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Overactive bladder (OAB) is a common debilitating condition characterized by urgency
symptoms with detrimental effects on the quality of life and survival. The exact etiology
of OAB is still enigmatic, and none of therapeutic approaches seems curative. OAB
is generally regarded as a separate syndrome, whereas in clinic, OAB symptoms
could be found in numerous diseases of other non-urogenital systems, particularly
nervous system. The OAB symptoms in neurological diseases are often poorly
recognized and inadequately treated. This review provided a comprehensive overview
of recent findings related to the neurogenic OAB symptoms. Relevant neurological
diseases could be mainly divided into seven kinds as follows: multiple sclerosis and
related neuroinflammatory disorders, Parkinson’s diseases, multiple system atrophy,
spinal cord injury, dementia, peripheral neuropathy, and others. Concurrently, we also
summarized the hypothetical reasonings and available animal models to elucidate
the underlying mechanism of neurogenic OAB symptoms. This review highlighted the
close association between OAB symptoms and neurological diseases and expanded
the current knowledge of pathophysiological basis of OAB. This may increase the
awareness of urological complaints in neurological disorders and inspire robust therapies
with better outcomes.

Keywords: overactive bladder, nerve system disease, detrusor overactivity, lower urinary tract symptoms,
etiology

INTRODUCTION

Overactive bladder (OAB) was defined as a storage symptom syndrome characterized by “urinary
urgency, usually accompanied by frequency and nocturia, with or without urgency urinary
incontinence, in the absence of urinary tract infection or other obvious pathology” (Abrams
et al., 2002). The prevalence of OAB increases with advancing age and is greatly varied across
studies. A population-based survey included over 19,000 participants and demonstrated an overall
prevalence of OAB to be 11.8% (10.8% in men and 12.8% in women). Other studies have reported
the prevalence of up to 30–40% (Coyne et al., 2009). Despite great strides made in the past decades,
the exact etiology of OAB is still enigmatic and none of therapeutic approaches seems curative.
As OAB is a separate syndrome, its symptoms could also be found in numerous diseases of other
non-urogenital systems, such as diabetes, cardiovascular diseases, and sleep disorders. Given the
basis of the condition relying on a subjective symptom of urgency, available animal models with
indirect or surrogate markers of urgency have been applied for basic science research into OAB.
Therefore, exploration of the highly observed comorbidity between OAB symptoms and other
diseases could potentially shed light on the pathophysiology of OAB and address the confusing
situation hampering research and management.
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An accumulating evidence has demonstrated that OAB
symptoms are regarded as significant features in numerous
neurological diseases, such as multiple sclerosis (MS), spinal
cord injury (SCI), Parkinson’s disease (PD), stroke, and spina
bifida (Panicker et al., 2015; Yamada et al., 2018). The OAB
symptoms are highly prevalent among neurogenic patients, as
shown by a recent study that over 50% of these patients reported
OAB symptoms (Przydacz et al., 2021). This can be largely
anticipated from the crucial regulatory effect of nervous system
on the micturition reflex. Also, the severity of OAB symptoms
varies with the type and degree of damage to the nervous
system. However, the OAB symptoms in neurological diseases
are often poorly recognized and relatively few of individuals
with these symptoms seek care (Dmochowski and Newman,
2007; Przydacz et al., 2021). Moreover, since OAB symptoms
in neurogenic patients often have their own particularities,
respected clinical efficacy may not be achieved by referring to
the conventional treatment programs of OAB. Even worse, older
adults with neurocognitive dysfunction are at higher risk of
taking multiple medications with anticholinergic properties for
OAB symptoms (Duong et al., 2021). As yet, up to now only
a scarcity of studies could totally present OAB symptoms in
these neurological diseases and clearly summarize the possible
mechanisms underlying this tight connection (Chapple et al.,
2017; Cornu, 2017).

The aim of this review was to provide a comprehensive
and state-of-the-art overview of the close correlation between
OAB symptoms and neurological diseases. The summary from
over 2,000 published papers showed the complexity and
diversity of neurological diseases related to OAB symptoms
(Table 1). This study was largely focused on the potential
mechanisms underlying the cause of neurogenic OAB symptoms
(Figures 1, 2). We aimed to increase the awareness of urological
complaints in neurological diseases, inspire robust suitable
therapies, and improve the quality of life.

