSs was used to determine the
unique relation between the TF and its multiple PWMs. e
matching information between a TF and its gene symbol was
obtained from TRANSFAC. Even with the stringent thresh-
old for the alignment scores, the MATCH algorithm still
produced a large number of TFBSs, among which many may
be false positives. To reduce the number of false positives, we
applied a cutoff value (described later) on the similarity scores
to reduce the number of interactions signi�cantly without
losing too much information.

2.2. Proposed Algorithm. Our module identi�cation method
consists of two steps. (1) Identify coexpressed gene sets which
include TF genes and nTF genes by the genetic algorithm
(GA). is step located the highly plausible region of “good”
solution in the searching space. (2) Search coregulators for
the coexpressed gene sets obtained by the GA using the local
search algorithm. All direct regulators of genes were candi-
dates for the local search. In order to guarantee no duplicated
modules to be considered in the future generations, aer a
module was identi�ed from the local search, the correlation
coefficient matrix of mRNAs was updated by removing the
pairs involving the mRNAs in the current module. e
pseudocode of our algorithm is given in Algorithm 1.

2.2.1. Design of the Genetic Algorithm. A binary string of
�xed length was used to represent a chromosome, that is, a
candidate of coexpressed gene sets in the GA. e value 1
stands for the gene included in the set and 0 for otherwise.
ree setups with different percentages of genes included in
the initial chromosomes were considered: 2%, 20%, and 80%
of total genes. e roulette wheel selection was used for the
selection of parent chromosomes for producing offspring. For
the selected parents, the crossover was carried out separately
forTF genes andnTFgenes.e crossover probability𝑃𝑃cowas
in the range of (0.5–0.9) with an incremental size of 0.1. e

mutation probability 𝑃𝑃mu was varied at four values: 0.00001,
0.0001, 0.001, and 0.01. In addition to these genetic operators,
randomly generated chromosomes were introduced as new
immigrants into the population pool to substitute the worst
chromosome at each generation. ree immigration rates,
0.01, 0.001, and 0.0001, were considered.

e average of the absolute PCCs over all pairs of
genes included in a chromosome was de�ned as the �tness
score of the chromosome. Two termination conditions were
considered: 5,000 generations limitation or the highest �tness
score remains unchanged for 200 generations.

2.2.2. Design of Local Search Algorithm. Aer the best coex-
pressed gene set was obtained from the GA, the candidates
for the local search were determined to be all regulators
(microRNAs and TFs) that were either predicted to target
the genes in the coexpressed gene set or had signi�cant
PCCs with them. e initial solution for the local search was
constructed by the TF genes in coexpressed genes and the
randomly added 1% microRNAs from the candidate pool
of regulators. e �tness score of a local search solution, or
module, was de�ned as follows.

Let 𝑀𝑀′ and 𝑇𝑇′ represent the set of microRNAs and TF
genes in the module, respectively, 𝐺𝐺′ the union of both TF
genes and nTF genes, 𝑁𝑁 the total number of interactions
among the members in the module.

�e�ne MGI as a score for the predicted targeting inter-
actions between microRNAs and genes; MS𝑖𝑖𝑖𝑖 and Cor𝑖𝑖𝑖𝑖 as
the binding score and the correlation coefficient between
microRNA 𝑖𝑖 and gene 𝑖𝑖, respectively:

MGI 𝑚 
𝑖𝑖𝑖𝑀𝑀′


𝑖𝑖𝑖𝐺𝐺′

𝑘𝑘1MS𝑖𝑖𝑖𝑖 + 𝑘𝑘2 Cor𝑖𝑖𝑖𝑖 . (1)

Here 𝑘𝑘1 and 𝑘𝑘2 are two parameters. In our study we used 𝑘𝑘2 𝑚
1 and 𝑘𝑘1 𝑚 1, 2, 3.

�e�ne TGI as a score for the predicted target interactions
between TF genes and all genes; TS𝑖𝑖𝑖𝑖 and Cor𝑖𝑖𝑖𝑖 as the binding
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score and correlation coefficient between TF-gene 𝑖𝑖 and nTF-
gene 𝑗𝑗, respectively:

TGI = 
𝑖𝑖𝑖𝑖𝑖′


𝑗𝑗𝑖𝑗𝑗′

𝑘𝑘1TS𝑖𝑖𝑗𝑗 + 𝑘𝑘2 Cor𝑖𝑖𝑗𝑗 . (2)

e total PCCs among microRNAs in 𝑀𝑀′ were denoted by
Cor𝑀𝑀′ :

Cor𝑀𝑀′ = 
𝑖𝑖𝑖𝑗𝑗𝑖𝑀𝑀′


𝑖𝑖𝑖 𝑗𝑗

Cor𝑖𝑖𝑗𝑗 . (3)

To prevent the size ofmodules fromunlimited increasing, the
�tness score for a module was de�ned as the averaged value
over the four sets of interaction scores described above:

𝐹𝐹 =
MGI + TGI + Cor𝑀𝑀′

𝑁𝑁
. (4)

e interaction scores of TF-gene and microRNA-gene and
all absolute PCCs were further scaled in the range of (0.5–1).
e local search was terminated either when it reached 1000
iterations or the �tness scores remained unchanged for 100
iterations.

