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Comparison of q-Space Reconstruction Methods for  
Undersampled Diffusion Spectrum Imaging Data

Gabriel E. Varela-Mattatall1,2,3, Alexandra Koch4, Rüdiger Stirnberg4, Steren Chabert5,  
Sergio Uribe1,3,6,7, Cristian Tejos1,2,3, Tony Stöcker4,8, and Pablo Irarrazaval1,2,3,7*

Purpose: To compare different q-space reconstruction methods for undersampled diffusion spectrum 
imaging data.
Materials and Methods: We compared the quality of three methods: Mean Apparent Propagator (MAP); 
Compressed Sensing using Identity (CSI) and Compressed Sensing using Dictionary (CSD) with simulated 
data and in vivo acquisitions. We used retrospective undersampling so that the fully sampled reconstruction 
could be used as ground truth. We used the normalized mean squared error (NMSE) and the Pearson’s cor-
relation coefficient as reconstruction quality indices. Additionally, we evaluated two propagator-based diffu-
sion indices: mean squared displacement and return to zero probability. We also did a visual analysis around 
the centrum semiovale.
Results: All methods had reconstruction errors below 5% with low undersampling factors and with a 
wide range of noise levels. However, the CSD method had at least 1–2% lower NMSE than the other 
reconstruction methods at higher noise levels. MAP was the second-best method when using a sufficiently 
high number of q-space samples. MAP reconstruction showed better propagator-based diffusion indices 
for in vivo acquisitions. With undersampling factors greater than 4, MAP and CSI have noticeably more 
reconstruction error than CSD.
Conclusion: Undersampled data were best reconstructed by means of CSD in simulations and in vivo. MAP 
was more accurate in the extraction of propagator-based indices, particularly for in vivo data.
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Introduction
Diffusion, at a microscopic level, consists of molecules’ 
random displacements given a diffusion time ∆. This set of 
possible displacements, r, has associated a probability 
density function (PDF), p(r|∆), which is the so-called dif-
fusion propagator.1 The reconstruction of the diffusion 
propagator is relevant to describe the complete diffusion 
process and to extract biomarkers without any assumption 
of the microstructure.

Diffusion MRI is a technique that estimates the diffu-
sion propagator for each imaging voxel. Usually, T2-weighted 

images are made sensitive to diffusion by including diffu-
sion encoding gradients, with amplitude |G| and duration δ, 
that are separated by the diffusion time ∆. Thus, these 
images contain the effect of diffusion in the direction of G 
over ∆.2 The data acquired in q-space, q = δGγ/2π, corre-
spond to the Fourier transform of the diffusion propagator. 
The direct reconstruction of the center-of-mass3 diffusion 
propagator from the magnitude of the complete q-space data 
is called diffusion spectrum imaging (DSI).4,5 Further details 
and recent improve ments for DSI acquisition and recon-
struction can be found in Lacerda et al.,6 Paquette et al.,7 and 
Tian et al.8
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The DSI reconstruction for each voxel is defined as Eq. [1]

 p E e dir q qqr( ) = ( )∫
3

2p ,  [1]

where p(r) is the diffusion propagator given the fixed diffu-
sion time for a traditional q-space acquisition and E(q) are 
the values of the q-space samples. The Fourier transform for 
DSI requires a minimum q-space sampling to fulfill the 
Nyquist criterion. Since each q-space sample is a diffusion-
weighted scan, the DSI acquisition becomes time-expensive 
for clinical settings.

When the full diffusion propagator is not needed, model-
based methods are suitable to compute specific diffusion 
indices. Typically, the propagator is approximated by the dif-
fusion tensor model. Even though diffusion tensor imaging 
(DTI)9 has shown relevance in clinical applications,10,11 this 
approximation may not describe correctly, or completely, the 
tissue microstructure. For example, DTI provides a biased 
result, if the voxel contains two or more non-parallel fibers.12 
Another model technique is diffusion kurtosis imaging 
(DKI)13 that incorporates the non-Gaussian diffusion using 
the kurtosis parameter. Unfortunately, DKI cannot be used in 
a complete q-space regime due to high signal to noise ratio 
requirements. A discussion on models in diffusion MRI and 
their assumptions can be found in Hagmann et al.,14 Assemlal 
et al.,15 and Ferizi et al.16