METHODS

A comprehensive electronic literature search was conducted
using the PubMed database to identify publications related to
the neurological diseases with OAB symptoms. The keywords
included the following terms: “overactive bladder,” “nervous
system,” “detrusor overactivity,” “detrusor instability,” “unstable
bladder,” and “etiology,” used either alone or in combination.
The search was restricted to studies published between January
1990 and December 2020. The title and abstract of each article
were reviewed for their appropriateness and relevance to the
symptoms of OAB in diseases of nervous system. Relevant articles
published in English were fully reviewed subsequently.

COMMON BASIS IN PATHOPHYSIOLOGY

The pathophysiology of OAB symptoms in neurological diseases
appears to be multifactorial across all levels of neural control
of micturition, from cerebral cortex, brain stem, spinal cord, to

the peripheral nerves. The site and nature of the neurological
lesions may affect the appearing time, progression, and severity
of OAB symptoms. A better knowledge of the neural component
of normal micturition appears to be necessary to the role of
neurological diseases in the etiology of OAB symptoms.

In human body, the coordinated activity of the urinary
bladder and its outlet is controlled by a complex neural
network distributed across parasympathetic, sympathetic, and
somatic pathways. Several literature reviews have demonstrated
this neural control of micturition reflex (de Groat et al.,
2015; Griffiths, 2015; Rahnama’i, 2019). Briefly, parasympathetic
(pelvic) nerves could excite the bladder (primarily through
activation of muscarinic-3 receptors) and relax the urethra,
while sympathetic (hypogastric) nerve enables to inhibit the
bladder body (primarily through β-3 adrenergic receptors) and
excite the urethra. Pudendal nerve originates from S2 to S4
motor neurons in Onuf ’s nucleus and allows to the excitation of
external urethral sphincter. Particularly, urinary storage function
is primarily maintained by the spinal cord reflex with enhanced
activity of hypogastric and pudendal nerves innervating the
urethra. This function is also controlled by the pontine storage
center located closely to the pontine micturition center (PMC),
hypothalamus, cerebellum, basal ganglia, and frontal cortex.
PMC is thought to initiate the micturition cycle and receive
afferent input from the lumbosacral spinal cord due to bladder
distention as well as the prefrontal cortex, which gives social
acceptability of voiding (de Groat et al., 2015). The prefrontal
cortex is regarded as the center of planning of complex cognitive
behaviors. Other regions also serve as active participants for
awareness of visceral sensations, such as the periaqueductal gray
(PAG), insula, and anterior cingulate gyrus. Furthermore, PAG is
considered to mediate switching from storage to voiding, possibly
regulated by higher brain regions such as the hypothalamus and
prefrontal cortex (Kakizaki et al., 2011). Therefore, any lesion of
the central or peripheral nervous system could possibly disrupt
the voluntary control of micturition, resulting subsequent in
the occurrence of voiding urgency, frequency, incontinence, and
nocturia (namely, OAB symptoms).

The OAB symptoms among these neurogenic patients
possibly derive from neurogenic detrusor overactivity (DO),
which is characterized by involuntary detrusor contractions
during bladder filling (Abrams et al., 2003; Defreitas et al.,
2003; Karsenty et al., 2008). Although not synonymous of OAB,
DO is traditionally thought to be the major causes of urinary
urgency/frequency and incontinence (Abrams et al., 2002).
Several potential OAB phenotypes have been identified according
to urodynamic demonstration of DO, and multiple neurogenic
factors could contribute to the development of DO via different
pathophysiological mechanisms (Peyronnet et al., 2019). First,
classic neurogenic DO is thought to be resulting from the loss
of supraspinal inhibition control on the micturition reflex or the
decreased capacity to functionally integrate afferent information
due to the brain damages such as MS, stroke, and PD (Peyronnet
et al., 2019). Other increasing evidence supports the idea that
deep white matter disease (WMD), mostly in the prefrontal
area of the brain, might be the anatomical substrate for brain-
related DO (Sakakibara et al., 1999; Griffiths and Tadic, 2008;
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TABLE 1 | Related neurological diseases associated with overactive bladder symptoms.

Number Classification Related diseases

1 Multiple sclerosis and related
neuroinflammatory disorders

Multiple sclerosis, acute disseminated encephalomyelitis, neuromyelitis optica spectrum disorder, Sjögren syndrome

2 Parkinson’s diseases Parkinson’s disease

3 Multiple system atrophy Multiple system atrophy

4 Spinal cord injury Spinal cord injury, cauda equina lesions, myelomeningocele, spinal bifida, spinal cord ischemia, spinal stenosis

5 Dementia Alzheimer’s disease, dementia with Lewy bodies, White matter disease

6 Peripheral neuropathy Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, Charcot-Marie-Tooth may

7 Others Cerebral palsy, cerebrovascular accident, pituitary adenoma compressing the hypothalamus, skull base chordoma,
traumatic brain injury, HTLV-1-associated myelopathy/tropical spastic paraparesis,
Machado-Joseph disease

HTLV-1, human T-lymphotropic virus type 1.