At each iteration of the local search, a local change to
either microRNAs or TFs was made. For the user’s conve-
nience, we added a user option that speci�es a preferred size
of regulators in local search, since in most circumstances a
user may be only interested in several most important regu-
lators. For study reported here, the numbers of microRNAs
and TFs in the modules are controlled at less than 1% and 4%
of candidate regulators, respectively. Aer microRNAs/TF
genes were determined to change, a microRNA/TF-gene was
chosen from all candidates if the restriction of size had not
been reached. A chosen microRNA/TF-gene was removed
from the solution if it was already in the solution. If the
number of the current regulators in the solution had reached
the limit, a microRNA/TF-gene in the candidate searching
space but not belonging to the current solution was chosen
to substitute one microRNA/TF-gene in the current solution.

2.3. Validation and Evaluation Criteria. In order to evaluate
the overall quality of the identi�ed modules, we de�ned a
score by combining the �tness measurements used in the GA
and local search. In addition to the �tness measurement used
in local search, a term of total correlation coefficients among
nTF genes in the module, Cor𝑅𝑅′ , was added:

Cor𝑅𝑅′ = 
𝑖𝑖𝑖𝑗𝑗𝑖𝑅𝑅′


𝑖𝑖𝑖 𝑗𝑗

Cor𝑖𝑖𝑗𝑗 . (5)

e �nal score for an identi�edmodule was de�ned as below:

𝐹𝐹 =
MGI + TGI + Cor𝑀𝑀′ + Cor𝑅𝑅′

𝑁𝑁
𝑖 (6)

where 𝑁𝑁 is the total number of interactions among the
members in the module.

In order to show our method can successfully identify
modules with high �tness scores, we compared speci�c scores

of randomly generated modules with the identi�ed modules.
For each module, 1,000 randomized controls were generated
and each control has the identical number of microRNAs, TF
genes, and nTF geneswith the identi�edmodules. To evaluate
the signi�cance of our modules, we performed the permu-
tation test for each module to determine 𝑃𝑃 values. For each
module at each permutation, a number of microRNAs/genes
in module were substituted by the same number of randomly
selected microRNAs/genes. e size of substitutions follows
a discrete uniform distribution between 0 and the number of
genes for each identi�ed module. e 𝑃𝑃 value was evaluated
by the chance of obtaining a permutated module better than
the original one. To evaluate the biological relevance of our
modules, we performed the enrichment analyses for gene
ontology (GO) terms and ��GG pathways for the identi�ed
modules using DAVID [19].

3. Results and Discussion

In this section, we �rst show how to determine the parameter
values in our algorithm using Dataset I. Subsequently, we
present the predicted modules based on the determined
parameters for Dataset I. Most of the results were derived
based on 𝑘𝑘1 = 𝑘𝑘2 = 1 unless otherwise is speci�ed.

We identi�ed 1,933 differentially expressed nTF genes
and 144 differentially expressed microRNAs for Dataset I.
ese 1,933 nTF genes, 189 TF genes with mRNA mea-
surements, and 144 microRNAs were used to calculate
PCCs of their expression levels. Only those PCCs with
𝑃𝑃 value less than 0.0001 were considered to be signi�-
cant and were retained for the subsequence analysis (See
Table S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2013/197406.)

To determine the cutoff value on the TFBS similarity
scores, we checked the effect of different thresholds on the
predicted number of TF-gene pairs. A total of 16,292,671
alignments between PWMs and TFBSs were obtained from
bindSDb based on the TRANSFAC threshold for the min-
imum false positives, and 3,469,371 TF-gene pairs were
speci�ed aer determining the unique TFBS for a TF as
described in Section 2. e different numbers of predicted
TF-gene pairs and the numbers of involved TFs based on
different thresholds for similarity scores were summarized in
Table S2. We applied a cutoff 0.99 for the similarity scores,
which signi�cantly reduced the number of predicted pairs
without drastically changing the numbers of TFs and target
genes. Finally 1,705,837 predicted pairs between 260 TFs and
21,054 genes were retained for the module identi�cation.