On the other hand, compressed sensing (CS)17 has been 
used to fully reconstruct the diffusion propagator from under-
sampled q-space data. CSI uses as prior knowledge that the 
data should be represented sparsely in some domain. The first 
publication of CS in DSI18 proposed to use total variation and 
Haar wavelets as sparse domains. Soon after, Bilgic et al.19 
proposed to use a data-driven dictionary as sparse domain. 
This method had around 1.6-fold improvement in reconstruc-
tion quality, measured as the normalized mean squared error 
(NMSE) when compared with;18 however, that work lacked 
simulations to describe in a more controlled environment the 
performance and limitations of both methods. Recently, 
Paquette et al.20 proposed a joint improvement by selecting 
the Cohen–Daubechies–Feauveau 9/7 wavelet as sparse 
domain; and a sparse undersampling pattern using a uniform 
angular distribution with randomly allocated samples along 
radial profiles. That work analyzed most of the commonly 
used sparsifying transforms such as wavelets, total variation 
and the identity basis from Menzel et al.,18 Bilgic et al.,19 
Merlet;21 and different undersampling patterns as in Menzel 
et al.18 However, a comprehensive comparison between  
CS-based reconstruction methods with reconstruction 
methods that fit the q-space signal to a highly efficient set of 
continuous basis functions is yet to be done. A representative 
method using continuous basis functions is the mean apparent 
propagator (MAP),22,23 a method which approximates the dif-
fusion propagator using Hermite functions. The first basis 
function corresponds to the diffusion tensor as in DTI and the 

rest characterize any deviation from DTI. Up to some extent, 
MAP has a better characterization of q-space than other con-
tinuous basis functions because it takes advantage of the ani-
sotropic nature of its scaling tensor, whereas other methods 
that use isotropic scaling would require more basis functions 
to obtain the same reconstruction quality.24

In this work, we compared the methods of MAP, Com-
pressed Sensing using Identity (CSI) as sparsifying trans-
form and Compressed Sensing using Dictionary (CSD). The 
novelty of this comparison is that we included MAP in addi-
tion to CSI and CSD methods, which were previously ana-
lyzed in Bilgic et al.19 and Paquette et al.20

Materials and Methods
The three reconstruction methods were tested using retrospec-
tively undersampled q-space data from Monte-Carlo simula-
tions and from an in vivo brain acquisition. The reconstructions 
were compared with the fully sampled data as ground truth to 
evaluate reconstruction quality and retrieval of propagator-
based diffusion indices. Finally, the in vivo reconstructions 
were used for a visual analysis of the centrum semiovale.

Data sets
Simulations and in vivo data were done in an 11 × 11 × 11 
q-space Cartesian grid. Each complete data set had 257 q-space 
samples contained in a discrete half-sphere with a radius of 
five samples. The other half was obtained by symmetry.

For the Monte-Carlo simulations, we used the crossing 
substrate from the Camino software.25,26 The substrate cor-
responds to two fiber populations in interleaved planes and 
one population was rotated with respect to the other popula-
tion to resemble two crossing fiber bundles with a certain 
crossing angle. The fiber populations were done with a cyl-
inder radius of 2 µm and a cylinder separation of 5.1 µm.  
We used 103 time steps for 105 spins, initially uniform-distrib-
uted, to diffuse in the crossing substrates. We simulated two 
crossing fibers with crossing angles in [0, 15, 30, … 90]°. The 
diffusion encoding parameters for the simulations were with 
δ = 31 ms and ∆ = 43.2 ms, where qmax = 62.21/mm2 (or bmax 
= 6600 s/mm2); and TE = 88 ms. Gaussian noise was added to 
the real and imaginary part of the simulated measurements to 
obtain Rician noise in the magnitude of the diffusion signal as 
E Ei i i( ) ( ( ) ), ,q q= + +simulation h h1

2
2
2 , where hi,1, hi,2 ~ N(0, s) 

and standard deviation s = 1/SNR.20 For simulations, σ was 
chosen as [0, 1, 2, …, 10]% of the peak value. Each noisy 
experiment was repeated fifty times. The ground truth for 
simulations were the inverse Fourier transform of the noise-
free and fully sampled measurements, F–1{Esimulation(q)}.

