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We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding
quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound,
we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly
time-varying transformation. Furthermore, we developed and realized a new decoy state method for
RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the
help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator
mirrors, our system is rendered immune to the slow phase changes of the interferometer and the
polarization disturbances of the channel, making the procedure very robust.

T
o ensure the security of sensitive data transmission, a series of keys must be securely transmitted between
distant users, referred to here as Alice and Bob. Recently, the quantum key distribution (QKD)1,2 has become
useful for distributing secret keys securely. The use of QKD over fibers and free space has been demonstrated

many times3–5. Currently, there are even commercial QKD systems available6–8.
In most QKD systems, a shared reference frame between Alice and Bob is required. For example, the alignment

of polarization states for polarization encoding QKD or interferometric stability for phase encoding QKD plays
an important role in those systems. Although alignment operations have been shown to be feasible, they do
require a certain amount of time and cost to perform. As an alternative, Laing et al. proposed a reference-frame-
independent (RFI) protocol9 to eliminate the requirement of alignment. This protocol uses three orthogonal bases
(X, Y and Z), in which the X and Y bases are used to estimate Eve’s information, and the Z basis is used to obtain
the raw key. The states in the Z basis, such as the time-bin eigen-states, are naturally well-aligned, whereas the
states in X and Y are superpositions of the eigen-states in Z. RFI-QKD could be very useful in several scenarios,
such as earth-to-satellite QKD and path-encoded chip-to-chip QKD9. However, real-life RFI-QKD systems are
vulnerable to the photon-number-splitting (PNS) attack10–12 because a weak coherent light source is usually used
instead of a single-photon source. To our knowledge, there has not yet been an experimental demonstration of
RFI-QKD in a long-distance fiber, performed in a way that is secure against a PNS attack13.

However, in the RFI protocol, we must use a finite number of signals to estimate the optimal secure key rate. If
Alice and Bob wait for too long, our result will be bad due to misalignment of the frames. Hence, we must consider
this protocol in finite-key scenarios. A method for estimating key rate has been described in26.

In this letter, a new data analysis method for decoy states in the RFI-QKD protocol is proposed. We provide an
experimental demonstration of RFI-QKD with the decoy method19. The secure key bits can be generated by our
system with up to a 50-km quantum channel distance in finite-key scenarios.

Results
Theoretical analysis with decoy states. Review of the protocol. The encoding in RFI-QKD is very similar to the six

states protocol14. We denote that j0æ and j1æ consist of the Z basis, zj i~ 0j iz 1j ið Þ
. ffiffiffi

2
p

and

{j i~ 0j i{ 1j ið Þ
. ffiffiffi

2
p

consist of the X basis, zij i~ 0j izi 1j ið Þ
. ffiffiffi

2
p

and {ij i~ 0j i{i 1j ið Þ
. ffiffiffi

2
p

consist of

the Y basis. For simplicity, we define XA(B), YA(B) and ZA(B) as Alice(Bob)’s local measurement frames for the
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X, Y and Z bases respectively. In a QKD experiment with well-aligned
measurement frames, Alice and Bob should make sure that XA 5 XB

5 sX, YA 5 YB 5 sY, ZA 5 ZB 5 sZ, in which sX, sY, and sZ are Pauli
operators. However, meeting this requirement may not be easy. One
can imagine that j0æ and j1æ are time-bin eigen-states, and further
assume that the quantum channel or interferometer introduces an
unknown and slowly time-varying phase b between j0æ and j1æ. This
implies the following:

ZA~ZB, ð1Þ

XB~cos bXAzsin bYA, ð2Þ

YB~cos bYA{sin bXA: ð3Þ

In each round, Alice chooses one of the encoding states and sends it
to Bob through the quantum channel, and Bob measures the
incoming photon with XB, YB or ZB, chosen at random. After
running the protocol for the appropriate number of rounds N, we
can calculate the bit error rate for the ZAZB basis:

EZZ~
1{ ZAZBh i

2
: ð4Þ

Here, b should be nearly constant during the N trials. C is used to
estimate Eve’s information:

C~ XAXBh i2z XAYBh i2z YAXBh i2z YAYBh i2: ð5Þ

In a practical QKD system, usually EZZ # 15.9%, so the secret key bit
rate is R 5 1 2 h(EZZ) 2 IE, where h(x) is the Shannon entropy
function. Eve’s information IE is given by

IE~ 1{EZZð Þh 1zvmax

2

� �
{EZZh

1zf vmaxð Þ
2

� �
, ð6Þ

in which,

vmax~min
1

1{EZZ

ffiffiffiffiffiffiffiffi
C=2

p
,1

� �
, ð7Þ

f vmaxð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C
�

2{ 1{EZZð Þ2v2
max

q �
EZZ : ð8Þ

Decoy states method for the RFI-QKD system. The results mentioned
above are based on the use of a single-photon source. Practical QKD
implementations using a weak coherent light source must also use
the decoy states method to overcome a PNS attack in a long-distance
scenario15–17. However, the original decoy states method cannot be
applied to the RFI system directly. Here, we discuss how to develop
decoy states for RFI-QKD implementations.

Assume that Alice randomly modulates the weak coherent
laser pulses with three mean photon numbers m, n (m . n) and
0, which are called signal, decoy, and vacuum pulses, respectively.
For every intensity, Alice and Bob perform the RFI-QKD pro-
tocol, and then they obtain the counting rates Ym, Yn, and Y0 for
signal pulses, decoy pulses and vacuum pulses, respectively. Alice
and Bob also obtain the error rates EmZZ, Emxy and Enxy, (where x,
y 5 X, Y). For example, EmXY represents the error rate of key bits
generated in the case that Alice prepares signal pulses under the X
basis while Bob measures the incoming states with the Y basis.
According to decoy theory16, the secret key bits rate R can be
calculated as follow:

R~{Ymh EmZZ
	 


zme{myL
1 1{IEð Þ, ð9Þ

Here, yL
1 is the lower bound of the counting rate of the single-

photon pulses, and IE is Eve’s information for sifted key bits. Ym

and EmZZ are directly observed in the experiment, and yL
1 is given

by the following equation20:

yL
1~

{n2emYmzm2enYn{ m2{n2ð ÞY0

m mn{n2ð Þ : ð10Þ

The next step is to calculate IE according to (6) or its upper
bound. The upper bound of IE is related to cL

1 , which is defined
as the lower bound of C for the single-photon pulses. The upper
bound of IE also depends on the upper bound of the error rate of
the key bits generated by single-photon pulses under the ZZ basis
eU

1zz . According to decoy theory, the following equality applies:

eU
1ZZ~

EmZZYm{
1
2

e{mY0

me{myL
1

: ð11Þ

The challenge is to estimate cL
1 by using Emxy and Enxy. For sim-

plicity, without loss of generality, we assume that Emxy $ 1/2 and
Enxy $ 1/2 for all x, y (if not, Bob can simply flip his bits cor-
responding to the relevant basis x, y). There are two ways to
calculate cL

1 :

1. Using the same method as in the original decoy states, as follows:

EmxyYm~
1
2

e{mY0ze1xyme{my1z
X
n§2

enxy
mne{m

n!
yn, ð12Þ

Here, enxy (x, y 5 X, Y) denotes the error rate for the key bits
generated by n photon pulses under the x, y basis, yn represents
the counting rate of n photon states. Assuming that enxy 5 1(n $

2), we obtain that the lower bound of e1xy

eL
1xy~1{

1{Emxy
	 


Ym{
1
2

e{mY0

me{myL
1

: ð13Þ

Next, cL
1 is given by cL

1~azb, where, a~ 1{2Max 1=ðð
2,eL

1XXÞÞ
2
z 1{2Max 1=2,eL

1XY

	 
	 
2
, b~ 1{2Max 1=2,eL

1YX

	 
	 
2

z 1{2Max 1=2,eL
1YY

	 
	 
2
. Below, we describe the second way to

calculate cL
1 .