Tadic et al., 2012). Behavioral therapies (Griffiths et al., 2015),
sacral neuromodulation (SNM) (Blok et al., 2006), and posterior
tibial nerve stimulation (PTNS) (Finazzi-Agrò et al., 2009) seem
appropriate to treat OAB symptoms due to supraspinal lesions.

Second, spinal cord damages such as MS and SCI could induce
the occurrence of primitive spinal bladder reflexes mediated by
C-fibers afferents, leading to the development of subsequent DO
(de Groat, 1997).The C-fibers can be recruited under neuropathic
conditions to form a new functional afferent pathway, which
can be suppressed by certain drugs such as resiniferatoxin and
capsaicin. These findings promote the application of intravesical
administration of capsaicin for the treatment of DO in patients
with SCI (Chancellor and de Groat, 1999). Of note, spinal
lesions below the PMC and above the sacral cord could
interrupt spinobulbar pathway and bring about detrusor external
sphincter dyssynergia (DESD), such as simultaneous contractions
of detrusor and the urethral and/or periurethral striated muscle
(Suzuki Bellucci et al., 2012). Voiding features due to spinal cord
damages comprise neurogenic DO, DESD, and different types of
urinary incontinence.

Third, a growing body of evidence has indicated the
coexistence of DO and detrusor underactivity (DU)
(Peyronnet et al., 2019; Mancini et al., 2020). Urgency was
considered the most common symptom in patients with
urodynamically identified DU (Uren et al., 2017). Both DO
and DU appear to, at least in part, share the common basis
under neurogenic conditions, such as PD, MS, myelitis,
and peripheral neuropathy (Balzarro et al., 2019; Mancini
et al., 2020). Both DO and DU may be attributed to the
impairment of afferents signaling function, central nerve
control mechanism, or efferent innervation (Aldamanhori
et al., 2018). Currently, no clinically effective drug treatments
have been reported for restoring detrusor contractility. Clean
intermittent self-catheterization and sacral nerve stimulation
(SNM) seem to be helpful to those patients with DO and DU
(Gani and Hennessey, 2017).

Fourth, the urethra is likely to play a key role in sensation
and continuance, and the activation of urethral afferent signaling
system could modulate the micturition reflex, the so-called
urethral-vesical reflex (Shafik et al., 2003). Urethrogenic factors,
such as the deterioration of urethral tone, are postulated to
induce OAB symptoms (Peyronnet et al., 2019). Similarly, a

lack of pudendal or central neurological control may also lead
to urethral sphincter instability and subsequent urethra-driven
OAB (Kirschner-Hermanns et al., 2016). Duloxetine and SNM
are likely to be potential treatment options for urethra-driven
OAB (Groenendijk et al., 2007; Steers et al., 2007).

Fifth, sensitization of the afferent nerve fibers by the
urothelium/suburothelium is implicated in the pathophysiology
of neurogenic DO. P2X purinoceptor 3 (P2 × 3) receptor
is a type of sensory receptors, and the number of P2 × 3
immunoreactive nerve fibers has been reported an increase in
the suburothelium of patients with neurogenic DO (Brady et al.,
2004). The expression of other type of sensory receptor, e.g.,
transient receptor potential vanilloid type 1, also increased in
neurogenic patients with DO (Apostolidis et al., 2005).

Lastly, neurogenic-myogenic mechanisms may contribute
to the development of neurogenic DO. An early study
has demonstrated that partial denervation is attributable to
the alternation in smooth muscle properties, leading to
enhanced excitability, coordinated myogenic contractions, and
enlarged bladder pressure (Turner and Brading, 1997). Due
to the complexity of the neural control of micturition, OAB
symptoms and DO can be seen as a result of a variety of
neurological disorders, including MS, PD, SCI, dementia, and
other neurological diseases.