For the in vivo acquisition, we used fully sampled DSI 
acquisitions collected as in Tobisch et al.27 Data were 
acquired in a 3T Prisma scanner (Siemens Healthcare, 
Erlangen, Germany) at 1.5 mm isotropic resolution (TE/TR 
= 105/6100 ms, bmax = 6800 s/mm2, ∆ = 51.3 ms, δ = 20.1 ms) 
using a 64-channel head–neck coil. A total of 257 diffusion 
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weighted and eight interleaved, non-weighted images were 
acquired with both anterior-to-posterior and posterior-to-
anterior phase encoding. Finally, the acquired data were pro-
cessed in FMRIB Software Library (FSL) to estimate and 
correct for susceptibility geometric distortions, eddy currents 
and subject motion.28,29 The total scan time was 55 min. The 
ground truth for in vivo data were the inverse Fourier trans-
form of the fully sampled q-space from each voxel.

The fully sampled data from simulations and acquisi-
tions were retrospectively undersampled from 2× to 8× to 
test reconstruction performance. The sampling pattern was a 
3D Cartesian q-space grid where the central 3 × 3 × 3 sam-
ples were always sampled and the rest, depending on the 
undersampling factor (USF), were picked randomly with a 
variable decreasing density distribution.18,19

We repeated the reconstructions with ten different sam-
pling patterns using the previously mentioned strategy to 
establish if the reconstruction quality was invariant to both, 
the microstructure orientation and the particular sampling 
pattern. To test dependency on the angle between undersam-
pling pattern and fiber orientation, we also reconstructed 
simulations (as described above) of a single fiber with USF = 4, 
and noise = 5% rotated in a plane using [0, 15,…,165]°.

Reconstruction
The reconstruction methods are as follows.

Mean apparent propagator
Mean apparent propagator22,23 is a least-squares optimization 
that finds the best fit to q-space data as Eq. [2],

 c A q c q A qc
� = − ≥argmin s tT TS EF Y( , ) ( ) . ( , ) ,2

2
0  [2]

where c are the coefficients to estimate, F(A, q)T is the basis 
in q-space and Y(A, q)T is the corresponding basis in PDF-
space. Each basis function from F and Y are scaled by 
A = diag( , , )m m m1

2
2
2

3
2 , where m l t{ }, , { , , }1 2 3 1 2 32=  is the 

square root of the mean displacement for each eigenvalue of 
the diffusion tensor, which was fitted to all q-space measure-
ments. Because of the eigendecomposition of the diffusion 
tensor, each 3D basis function in F is the combination of 
three 1D orthogonal basis functions, fn(m, q), where each one 
of them corresponds to the n-th order Hermite polynomial, 
Hn, modulated by a Gaussian-like term. The 1D basis func-
tion is defined as Eq. [3]
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An interesting property of fn(m, q) is that its Fourier trans-
form also results in a Gauss–Hermite function, yn(m, r), as
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and this is the 1D basis function that generates each 3D basis 
function for Ψ. Furthermore, Φ and Ψ share the same coef-
ficients, so it is possible to optimize data consistency while 
imposing properties of the diffusion propagator like non-
negativity. Therefore, the first basis function (n = 0) in Φ and 
Ψ correspond to Gaussian diffusion whereas the remaining 
basis functions (n > 0) correspond to non-Gaussian diffusion. 
The bases Φ and Ψ were constructed as in Özarslan et al.22 
and according to recommendations from Avram et al.23 
Hence, we used a maximum basis order of six, Nmax = 6, 
which corresponds to the first 50 basis functions from the 
truncated infinite series. The number of basis functions is 
defined by the following expression [5]:

 F( , ) ( , ) ( , ) ( , ),
, ,

A q =
= >

+ + =

å å
N

N

i j k
i j k N

i j kq q q
0 0

1 1 2 2 3 3

max

f m f m f m  [5]

to ensure that all the possible combinations for the respective 
maximum basis order are included to design both bases, Φ 
and Ψ. For symmetric signals, only even values of N are non-
zero; therefore, the number of basis functions is defined by 
B N N N N( ) ( )( )( ) /max max max max= + + +2 4 2 3 24. Finally, in this 
work, the diffusion propagator from MAP was obtained as 
p F� �( ) { , }r c= ( )-1 F A q T .