2. We note that

EmXXYm~
1
2

e{mY0ze1XXme{my1z
X
n§2

enXX
mne{m

n!
yn, ð14Þ

and,

EmXY Ym~
1
2

e{mY0ze1XY me{my1z
X
n§2

enXY
mne{m

n!
yn, ð15Þ

However, enXX and enXY are not indepdendent. We assume
that Bob obtains some arbitrary two-dimensional density
matrices r1 and r2 after Alice prepares and sends j1æ and
j2æ, respectively, through the quantum channel. As described
in Ref. 18, Alice and Bob’s raw key bits are at first distributed
in an unbiased fashion (if not, Alice and Bob can perform
some classical randomization operations). Thus, it is not
restrictive to assume that Eve symmetrizes Alice and Bob’s
raw key bits, because Eve does not lose any information in
this step. Specifically, she can flip Alice and Bob’s encoding
scheme with a probability of one-half, which is represented as
follows:

enXX~
{ rz

�� ��{� 
z z r{j jzh i
2

: ð16Þ

Note that the symmetrization step can also be applied by
Alice and Bob in our security analysis. With the help of the
Cauchy-Schwarz inequality, we can reformulate the equation:
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enXY ~
{ih jrz {ij iz zih jr{ zij i

2

~
1{Im zh jrz {j i

	 

{Im {h jr{ zj ið Þ

2

ƒ

1
2
z

zh jrz {j i
�� ��z {h jr{ zj ij j

2

~
1
2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zh jrz {j i
�� �� {h jrz zj i

�� ��q
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zh jr{ {j ij j {h jr{ zj ij j

p
2

ƒ

1
2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zh jrz zj i
�� �� {h jrz {j i

�� ��q
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zh jr{ zj ij j {h jr{ {j ij j

p
2

ƒ

1
2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enXX 1{enXXð Þ

p
,

ð17Þ

Here, Im(x) represents the imaginary part of a real number x.
Therefore, we obtain the following:

enXXzenXYƒ

1
2
zenXXz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enXX 1{enXXð Þ

p
ƒ1:70711:

ð18Þ

By adding equations (14) and (15) and applying the above
inequality, we find that

e1XXze1XY §1:70711{
1:70711{EmXX{EmXY

	 

Ym{0:70711e{mY0

me{myL
1

¼D a: ð19Þ

In the same manner, we find that

e1YXze1YY §1:70711{
1:70711{EmYX{EmYY

	 

Ym{0:70711e{mY0

me{myL
1

¼D b ð20Þ

With these equations, it is easy to show that cL
1~a0zb0, where, a9

5 2(1 2 a)2 and b9 5 2(1 2 b)2.

Thus, the optimal lower bound of c1 is given by:

cL
1~Max a,a0f gzMax b,b0f g: ð21Þ

This allows us to decide how to evaluate the secure key rate R through
the decoy states method: 1. With counting rates Ym, Yn and Y0, one
can obtain yL

1 by using inequality (10). 2. With yL
1 and error rate EmZZ,

eU
1ZZ is estimated by inequality (11). 3. With the error rates Emxy (x, y

5 X, Y) and counting rates yL
1 , Y0, we obtain cL

1 by using inequality21.
4. We calculate the upper-bound of IE based on eU

1ZZ and cL
1 using the

following equations:

IE~ 1{eU
1ZZ

	 

h

1zvmax

2

� �
{eU

1ZZh
1zf vmaxð Þ

2

� �
, ð22Þ

in which,

nmax~min
1

1{eU
1ZZ

ffiffiffiffiffiffiffiffiffi
cL

1=2
q

,1

� �
, ð23Þ

f vmaxð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cL

1=2{ 1{eU
1ZZ

	 
2
v2

max

q �
eU

1ZZ: ð24Þ

5. Finally, the secure key rate R can be found using equation (9). This
method is applicable to the asymptotic situation. For the finite-key
case, we can see that EmZZ and Emxy must be modified before we
calculate IE.