ANIMAL MODELS OF NEUROGENIC
OVERACTIVE BLADDER

Overactive Bladder (OAB) is a symptom-based diagnosis in
which urgency is the key symptom. The subjective nature
of urgency hampers the development of animal models for
OAB. Neurological animal models are not directly related
to OAB, but they enable to provide a platform for seeking
the mechanism of OAB and for assessing novel therapeutic
options. Given the high prevalence of OAB symptoms among
neurological diseases, a broad spectrum of neurological animal
models has been applied to study the OAB symptoms and
other lower urinary tract symptoms (LUTS). The commonly
used neurological animal models mainly include suprapontine
models, spinal cord transection/injury models, and experimental
autoimmune encephalomyelitis model.
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FIGURE 1 | Pathophysiology of OAB symptoms in neurological diseases appears to be multifactorial across all levels of neural control of micturition, from cerebral
cortex, brain stem, spinal cord, to the peripheral nerves. The lower urinary tract consists of two major components: the bladder and the urethra. The bladder
receives innervation from the parasympathetic pelvic nerve. Parasympathetic (pelvic) nerves could excite the bladder (primarily through activation of muscarinic-3
receptors) and relax the urethra, while sympathetic (hypogastric) nerve enables to inhibit the bladder body (primarily through β-3 adrenergic receptors) and excite the
urethra. Pudendal nerve originates from S2 to S4 motor neurons in Onuf’s nucleus and allows to the excitation of the external urethral sphincter. Particularly, urinary
storage functions are primarily maintained by the spinal cord reflex with enhanced activity of hypogastric and pudendal nerves innervating the urethra. This function is
also under-controlled by the pontine storage center located closely to the pontine micturition center (PMC), hypothalamus, cerebellum, basal ganglia, and frontal
cortex. The prefrontal cortex is regarded as the center of planning of complex cognitive behaviors. Other regions also serve as active participants for awareness of
visceral sensations, such as the periaqueductal gray (PAG), insula, and anterior cingulate gyrus. ZI, zona incerta; VTA, ventral tegmental area; SNc, substantia nigra
pars compacta; NBM, nucleus basalis of Meynert; MPOA, medial preoptic area; PVN, paraventricular nucleus; DLTN, dorsolateral tegmental nucleus; PBN,
parabrachial nucleus; IML, intermediolateral cell column; L, lumbar; S, sacral; T, thoracic.
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FIGURE 2 | Mechanism of overactive bladder (OAB) symptoms caused by various nervous system diseases. Multiple sclerosis (MS) cause detrusor overactivity (DO)
due to the suprapontine lesions, axonal loss, novel C-fiber-mediated voiding reflex, and reductions in central serotonergic activity and stress hormones.
Neuromyelitis optica spectrum disorder (NMOSD) causes DO due to spinal cord injury (SCI). Parkinson’s disease (PD) causes DO due to the decline in nigrostriatal
dopaminergic function, frontal lobe executive impairment and REM sleep behavior disorder, and the reduction of several inhibitory neurotransmitters in the brain.
Multiple system atrophy (MSA) causes lesions in locus coeruleus, prefrontal-basal ganglia D1 dopaminergic pathway, cerebellum, raphe serotonergic pathway, and
frontal cortex. SCI leads to DO due to the impaired communication between the cerebral and spinal circuits that coordinate bladder and urethra activities,
suprasacral spinal cord lesions, and emergence of a capsaicin-sensitive C-fiber-mediated spinal micturition reflex caused by a reorganization of synaptic
connections in the spinal cord. Peripheral neuropathy can also lead to DO. Dementia affecting the prefrontal cortex might also lead to altered central micturition
circuit. Other nervous system diseases such as cerebral palsy, pituitary adenoma compressing the hypothalamus, skull base chordoma, traumatic brain injury, and
cerebrovascular accident may. Both frontal cortex and hypothalamus are involved.

Suprapontine models are conducted to assess the voiding
dysfunctions caused by various central nervous system (CNS)
disorders such as PD, dementia, and cerebrovascular events.
For instance, several available PD animal models are roughly
divided into two groups, namely, toxin-based and genetic
models (Kitta et al., 2020). Parkinsonism can be induced
by administering the neurotoxins such as 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine

(6-OHDA), which are selective for the rapid degeneration
of the nigrostriatal dopaminergic neurons (Schapira et al.,
1989; Simola et al., 2007). Other transgenic PD models
are developed, including the SNCA (α-synuclein) transgenic
models (Matsuoka et al., 2001), DJ-1 KO models (Park et al.,
2005), PINK1 KO models (Kitada et al., 2009), and LRRK2
models (Lee et al., 2010). Cerebral infarction animal models
could be produced by occlusion of the middle cerebral artery
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(Yokoyama et al., 1998) or by the induction of midbrain ischemia
(Yotsuyanagi et al., 2006), exhibiting voiding dysfunction
including bladder overactivity.