3.1. Determination of GA Parameters. We examined the
average sizes of coexpressed gene sets obtained from the GA
at three different sizes for the initial chromosomes setups,
that is, inclusion of 2%, 20%, and 80% of genes. e average
sizes of the coexpressed gene sets obtained from the GA
were 54, 224, and 401, respectively. However, in the latter
two cases, the �tness scores are far from converging at the
termination. erefore, we set the initial chromosomes with
only 2% of randomly selected genes.
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F 2: Histogram of control scores: (a) randomly generated modules; (b) permutated modules for module 1.

e proper choice of values for 𝑃𝑃co, 𝑃𝑃mu, and 𝑃𝑃new is
important to the performance of a GA. To �nd the good value
for each genetic operator, we ran the GA by changing the
value of one operator while keeping the other two �xed. For
each value of a speci�c operator, we ran genetic algorithm
for 10 times, 1000 generations each, and evaluated the
performance by convergence rate. e convergence rate was
de�ned as average incensement of �tness score per iteration.
e GA performed better with 𝑃𝑃co = 0.7, 𝑃𝑃mu = 0.001,
and 𝑃𝑃new = 0.01 (Table S3). We used these values for the
subsequent analysis.

3.2. Evaluation of Local Search. In order to demonstrate that
the local search can �nd a local optimal solution, we recorded
the start and end scores and calculated the convergence rate
of the scores.e results for 10modules (Figure S1) show that
the local search did improve the �tness score and locate the
local optimal solutions efficiently.

3.3. Module Evaluation. Figure 2(a) shows the histogram
of �tness scores for 10,000 randomized modules and mod-
ules identi�ed by our method (red dots). It suggests that
our method was able to successfully identify modules
with signi�cantly higher scores. e identi�ed modules,
the corresponding scores, and the 𝑃𝑃 values were listed in
Table S4(a) (Supplementary �le). All the modules were
signi�cant with 𝑃𝑃 values less than 0.005 based on the
permutation test. Figure 2(b) shows the distribution of
scores for the 10,000 permuted modules of module 1. It
indicates that the local optimal solution was found by our
method.

Table 1 provides a summary of the 10 regulatory modules
found by our method. e interactions were divided into

three categories based on the evidence of support: sequence-
based binding prediction only, PCC only, and both. Most
interactions predicted by sequence information also have
signi�cant PCCs, indicating the direct regulations. However,
considerable fractions of interactions in the modules only
have PCC support, implying indirect regulation between the
regulators and targets.

e details of genes and microRNAs in the identi�ed
modules, enriched KEGG pathways and GO terms (adjusted
𝑃𝑃 𝑃 0.01) were included in Tables S4(b) and S4(c) (Sup-
plementary File). e enriched GO terms that annotate at
least 5 genes were summarized. Compared to the results of
enrichment analysis for the modules identi�ed with a lasso
model for the same dataset [20], most of the common KEGG
pathways related to cancers were found, including focal
adhesion, MAPK signaling pathway, hypertrophic cardiomy-
opathy, vascular smooth muscle contraction, regulation of
actin cytoskeleton, pathways in cancer, and Wnt signaling
pathway.

3.4. Control of Interaction Types in the PredictedModules. e
de�nition of the �tness score is a key factor to control the
type of interactions one wishes to include in the modules. In
the previous section we reported the results when an equal
weight, that is, 𝑘𝑘1 = 𝑘𝑘2 = 1, was imposed on the alignment
scores of TFs/microRNAs and the correlation coefficients
of expression in the �tness function. We examined if the
increase of the weight on the alignment scores could lead to
the increase of the number of interactions with support from
both the predicted binding and signi�cant PCC values. We
performed the experiment using 𝑘𝑘2 = 2, 3 and 𝑘𝑘1 = 1. It
can be observed that an increasing trend in the proportion
of interactions was supported by the predicted binding and
expression correlation between the regulators and targets
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T 1: Summary of regulatory interactions in the 10 predicted modules for Dataset I.