Compressed sensing
Compressed sensing is a method that imposes sparsity in the 
representation of the diffusion propagator while maintaining 
data consistency (Eq. [6]):

 p SFp E pp r
�( ) ( ) ( ) ( ) .( )r r q r= − +argmin 1

2 2

2

1l Ω  [6]

Data consistency ensures the similarity between the estima-
tion and the acquired data E(q), where SF is the undersam-
pled Fourier operator. The regularization constrains p(r) to 
be represented sparsely in the domain Ω. For the data sets in 
this work, we used Ω = I since it is suitable and computation-
ally efficient.19,20 Finally, the optimization was done using a 
non-linear conjugate gradient implementation. The param-
eter λ was empirically fixed according to the procedure 
explained in Appendix A.

CS using data-driven dictionaries
CS using data-driven dictionaries is a CSI reconstruction that 
obtains the diffusion propagator by fitting coefficients to a 
trained dictionary.19 The method iteratively solves:
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where D is the dictionary obtained from a training set of diffu-
sion propagators using the K-SVD algorithm.30 The idea of 
this dictionary is to sparsely concentrate the variance between 
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propagators in the first k-th atoms from the dictionary. Wt is a 
diagonal weighting matrix whose j-th diagonal entry is denoted 
Wj j

t
,  and this matrix multiplied with st equals Xt+1, which are 

the corresponding coefficients after the last iteration t. The 
focal underdetermined system solver promotes l1-sparsity on 
the coefficients Xt+1 through reweighted l2-optimizations on 
the auxiliary variable st. For more information see Ye et al.31 
Implementation was downloaded from Berkin Bilgic web site 
(http://martinos.org/~berkin/software.html).

For the simulation case, the training was done with sim-
ulated noise-free single fibers rotated across the three axes in 
the PDF-space. For this purpose, we simulated in Camino 
single fibers using a wide range of diameters and separation 
between cylinders. The experiments were done using this 
dictionary, but with simulations of two crossing fibers (as 
described above). For the in vivo case, the training was done 
with propagators from fully-sampled q-space data of one 
axial slice. The in vivo training was done as in Bilgic et al.19 
The reconstruction was performed along a coronal slice to 
avoid a bias in favor of the CSD method. The particular axial 
slice used for training the dictionary was removed from the 
comparison. The diffusion propagator was obtained as 
p t�( )r = +Dx 1 .

Finally, in all reconstruction methods, the negative values 
found in each diffusion propagator were clipped to zero.7

Quality indices and visualization
To compare the reconstruction p�  against the ground truth p, 
we used the normalized mean squared error, NMSE{ , } /p p p p p� �= - 2

2
2
2

NMSE{ , } /p p p p p� �= - 2
2

2
2 , and the Pearson’s correlation (PC) coefficient.20 

We also compared two propagator-based diffusion indices: 
the mean squared displacement (MSD)32 and the return to 
zero probability (p0).22,33 The MSD is the second moment of 
the PDF and the relative MSD error was defined as 
DMSD MSD MSD MSD( , ) ( { } { }) / { }p p p p p� �= - 2 2 . The rel-
ative return to zero probability error was defined as 
∆p p p p p p p p p0 0 0 02 2{ , } ( { } { }) / { }� �= − .

The in vivo reconstructions were loaded into DSI Studio 
(http://dsi-studio.labsolver.org) to visually analyze the orien-
tational information from the reconstructions around the cen-
trum semiovale. This region contains the intersection of 
multiple white matter bundles; therefore, it is a complex area 
in the brain suitable to evaluate multiple crossing angles.8

Results
Simulations
Figure 1 shows the mean and standard deviation of the 
NMSE index for the reconstructions of a single fiber rotated 
at [0, 15,…,165]° in a plane with USF = 4. Figure 1a shows 
that the reconstructions were slightly biased for angles 
aligned with the Cartesian grid (0° and 90°), i.e. the recon-
structions are not entirely independent of the microstructure 
orientations. This result agrees with what was obtained in 
Lacerda et al.,6 where it is stated that the orientation distribu-
tion function reconstruction depends on q-space acquisition 
and resolution. Figure 1b shows a slice of the sampling pat-
tern. To avoid this orientational bias between the Cartesian 
grid and the orientation from simulations, we rotated the 
noise-free simulations by p /4 in the three axes.