Spinal cord transection/injury models are commonly utilized
to study DO, DESD, and other types of lower urinary tract (LUT)
dysfunction after any injury to the spinal cord, just as traumatic,
developmental, infectious, vascular, degenerative injuries, and so
on (Ethans et al., 2014; Panicker, 2020). Typically, the SCI model
could be achieved by complete transection at different levels of
spinal cord in different animals, particularly cats (de Groat et al.,
1990) and rats (Shaker et al., 2003; Behr-Roussel et al., 2011).
Besides, fetal rats with retinoic acid-induced myelomeningocele
could be used to model spina bifida for bladder dysfunction
investigation (Danzer et al., 2005).

Experimental autoimmune encephalomyelitis model is
capable of mimicking MS-produced bladder dysfunction
such as DO. This model can be induced by the activation of
immunization with CNS immunogenic compounds, or transfer
of encephalogenic T-cell lines from the affected animals (Petry
et al., 2000) or infection with Semliki Forest virus (Moss et al.,
1989) or coronavirus (McMillan et al., 2014).

NEUROLOGICAL CONDITIONS WITH
OVERACTIVE BLADDER SYMPTOMS

Multiple Sclerosis and Related
Neuroinflammatory Disorders
Multiple sclerosis is described as an immune-mediated
neuroinflammatory and neurodegenerative disease of the
CNS with heterogeneous clinical presentations. According to
previous reports, MS is the leading non-traumatic neurological
cause of disability in young and middle-aged people in the
developed world (Altmann, 2005; Çetinel et al., 2013). Bladder
dysfunction is commonly seen in MS, affecting 80–100%
of patients during the course of the disease (Minardi and
Muzzonigro, 2005). Among them, OAB symptoms are the
most common ones, reported by 60–80% of patients with MS.
Moreover, a recent study has revealed that the OAB symptoms
in MS could highly reach up to 96% (Declemy et al., 2021).
Therefore, OAB symptoms remain a considerable clinical
challenge to treat.

The mechanism underlying MS-related OAB symptoms is
mainly due to the DO induced by suprapontine lesions, with
disruption or lack of descending inhibitory impulses from the
brain to the spinal cord (Ethans et al., 2014). Many studies
about urodynamics in MS cases have demonstrated detrusor
hyperreflexia or hyporeflexia (Akkoç et al., 2016; Wang et al.,
2016). The primary target of the immune cells in MS is the
myelin-producing oligodendrocytes of the CNS, characterized
by demyelinated plaques on the brain, brain stem, cerebellum,
and/or spinal cord. The myelinated nerve tracts innervating the
LUT function would be eventually affected by these demyelinated
lesions. Recently, a new concept has emerged that axonal
loss, rather than demyelination, is the cause of progressive
neurological deficits and much correlated with clinical disability

(Dutta and Trapp, 2007). Neuroimaging and pathology studies
have proved that in MS, the commonly affected regions relevant
to micturition are the medial/prefrontal/insular cortex (Charil
et al., 2003), cerebellum (Charil et al., 2003), brain stem
(midbrain, Pozzilli et al., 1992; Charil et al., 2003, and pons,
Charil et al., 2003; Weissbart et al., 2017), and cervicothoracic
spinal cord (Weissbart et al., 2017). Moreover, the predominant
cause of DO is thought to be from brain lesions. DO may also be
induced by a novel C-fiber-mediated voiding reflex after spinal
cord lesions in MS (Sakakibara, 2019). In addition, the reduction
in central serotonergic activity and stress hormones in patients
with MS may contribute to the occurrence of OAB symptoms
(Koutsis et al., 2016).

Other neuroinflammatory disorders of CNS, such as
neuromyelitis optica spectrum disorder (NMOSD) (Sakakibara,
2019), acute disseminated encephalomyelitis (Panicker et al.,
2009), and Sjögren syndrome (Tarhan, 2013; Lee et al., 2019),
can also lead to OAB symptoms. NMOSD is regarded as a
type of neuroinflammatory disorders distinct from MS with
respect to immunopathogenesis and suitable treatment. NMOSD
usually causes more severe longitudinal myelitis or transverse
myelitis than MS. Due to the major site of lesions in the spinal
cord, NMOSD could cause disturbance of controllable voiding
and lead to neurogenic LUTS. De Carvalho and colleagues
reported that DO, DESD, and combination of DO and DESD
could be urodynamically proven in 20.0%, 23.3%, and 36.6%
of patients with NMOSD, respectively (de Carvalho et al.,
2016). In Sjögren syndrome, the autoantibodies binding to the
M3 muscarinic receptor could result in exocrine dysfunction
or cholinergic hyperresponsiveness, subsequently leading
to bladder detrusor, smooth muscles contraction, and OAB
symptoms (Wang et al., 2004).