Module ID # Nodesa # Interactionsb # PCC and Bindingc # PCCd # Bindinge

1 3/7/22 264 53 197 14
2 3/3/36 704 33 665 6
3 3/7/39 823 60 751 12
4 3/15/21 384 135 228 21
5 3/7/17 233 74 149 10
6 3/3/49 1284 7 1273 4
7 3/4/46 1181 42 1127 12
8 3/7/42 988 99 877 12
9 3/7/49 1316 74 1232 10
10 3/7/53 1431 83 1339 9
ae numbers of miRNAs, TF-genes, and nTF-genes.
be number of interactions.
ce number of interactions with support of both signi�cant PCC and predicted binding.
de number of interactions with support of only signi�cant PCC.
ee number of interactions with support of only predicted binding.
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F 3: Boxplots of the proportion of three interaction types in the identi�ed 10 modules with de�nitions for the �tness score. (a) e
three boxplots in each type represent the results for (𝑘𝑘1 = 1, 𝑘𝑘2 = 1), (𝑘𝑘1 = 2, 𝑘𝑘2 = 1), and (𝑘𝑘1 = 3, 𝑘𝑘2 = 1), respectively. (b) e two boxplots
in each type represent the results using (1) both positive and negative microRNA-mRNA PCCs and (2) negative microRNA-mRNA PCCs,
respectively.

(Figure 3(a)) when 𝑘𝑘2 increases. is result shows the �exi-
bility of our method in �nding regulatory modules according
to user’s preference on the interaction types.

�e also examined the ability of our method in �nding
regulatory modules when only including microRNAs that
were negatively correlated with the predicted genes in the
coexpressed set in the local search step. Our algorithm
was able to successfully identify signi�cant modules (Sup-
plementary File 1). Compared with the case where both
negatively and positively expressed microRNA regulators
were considered in a module, there was a slight increase in
the proportion of the interaction typewith support fromboth
predicted binding and signi�cant PCCs (Figure 3(b)).

3.5. Literature Validation. e interactions in the identi�ed
module 1 to module 10 were shown in Figure 4 and Figures
S2 and S3. In module 1, no microRNAs genes become
isolated, and the main network structure is not changed
aer removing those predicted by the PCC interactions. In
module 10, however, the targets of MEIS1 become isolated,
and many potential regulatory relationships between MEIS1
and target genes also disappear aer removing the PCC
predicted interactions. MEIS1, which encodes a homeobox
protein belonging to the TALE “three amino acid loop
extension” family of homeodomain-containing proteins, as
well as MEIS2 and PBX1 are found to have a critical function
to suppress prostate cancer initiation and progression [21].
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(a) (b)

(c) (d)

F 4: Two types of visualization of selected modules: (a) general representation of module 1; (b) sequence-based predictions only of
module 1; (c) general representation of module 10; (d) sequence-based predictions only of module 10. Diamond, rectangle, and eclipse
represent microRNA, TF genes, and nTF genes, respectively. Red nodes and green nodes represent overexpressed and underexpressed
microRNAs/genes in tumor samples. Red lines and light green lines stand for positive correlations and negative correlations, respectively,
while interactions that were predicted only by sequence information are drawn as black lines. For clear visualization, the links between nTF
genes were not plotted.

e difference between Figures 4(c) and 4(d) suggests that
MEIS1may be a coactivator to regulate geneswithout directly
binding to the promoters of the targets.

We also explored the literatures about other core reg-
ulators and regulatory relationships in identi�ed modules.
For example, hsa-miR-7f-1, which was identi�ed as a core
regulator in both modules 8 and 10, was found to be asso-
ciated with lung cancer, breast cancer, colorectal cancer [22],
pancreatic cancer [23], and pituitary adenomas [24]. Another
microRNA, hsa-miR-328, identi�ed in modules 1, 3, 7, and
9, was found to be dysregulated in both breast cancer [25]
and colorectal cancer [26]. But their functional mechanisms
to cancer development are still unknown. Our predicted

modules may be used to facilitate further experiments for
functional study.

Our method also identi�ed several important TFs and
their regulatory relationships, such as EGR3, RFX3 and
MYLK. EGR3 was found overexpressed in tumor cells and
was identi�ed as a core regulator in modules 1, 3, and 10.e
protein encoded by EGR3 participates in the transcriptional
regulation of genes in controlling biological rhythm and may
also play a role in a wide variety of processes including
muscle development, lymphocyte development, endothe-
lial cell growth, and migration and neuronal development
(Ref-Seq December 2010). EGR3 was found to be closely
associated with the genesis and malignant progression of
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breast cancer by being involved in the estrogen-signaling
pathway. Recently it was shown that EGR3 plays a pivot
role in mechanism of prostate cancer initiation or early
progression [27]. RFX3 is a transcriptional activator with
highly conservedwinged helixDNA-binding domain and can
bind DNA as a monomer or as a heterodimer with other
RFX family members. Its function in prostate cancer has not
been well explored, but its regulation on the same set of
genes together with MEIS1 in modules 7 and 9 suggests it
may present as a coregulator with MEIS1 to be functional.
MYLK was known to be involved in many biological pro-
cesses including the in�ammatory response (e.g., apoptosis,
vascular permeability, and leukocyte diapedesis), cell motility
and morphology and MARK signaling pathway. It was
identi�ed to be coregulated by MEIS1 and RFX3 in modules
7 and 9. It was involved in a total of 5 modules, suggesting
its importance in cancer development, especially prostate
cancer. A thorough literature search on all of the predicted
interactions and core regulators for prostate cancer is not
possible here. However, we demonstrated that our method
is likely to be useful for identifying functional regulatory
modules in speci�c diseases.