Figure 2 shows the mean and standard deviation of the 
NMSE and PC indices (50 reconstructions) of two crossing 
fibers while varying noise level, USF and crossing angle. 
Both reconstruction quality indices are consistent, ranking 
the methods in the order: CSD, MAP, and CSI. Figure 2a 
depicts NMSE as a function of noise. At σ = 5%, NMSE 
obtained with MAP and CSI were 1.1- and 1.5-fold higher 
than the NMSE from CSD; which agrees with the results in 
Bilgic et al.19 The same behavior can be seen in Fig. 2d for 
the PC. Figure 2b depicts NMSE as a function of USF and it 
shows that the CSD method performed better than the other 
methods for USF above 4×; which again agrees with Bilgic 
et al.19 Between 2× and 8×, the mean NMSE from CSD 
increased around 2% while MAP and CSI mean NMSE 
increased around 8% and 5% respectively. This is also shown 
for PC in Fig. 2c and 2e depicts NMSE as a function of the 
crossing angle. The ranking of reconstructions is preserved 
and it is worth mentioning the increased error from CSI at 
lower crossing angles. More prominent Gibbs ringing were 
observed at small crossing angles, which may be an explana-
tion for the increased errors. Furthermore, resolving small 
crossing angles is generally known to be challenging, even 
with advanced diffusion MRI, which may as well explain 
increased NMSE values.

The previous results were reproduced for nine additional 
undersampling patterns to verify whether these results were 
influenced by the selection of the specific sampling pattern. 

Fig. 1 Effect of the fiber orientation in the recon-
struction of a single fiber rotated over in pdf-space. 
The NMSE as a function of the rotation angle in (a) 
shows that the reconstructions were slightly biased 
for rotation angles aligned with the Cartesian grid 
(0º and 90º). The corresponding central plane of the 
3D q-space sampling pattern at 4× is shown in (b) as 
reference. NMSE, normalized mean squared error; 
USF, undersampling factor; CSI, Com pressed Sensing 
using Identity; MAP, Mean Apparent Propagator; CSD, 
Compressed Sensing using Dictionary.

(a) (b)
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Although there is a natural variance from randomized pat-
terns, the ranking of the reconstruction methods was pre-
served and most of them agree quantitatively too, which can 
be seen in Appendix B.

Figure 3 shows the mean and standard deviation of the 
propagator-based relative index errors as functions of noise, 
undersampling and crossing angle from the reconstructions 
of crossing fibers. Figure 3a and 3d show almost exact 
recovery (error below 2%) of the index as a function of 

noise. Furthermore, Fig. 3a demonstrates that CSI may pro-
vide the best relative MSD error even at a relatively high 
USF of 4, if the noise level is relatively low (σ ≤ 4%). Figure 3b 
and 3e show that both indices suffer considerably for USF 
above 4× in the cases of CSI and MAP. Figure 3c depicts 
the relative MSD error as a function of the crossing angle 
and it shows that the relative MSD obtained from CSI has 
around a 2% error with respect to the ground truth. This 
may indicate that at USF = 4, CSI reconstruction is obtaining 

Fig. 2 Reconstruction quality indices for different settings from simulations of two crossing fibers. The first row corresponds to NMSE as a func-
tion of noise level s (a); as a function of USF (b); and as a function of crossing angle (c). The second row corresponds to PC as a function of the 
same variables (d–f). USF, undersampling factor; NMSE, normalized mean squared error; PC, Pearson’s correlation coefficient; CSI, Compressed 
Sensing using Identity; MAP, Mean Apparent Propagator; CSD, Compressed Sensing using Dictionary.

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 3 Error metrics for propagator-based diffusion indices for different settings from simulations of two crossing fibers. The first row corresponds 
to relative MSD error as a function of noise level s (a); as a function of USF (b); and as a function of crossing angle (c). The second row cor-
responds to relative p0 error as a function of the same variables (d–f). MSD, mean squared displacement; p0, return to zero probability; USF, 
undersampling factor; CSI, Compressed Sensing using Identity; MAP, Mean Apparent Propagator; CSD, Compressed Sensing using Dictionary.

(a)

(d)

(b)

(e)

(c)

(f)
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a close approximation of the shape, but not an exact 
recovery of the ground truth which slightly influences the 
retrieval of the MSD index. Finally, Fig. 3f shows an excel-
lent estimation of p0 for all crossing angles.