Parkinson’s Diseases
Parkinson’s disease is one of the major diseases characterized
pathologically by abnormal α-synuclein aggregation (Ogawa
et al., 2017). Lower urinary tract symptoms are one of the main
non-motor features in PD, which could be presented during the
course of the disease (Defreitas et al., 2003; Winge et al., 2005;
Winge and Nielsen, 2012). The epidemiologic data about LUTS
in PD are widely scattered. It was recently reported that LUTS
occurred in 27–63.9% of patients with PD and increased with the
severity of PD (Barone et al., 2009; Ogawa et al., 2017). Another
previous report estimated that highly up to 80% of patients with
PD may suffer from LUTS (McDonald et al., 2017). Overactive
bladder symptoms are the most common type of LUTS (Shah
and Weiss, 2012; McDonald et al., 2017) and could be as early
symptoms than motor-related ones among patients with PD
(Roy et al., 2020). Overactive bladder symptoms can be treated
as a warning of progression to PD dementia (Xu et al., 2019).
Additionally, patients with PD frequently have LUTS, such as
nocturia, increased urinary frequency, and urinary incontinence,
overlapping with those of OAB symptoms (Ogawa et al., 2017).
During urodynamic testing, about 36–93% of patients with PD
showed uninhibited contractions or DO (Ogawa et al., 2017).

In patients with PD, the etiology of OAB symptoms is
centrally mediated and modulated in complex ways that are not
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fully understood. Strong evidence indicated that a decline in
nigrostriatal dopaminergic function plays a crucial role in this
progress (Sakakibara et al., 2001; Winge et al., 2005). Overactive
bladder symptoms may arise from the disruption of the complex
control loops within the context of neurodegeneration, instead
of a focal lesion (Winge and Fowler, 2006; Campeau et al.,
2011). For instance, basal ganglia could interfere with the
function of the PMC. In PD, altered signaling in the nigrostriatal
dopaminergic system results in a partial or total disconnection
of the micturition reflex from voluntary control and subsequent
uninhibited bladder contractions (Blackett et al., 2009). Besides,
several studies confirmed and expanded the views above.
Functional neuroimaging studies revealed a significant decline
of dopamine transporter imaging in the brain of patients with
PD with LUTS (Sakakibara et al., 2001; Winge et al., 2005).
In animal studies, the disruption of nigrostriatal dopaminergic
system was also proved to produced DO (Albanese et al.,
1988; Yamamoto et al., 2005a), which could be inhibited by
stimulating D1-like dopamine receptor with agonists or pergolide
(Yoshimura et al., 2003). Additionally, enhanced activity of the
adenosine A2A system in the brain may contribute to DO in PD,
which could be suppressed by A2A antagonist ZM 241385 (Kitta
et al., 2012). Clinical application of A2A receptor antagonists
such as istradefylline may also be a promising candidate for
the treatment of LUTS in patients with PD (Kitta et al.,
2016). Moreover, several specific non-motor symptoms are also
known to be correlated with LTUS in PD (Sakakibara et al.,
2013; Rana et al., 2015). A cross-sectional study suggested that
frontal lobe executive impairment and rapid eye movement
(REM) sleep behavior disorder accompanied with a higher
prevalence of OAB symptoms in patients with PD, possibly
due to the overlap of locus coeruleus and pontine nucleus with
some regions that control micturition (Xu et al., 2019). Other
postulated mechanisms underlying the relationship between
OAB symptoms and PD are the reduction of several inhibitory
neurotransmitters in the brain related to micturition, such as
γ-aminobutyric acid, serotonin, and norepinephrine (Boeve et al.,
2007; Buddhala et al., 2015).