3.6. Prediction in Dataset II. Since Dataset II includes
expression on a wide variety of tissue and normal samples,
we applied our method to identify cancer-related common
regulatory modules. Because of the multiple cell types and
intrinsic complication of tumor cellular environment, we
used the same procedure for differential expression analysis
with a relatively loose cutoff for 𝑃𝑃 values. e threshold
of 0.05 for the adjusted 𝑃𝑃 values was applied to the nTF
genes and microRNAs. All TF genes were retained. is step
resulted in 94 microRNAs, 162 TF genes, and 1,410 nTF
genes. e sequence-based prediction for TF and microRNA
targets led to a set of 74 microRNAs, 148 TF genes, and 1,194
nTF genes for module identi�cation. We performed the same
test to determine the optimal values for genetic operators.
Crossover probability 0.7, mutation probability 0.001, and
random immigrant probability 0.01 were obtained. ese
values were the same as those used for Dataset I, showing
that the choice of parameters was not biased to a particular
dataset.

All 10 modules achieved the signi�cance level based on
our permutation test. e numbers of interactions in the
identi�ed modules are showed in Table S5. All sequence-
base predicted regulations were with signi�cant �CC values
between the regulators and regulated genes.e enrichedGO
terms and KEGG pathways include cancer relevant GO terms
and KEGG pathways, such as positive regulation of RNA
metabolic process andWnt signaling pathway, suggesting the
method also predicted microRNA-gene regulatory modules
for Dataset II (Table S6(b), Supplementary File).

4. Discussion

Several related methods and databases for the identi�cation
of microRNA-TF-gene regulatory modules have been pub-
lished.e method we proposed has a number of advantages

over other module identi�cation methods. For example,
CircuitDB [7] and MIR@NT@N [5] utilized sequenced-
based target predictions and protein-protein interactions to
constrict microRNA-TF-gene module. But they are static
databases and could not answer the question about alteration
of gene expressions in a speci�c type of disease or lack of
ability to incorporate the expression values into analysis.
MAGIA2 [28] and miRGator 2.0 [29] provided tools for
prediction of microRNA-gene modules by combining the
sequence-based target prediction and user-supplied expres-
sion pro�les, but they did not separate TF genes from the
entire set of genes. In regulatory modules, many TF genes
that are not differentially expressed could be as important
as differentially expressed TF genes as coactivators. mir-
ConnX [6] took both the sequence-based predictions and
the speci�ed TFs into consideration to construct condition-
speci�c mRNA-microRNA networks. However, the resulting
networks were oen too large to pinpoint themost important
functional modules in a disease. Our method bridged the
gap between the above methods by utilizing both sequence-
based predictions and expression pro�les and emphasizing
the transcription factor’s effect for the detection of condition-
speci�c regulatory modules.

Our method and other similar methods that identify
microRNA-gene regulatory modules were based on the
assumption that microRNAs are posttranscriptional regu-
lators that regulate TFs’ expressions. But several studies
have proposed that TFs can regulate the transcription of
microRNA directly [30, 31]. Currently those databases were
built to predict the regulation of transcription factors on
microRNA precursors. A possible extension of our method is
to transfer it into relationships between transcription factors
and mature microRNAs and to incorporate this knowledge
into our module identi�cation method.

As more information is incorporated, not all of them
should be considered equally in evaluation; for example,
experimentally validated regulation may be more valuable
for the user. In addition, the microRNA’s regulation on
TF genes and nTF genes are measured equally in cur-
rent method, but the microRNA’s regulation on TF genes
may be more interesting. We can improve our method by
adding control parameters to emphasize speci�c types of
relationships.

5. Conclusion

We proposed a computational method that combines the
sequence-based target predictions and matched microRNA-
gene expression pro�les. Our method independently pro-
cesses measurement of interactions, identi�cation of coex-
pression gene sets, and regulatory modules. e major
characteristics are (1) easy integration of other methods
for identi�cation of gene coexpression set, (2) easy re�ne-
ment by including updated information of target prediction,
and (3) easy setup of parameters to emphasize interest of
research. It is a candidate tool for clinical researchers to
use user-supplied data to perform further investigation and
exploration.
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