In vivo data
Figure 4 shows spatial maps of NMSE, (1-PC), relative MSD 
error and relative p0 error for the reconstruction methods 
using USF = 4 along a coronal slice. For visual clarity the PC 
coefficient has been subtracted from one, i.e. lower values 
indicate greater correlation to the ground truth. The axial 
slice used to train the dictionary of the CSD method was 
removed from the comparison (red line). In general terms, 
the three methods show reconstruction quality below 5% 
error; except in areas containing cerebrospinal fluid or deep 
brain areas. On the other hand, the methods show high recon-
struction quality for the corticospinal tract, the corpus cal-
losum and the corona radiata in comparison with other 
regions. Additionally, reconstruction quality indices indicate 
a correlation with the signal-to-noise ratio (SNR) which, for 
small parallel imaging factors and hence negligible geometry 
factors, can be assumed to be linked to the receive coil sensi-
tivity map (decreasing toward the center of the brain).  

With regard to the estimation of the relative MSD and rela-
tive p0 errors, the MAP reconstruction shows higher quality 
when compared with CSI and CSD methods. We included 
the spatial maps of NMSE for the three reconstruction 
methods using USF = 4–6, and 8 in Appendix C.

Finally, Fig. 5 shows the generalized fractional anisot-
ropy maps from the ground truth and the reconstruction 
methods under investigation. From each map, we zoomed 
the region around the centrum semiovale for visual inspec-
tion of the directional information from the propagators 
obtained for those voxels. All methods show high similarity 
with the ground truth, but there are areas where directional 
information has errors (see for example the upper left corner 
of the zoomed areas).

Discussion
In this work, three methods to reconstruct the diffusion propa-
gator from undersampled q-space data were compared. These 
methods were MAP, CSI (Compressed Sensing using Identity 
as sparsifying transform) and CSD (Compressed Sensing using 
data-driven dictionaries for sparse representation). The com-
parison was done in terms of the reconstruction quality 

Fig. 4 Index-based maps from in vivo reconstruc-
tions for an undersampling factor of 4×. The first 
row corresponds to the NMSE maps; the second 
row to (1-PC) maps; the third row to relative 
MSD error maps; the fourth row to relative p0 
error maps. The columns are the reconstruction 
methods: CSI, MAP and CSD. From the NMSE 
and (1-PC) maps, all methods are very similar 
and show reconstruction errors below 5%, except 
in areas containing cerebrospinal fluid or areas 
deeper in the brain. The real difference comes on 
the estimation of diffusion indices, where MAP 
shows more accuracy in recovering the MSD and 
p0 indices. CSI reconstruction provides the worst 
recovery, but its error is around 5% only. NMSE, 
normalized mean squared error; PC, Pearson 
Correlation Coefficient; MSD, mean squared dis-
placement; p0, return to zero probability; CSI, 
Compressed Sensing using Identity; MAP, Mean 
Apparent Propagator; CSD, Compressed Sensing 
using Dictionary.
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(mean squared error and PC coefficient) and in terms of relative 
error metrics for propagator-based indices (∆MSD and ∆p0). 
The novelty of this comparison is that we included MAP in 
addition to CSD and CSI methods, which were previously ana-
lyzed.19,20 The three reconstruction methods are representative 
of three classes: one method is based on fitting q-space signal to 
a highly efficient set of continuous basis functions; and two CS-
based methods that sparsely encode the diffusion propagator by 
means of a sparsifying transform or by a dictionary constructed 
from the same measurements. We included in the simulations 
different reconstruction settings of noise, USF and crossing 
angles. In this way, we provided a thorough analysis to deter-
mine the advantages and limitations for the different methods; 
and complement the previous work. Our study has the same 
spirit as Hutchinson et al.,34 but applied to reconstruction 
methods using Cartesian data with high q-space samples. Across 
the experiments, we observed that the Cartesian nature of the 
acquisition could influence the reconstruction of the directional 
information from diffusion MRI, so sampling patterns should be 
designed as isotropic as possible, taking this fact into considera-
tion as in Paquette et al.20 and Tobisch et al.35

In simulations, the CS reconstruction using data-driven 
sparse dictionary provided better results for the different set-
tings and data when compared with MAP or CSI. Quantita-
tively speaking, MAP and CSI obtained 10% and 50% higher 
NMSE as compared with CSD. The observed reconstruction 
quality from the three reconstruction methods did not affect 
in a significant manner the estimation of propagator-based 
diffusion indices. The extraction of MSD and p0 were quite 
stable for different noise levels and crossing angles; nonethe-
less, MAP and CSI deviated from the ground truth, in both 
reconstruction quality and extraction of the propagator-based 
diffusion indices, at USF above 4×. Hutchinson et al.34 justi-
fies similar behavior on its results due to sampling depend-
ency mainly, but in these experiments it may be more likely 

that the requirements for a robust optimization were not met 
for those USF and the reconstruction error propagated to the 
diffusion indices.