Multiple System Atrophy
Multiple system atrophy (MSA) is a rare type of
neurodegenerative disorders characterized by varied
combinations of autonomic (orthostatic or bladder) with
motor (parkinsonian or cerebellar dysfunction; Tsuchiya et al.,
2020). Patients with MSA could present Parkinson-like motor
symptoms and some similar LUTS. MSA may initially present
with bladder dysfunction, particularly urinary retention. Over
90% of patients with MSA could have LUTS, which are more
prevalent and severe than those with PD (Sakakibara et al.,
2000; Yamamoto et al., 2011). About 50% of patients with
MSA could also develop OAB symptoms (Roy et al., 2020).
Moreover, DO could be confirmed in 33–100% patients with
MSA during urodynamic investigations (Ogawa et al., 2017).
The occurrence of OAB symptoms and other LUTS may arise
from lesions in the area relevant to micturition, including locus
coeruleus, prefrontal-basal ganglia D1 dopaminergic pathway,
cerebellum, raphe serotonergic pathway, and frontal cortex

(Gilman et al., 2008; Cykowski et al., 2015). Tsuchiya et al. (2020)
also elucidated that DO occurred independently from motor
disorder in MSA.

Spinal Cord Injury
Spinal cord injury (SCI) arises from traumatic and non-traumatic
events, with an annual incidence of up to 40 cases per million
people. The prevalence of LUTS ranges from 20 to 88.3% in
patients with traumatic SCI and 5.9% to 90% in patients with
non-traumatic SCI (Ruffion et al., 2013; Fergany et al., 2017).
The most common finding during urodynamic studies is DO
in patients with SCI, with a prevalence ranging from 11 to 85%
(Ruffion et al., 2013). Detrusor overactivity usually emerges when
spinal reflexes return.

The appearance of LUTS, including OAB symptoms,
in patients with SCI possibly derive from the impaired
communication between the cerebral and spinal circuits
that coordinate bladder and urethra activities (de Groat et al.,
2015). The degree of urinary symptoms is related to the disease
process itself, site of affected, and severity of neurological
impairment. Suprapontine or suprasacral spinal cord lesions
could induce storage dysfunctions, leading to DO. Lesions in the
spinal cord may cause DESD and incomplete bladder emptying.
Sacral or infrasacral lesions result in denervation of bladder
and/or sphincters with incompetent sphincter and poorly
sustained/absent detrusor contractions (Vichayanrat et al., 2021).
As aforementioned, DO may be correlated with the emergence
of a capsaicin-sensitive C-fiber-mediated spinal micturition
reflex caused by a reorganization of synaptic connections in
the spinal cord (Banakhar et al., 2012). As shown in chronic
spinalized cats, administration of capsaicin could desensitize
TRPV1-expressing C-fiber afferent pathways and completely
block DO (de Groat et al., 1990; Cheng et al., 1999). Similarly,
desensitization of C-fiber afferents by capsaicin pretreatment
could also inhibit DO and DESD in chronic SCI rats (Cheng
et al., 1995; Seki et al., 2004). In addition, cold-sensitive C-fiber
afferents likely promote the occurrence of SCI-related DO and
DESD mediated by transient receptor potential melastatin 8
(TRPM8) (Fall et al., 1990).

The hyperexcitability of C-fiber afferent pathway may be
attributed to a wide variety of peripheral-to-central mechanisms.
For instance, transient receptor potential ankyrin 1 (TRPA1) in
the suburothelial nerve fibers may play a role in the C-fiber-
mediated DO in SCI (Andrade et al., 2012). Increased activation
of P2 × 2/3 receptors in the bladder is shown to stimulate bladder
afferents and induce DO in rats following SCI (Smith et al., 2008;
Munoz et al., 2012). After SCI, bladder afferent neurons seem to
be more sensitive to the bladder stimuli due to pathophysiological
alternations, such as ion channel transformations (Yoshimura
and de Groat, 1997; Takahashi et al., 2013). Other changes
in lumbosacral spinal cord, including increased expression of
pituitary adenylate cyclase-activating polypeptide, could also
contribute to the emergence of DO in SCI (Zvarova et al., 2005).

In addition, various other alternations in LUT, peripheral
nerve system, and CNS also contribute to the development
of DO after SCI, such as aberrant expressions/activation of
M2 muscarinic receptor (Pontari et al., 2004), neurotrophic
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factors (Lamb et al., 2004), glutamate system (Yoshiyama et al.,
1999), glycine (Miyazato et al., 2003), and γ-aminobutyric acid
(Miyazato et al., 2008).

Overactive bladder (OAB) symptoms can also occur in
other spinal cord diseases, including spina bifida (Dorsher
and McIntosh, 2012), cauda equina lesions (Deffontaines Rufin
et al., 2010), myelomeningocele (Dean and Long, 2011),
spinal cord ischemia (Grosse et al., 2005), and spinal stenosis
(Semins and Chancellor, 2004).