Finite-key bound. We use the method for computing the finite-
key23–25 RIF-QKD bound described in Ref. 26. pZ is the probability
that Alice and Bob choose the Z basis. We assume that the other two
bases are chosen with equal probability pX 5 pY 5 p. As shown
previously (5), there are four measurements needed to estimate C,
they are EmXY (x, y 5 X, Y). For simplicity, and without loss of

generality, we assume Emxy $ 1/2 and Emxy $ 1/2 for all x, y (if not,
Bob can simply flip his bits corresponding to the relevant basis x, y).

Experimentally, each value of Emxy is estimated using m 5 Np2

signals. The raw key consists of n~Np2
Z signals. As shown prev-

iously26, under the finite-key scenario, we can correct EmZZ and
Emxy as E0mZZ~EmZZzd nð Þ and E0mxy~max 1=2,Emxy{d mð Þ

�
2

� �
,

where

d kð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1=ePEð Þz2 ln kz1ð Þ

2k

r
, ð25Þ

and max{a, b} yields the lesser value of a or b.
The key generation rate per pulse against collective attacks is given

by26:

rN,col~{Ymh E0mZZ

� �
zme{myL

1 1{IEð Þ

{
n
N

1
n

log
2

eEC
{

2
n

log
1

ePA
{7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2=�eð Þ

n

r ! ð26Þ

In this article, we set ePE~ePA~eEC~�e~10{5. To obtain the correct
IE in the finite-key case, we simply use the method described in the
previous section, except that we must adopt E0mZZ , E0mxy instead of
EmZZ, Emxy as the effective parameters to calculate IE according to22.
Finally, the secure key rate rN,col for the finite-key case can be esti-
mated by26.

Experimental setup and results. The phase coding method was used
in our system, and the experimental setup is shown in Fig. 1.

The light pulses generated by Alice’s coherent light source are
randomly modulated into three intensities of decoy states using an
intensity modulator (IM). Then, the quantum states of photons are
modulated by a Michelson interferometer with a Faraday rotator
mirror (FMI) according to the coding information. Light pulses are
attenuated to the single-photon level by a precisely calibrated attenu-
ator before they enter the quantum channel. An SMF-28 single-mode
fiber with an attenuation of 0.20 dB/km is used as a quantum channel
between Alice and Bob. To demodulate the information, Bob needs
to make measurements of the arriving photons on a randomly and
independently selected basis, in which the basis definitions of X, Y,
and Z are the same as those for Alice. There are three possible time-
bins of the photons arriving at Bob’s single photon detectors (SPD)

Figure 1 | The experimental setup of the reference-frame-independent
quantum key distribution system with decoy states. Channel attenuation

is 0.20 dB/km. The arm-length difference of the FMI is 2 m.

(17)

(19)

(20)
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because there are two FMIs in the system. The SPDs are operating in
Geige mode, and their effective gating windows are precisely aligned
at the second time-bin.

The FMI used in this system can self-compensate for polarization
fluctuations caused by disturbances in the quantum channel27. The
quantum states are randomly modulated with the coding of paths
and relative phases of photons. In each arm of the FMI, a variable
optical attenuator (VOA) acts as the on-off switch to restrain the
path of photons, and the relative phases of photons can be controlled
by the phase modulator (PM) of the FMI.

In this system, the X, Y and Z bases are chosen to be

0j izei0 1j i
		 
. ffiffiffi

2
p

, 0j izeip 1j i
	 
. ffiffiffi

2
p Þ, 0j ize

ip
2 1j i

�� �. ffiffiffi
2
p

,

0j ize
i3p
2 1j i

� �. ffiffiffi
2
p Þ and (j0æ, j1æ). The coding method for these is

as follows: 1) If basis Z is chosen, only one of the two VOAs in Alice’s
FMI is switched on to allow photons to pass through. Specifically, the
time-bin eigen-state j0æ or j1æ will be determined when Alice switches
on the long or the short arm of her FMI, respectively. In this circum-
stance, Bob can generate his key as long as the detector clicks. That is
the code for Alice must be 0 when Bob’s code is 1, and vice versa. 2) If
basis X or Y is chosen, the two arms of Alice’s FMI will be switched on
simultaneously, and photons will pass through the two arms with
equal probability. The relative phases of the photons can be values
from this set: {0, p/2, p, 3p/2}. The values {0, p} correspond to the X
basis, and {p/2, 3p/2} correspond to the Y basis.