In the in vivo data, the reconstruction errors from the 
three methods at USF = 4 were below 5–8%, although MAP 
was the best; followed by CSD reconstruction and then CSI. 
Furthermore, MAP reconstruction gave higher quality in the 
extraction of propagator-based diffusion indices. The supe-
rior extraction of diffusion indices from MAP could be 
important if the objective of the study is related to the char-
acterization of microstructure.

Mean apparent propagator22 is a set of basis functions 
where the first basis function corresponds to Gaussian diffu-
sion (DTI) and the extra basis functions are used to charac-
terize non-Gaussian diffusion. In that sense, the method 
increases its accuracy for non-Gaussian diffusion by adding 
more basis functions. However, there is a condition in that 
the number of q-space samples must be enough to allow an 
appropriate reconstruction for that number of basis func-
tions. Another factor affecting the reconstruction is the 
proper estimation of the diffusion tensor that scales the set of 
basis functions. This work reports that MAP using 50 basis 
functions worked well in terms of reconstruction quality and 
for recovering the propagator-based indices at low USF.

CSI reconstruction corresponds to the application of CS 
theory in diffusion spectrum imaging to reconstruct the diffu-
sion propagator from a lower number of q-space samples 
than the sampling dictated by the Nyquist criterion. This 
work reports that CSI worked very similar when compared 
with MAP and CSD, but there was a consistently higher error 
at realistic noise levels. Although results from CSI recon-
struction could change by the selection of another sparsifying 
transform or the value of the Lagrangian multiplier, in our 
experiments the identity was enough. This is confirmed since 
our results were similar to the results obtained in Bilgic  

Fig. 5 Generalized fractional anisotropy maps 
from the ground truth and the reconstruction 
methods under investigation. From each map, we 
zoomed the region around the centrum semio-
vale for visual inspection of the directional infor-
mation from the propagators obtained for those 
voxels. All methods show high similarity with the 
ground truth, but there are areas where direc-
tional information has errors (see for example 
the upper left corner of the zoomed areas). CSI, 
Compressed Sensing using Identity; MAP, Mean 
Apparent Propagator; CSD, Compressed Sensing 
using Dictionary.
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et al.19 where they used wavelets and total variation as spar-
sifying transforms. Furthermore, in Paquette et al.20 and 
Tobisch et al.36 it is shown that it produces satisfactory recon-
struction performance in comparison to other sparsifying 
transforms or methods based on other continuous basis 
functions.

Compressed sensing using data-driven dictionaries is a 
CS-based reconstruction procedure that assures the sparsity 
requirement in CSI theory using an ideal sparse dictionary 
constructed from the same measurements by means of the 
KSVD algorithm. Additionally, it provides an iterative 
parameter-free reconstruction method. This work reports that 
CSD showed higher reconstruction quality of the diffusion 
propagator and in the extraction of propagator-based diffu-
sion indices. The effectiveness of CSD reconstruction is 
related to the quality of the data used for training. In simula-
tions, the training was done with single fibers of different 
geometrical properties and rotated across the entire PDF-
space without adding noise. This corresponds to an idealized 
complete training set for characterizing multiple fibers as a 
linear combination of single fibers. In the in vivo data, it is 
difficult to assure how rich or representative the slice used 
for training the dictionary was. The observed differences of 
propagator-based index errors between simulations and in 
vivo CSD reconstruction may be related to a lack of such 
training data richness. Another reason may be the fact that 
the training data for simulations was noise-free and the 
acquired in vivo data was not. Finally, it is difficult to estab-
lish which dictionary should be used if the specific parame-
ters of the acquisition are not known. Furthermore, the 
dictionary could change across healthy and patient popula-
tions, or across age groups Bilgic et al.19 One alternative is 
concatenating dictionaries from different acquisition schemes 
or objective-designed dictionaries. Nevertheless, there 
should not be major differences in the atoms between patients 
and healthy subjects. We expect the dictionaries to be com-
plete enough to cover both populations. The differences 
should manifest more in the quantity and type of atoms 
chosen for each.