Dementia
Dementia diseases, such as Alzheimer’s disease (AD), dementia
with Lewy bodies (DLB), and subacute combined degeneration,
are also known as independent-risk factors for OAB symptoms
(Takahashi et al., 2012). Previous studies reported a much
higher prevalence of OAB in patients with AD aged 56–
92 years (72.6%) than that in the general population, and
almost twice as high as that in the general population above
75 years of age (Jung et al., 2017). Dementia with Lewy bodies
is the second most common degenerative cause of dementia
and OAB symptoms are more prevalent in DLB than in AD
and PD (Ransmayr et al., 2008). Detrusor overactivity on
urodynamic studies could be identified in 71.4–92% patients
with DLB (Sakakibara et al., 2005; Ransmayr et al., 2008;
Tateno et al., 2015). White matter disease is a chronic,
bilateral form of cerebrovascular disease, leading to a high
prevalence of OAB (up to 90%) (Sakakibara et al., 2014).
The pathological mechanisms for OAB symptoms in dementia
diseases remain unclear, but experimental and neuroimaging
studies have suggested that the prefrontal cortex is critical for
the higher control of voiding and enhanced bladder sensation
might also result from altered central micturition circuit
(Tsunoyama et al., 2011).

Peripheral Neuropathy
Peripheral neuropathy refers to a broad range of disorders
causing damage and dysfunction of the nerves of the peripheral
nervous system (Barrell and Smith, 2019). The damage to
the peripheral nerves related to micturition reflex could bring
about various types of LUTS including OAB symptoms.
For example, about 75% of patients with Guillain-Barré
syndrome developed micturition problems and both DO and
DU were commonly seen in urodynamic analysis (Sakakibara
et al., 2009). Patients with chronic inflammatory demyelinating
polyneuropathy (CIDP) reported less LUTS in comparison to
Guillain-Barré syndrome and the rate of LUTS ranged from
2 to 25%. Voiding difficulty and urinary urgency are the
major urinary symptoms in CIDP. Charcot-Marie-Tooth (CMT),
a type of hereditary peripheral neuropathy, may also occur
with OAB symptoms, possibly due to the elevated transient
receptor potential vanilloid 4 activity (Nilius and Owsianik,
2010). Thus, LUTS are usually rare in patients with CMT
and CIDP. A careful exclusion of urological comorbidities
and other neurological conditions, such as stroke and spinal
stenosis, is required in patients with CMT and CIDP who
present with LUTS.

Other Neurological Diseases
Other brain lesions are also relevant to OAB symptoms,
including cerebral palsy, pituitary adenoma compressing the
hypothalamus (Yamamoto et al., 2005b), skull base chordoma
(Akhavan-Sigari et al., 2014), traumatic brain injury (Sakakibara,
2015), and cerebrovascular accident (Gupta et al., 2009).
The incidence of LUTS in these patients ranges from 14 to
53%, mostly OAB symptoms, and is much higher when the
frontal cortex is involved (Sakakibara, 2015). As mentioned
above, supraspinal lesions can lead to neurogenic OAB
symptoms due to the loss of inhibition control on the
micturition reflex or the decreased capacity to functionally
integrate afferent information. Besides, hypothalamic lesions
can lead to severe LUT dysfunction in both the storage
and voiding phases of micturition, suggesting the crucial role
of the hypothalamus in regulating micturition in humans
(Yamamoto et al., 2005b).

Additionally, OAB symptoms could occur in patients with
infections in the nervous system, including meningitis-retention
syndrome (Tateno et al., 2011), human T-lymphotropic virus
type 1-associated myelopathy/tropical spastic paraparesis (Santos
et al., 2012; Rahnama’i, 2019), and human immunodeficiency
virus (HIV)-associated neuropathy (Hermieu et al., 1996).
Individuals with Machado-Joseph disease (Musegante et al.,
2011) could also report OAB symptoms.

CONCLUSION

The etiology of OAB is multifactorial and may arise from a
broad spectrum of medical conditions, in particular neurogenic
ones. This study provided a comprehensive overview of OAB-
related neurogenic disorders and summarized the compensatory
mechanisms underlying the emergence of OAB symptoms in
these neurogenic disorders. This may provide a robust rationale
for therapy, as it could tackle several mechanisms increasing
the chance of therapeutic success. However, given limited
publications could present neurogenic OAB symptoms totally
and clearly; further studies including etiology, epidemiology, and
treatment are required.
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