Future work could include further propagator-based 
quality measures, such as the non-Gaussianity36 and the 
angular error in crossing angle36 to complement NMSE, PC, 
MSD, and p0; to increase the characterization of the propa-
gator reconstruction quantitatively. Finally, this comparison 
could be improved using recent advances of the corre-
sponding methods, like the Laplacian regularized MAP,24 
joint k–q reconstruction,37 or the implementation of deep 
learning for CSD like in Rasmussen et al.38

Conclusion
A comparison of different q-space reconstruction methods 
for undersampled diffusion spectrum imaging data was 
presented. The methods compared were MAP, CSI and 

CSD. The novelty of this comparison is that we included 
MAP in addition to CSD and CSI methods, to compare a 
method based on an efficient set of continuous basis func-
tions with methods which are based on compressed 
sensing. Although all reconstruction methods worked well 
finding propagator-based indices, CSD was the best 
method for reconstructing the diffusion propagator from 
undersampled data. On the other hand, MAP results were 
more accurate in propagator-based diffusion indices at 
low USF.

Appendix A. Selection of Tuning Parameter 
for Compressed Sensing
CSI is the only method from the comparison that needs to 
tune a parameter (λ); and which may vary depending on the 
acquired data. To use Eq. [A.1],

 p SFp E pp r
�( ) ( ) ( ) ( ) ,( )r r r= − +argmin 1

2 2
2

1q l Ω  [A.1]

we applied two different heuristics:

Simulations
First, we analyzed the l-curve to obtain the λ that had a 
good balance between data consistency and the sparsity 
regularization. Second, we defined a threshold based on 
the NMSE in which the reconstruction error should be 
<5% error with regard to the ground truth. λ was changed 
until this was satisfied or the maximum number of itera-
tions was exceeded. The maximum number of iterations 
was 6.

In vivo data
We repeated the heuristic from simulations on certain voxels 
along the coronal slice. Because the λ parameter was similar 
across the slice, we took the mean value from λs and applied 
it to the complete slice.

Appendix B. Evaluation of the Sampling 
Pattern
We evaluated 10 different sampling patterns with variable 
density distribution to analyze whether the behavior of the 
reconstruction quality was influenced by them. Figure 6 
shows the results of the NMSE with respect to noise for the 
different patterns. The eighth pattern is not included here 
since it is the one used in the main document. Figure 7 shows 
the differences in reconstruction errors between sampling 
patterns specified in the rows and columns, ( ) /NMSE NMSE NMSEcolumn row row- 2 2

( ) /NMSE NMSE NMSEcolumn row row- 2 2 . From the three methods, the CSD 
method shows more similar results across the different patterns 
(Fig.7c).
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Appendix C. In vivo Spatial Maps of NMSE 
for CSI, MAP and CSD Reconstructions at 
Different Undersampling Factors
Figure 8 shows the spatial maps of NMSE for the three 
reconstruction methods using USF = 4–6, and 8; as a way to 
validate how is the behavior of the reconstruction process in 
the in vivo data as the USF was increased.
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Fig. 7 NMSE difference matrix of the reconstruction methods. The colors indicate how much was the difference in reconstruction quality 
between the sampling patterns in the rows and columns of the matrix. Panel (a) corresponds to the NMSE difference matrix from CSI 
reconstruction; panel (b) from MAP reconstruction; and panel (c) from Compressed Sensing using Dictionary (CSD) reconstruction. NMSE, 
normalized mean squared error; CSI, Compressed Sensing using Identity.
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Fig. 6 (a–i) NMSE as a function of noise level s for nine different sampling patterns. NMSE, normalized mean squared error; USF, under-
sampling factor; CSI, Compressed Sensing using Identity; MAP, Mean Apparent Propagator; CSD, Compressed Sensing using Dictionary.
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Fig. 8 NMSE spatial maps for CSI, MAP 
and CSD reconstruction methods at 
undersampling factors (USF) of 4×, 5×, 
6×, and 8×. The spatial maps showed 
how CSD reconstruction preserved the 
reconstruction quality at higher USFs. 
NMSE, normalized mean squared error; 
CSI, Compressed Sensing using Identity; 
MAP, Mean Apparent Propagator; CSD, 
Compressed Sensing using Dictionary.
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