In Fig. 2, the variation of b is random and relatively slow. Every b
corresponds to a group of QBER values: Emxx, Emxy, Emyx and Emyy. We

Figure 2 | Three orthogonal states in the phase coding methods. (a) For

the X (yellow arrows) and Y (blue arrows) bases, we use | 0æ 1 e(iw) | 1æ to

express the states. | 0æ and | 1æ represent the paths that the pulses travel. | 0æ
is the short arm, | 1æ is the long arm. w is the phase information (b) for the Z

(red arrows) basis, which is expressed as | 0æ or | 1æ. b in our system is a

time-varying phase between Alice and Bob.

Figure 3 | Distribution of all QBER values in our experiment. QBER

values are distributed between 0 and 1. The count of QBER n (0 , n # 1)

represents the summation of values ranging from n 2 0.005 to n.
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lg
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(b)

(a)

Figure 4 | Calculation (line) and measurement (symbols) of secure key
generation rate per pulse with decoy states as a function of channel
length. (a) and (b) both use data collected in 50 seconds to calculate the C

value. At 0 km, n < m < 142, 937, Emzz < 0.0035. (a) Without finite-key

analysis, (b) With finite-key analysis.
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Figure 5 | Calculation (line) and measurement (symbols) of key
generation rate per pulse with decoy states for three different numbers of
signals. We collected data in different stationary time segments to perform

calculations with the same system frequency (from top to bottom: (a) 200

seconds, (b) 50 seconds and (c) 5 seconds).
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performed counts on 10,000 groups of data, and then plotted the
distribution of QBER values in Figure 3. This figure reveals the ran-
dom variation in b between Alice and Bob, and it also shows our
experimental data, measured for the case in which b is universally
randomly varying.

Fig. 4(a) shows the key generation rate per pulse only for decoy
states and compares the rates with those of Fig. 4(b) by using finite-
key analysis. In finite-key analysis, being able to calculate the secret
key rate by our protocol depends strongly on the number of quantum
signals sent in the stationary segment. Hence, the key rate for three
different stationary segments is shown in Fig. 5. In the 5-s case, the
number of signals is approximately 15,000 at 0 km, and because this
number is small, the finite key effect is strong. Using the same experi-
mental parameters and estimation techniques, the key generation
rate of our scheme is similar to the expected value under the RIF
scheme. In our experiment, EZZ was mainly derived from the dark
counts of detectors(e.g. approximately 0.0035 at 0 km and 0.016 at
50 km). More detailed data are shown in Table 1 and Table 2.

Discussion
In summary, we have experimentally demonstrated a phase coding
RFI-QKD system that uses the decoy states method. The system can
generate secure key bits via an 80-km optical fiber, and it can effec-
tively resist PNS attacks. In addition, when we consider the finite-key
bound, we can obtain secure key bits via a 50-km optical fiber. Our
system is intrinsically stable in a slowly varying environment without
active alignment, and it benefits from the polarization stability of the
FMI. With initiatives for practical QKD underway, we believe that
this experiment is timely and that it will bring such QKD systems
into practical use.

Methods
Device description and experimental setup. In this experiment, we use a homemade
laser that can emit 1449.85 nm weak coherent pulses with a 700 ps pulse width and a
0.052 nm line width. The FMIs in both Alice and Bob’s sites have the same arm-
length difference 2 m, to ensure that the time slots of the pulses after the FMIs can be
separated completely. The circulator of Bob’s system cannot only be used to regulate
the light path coupled to one of two SPDs, but it can also be used to resist Trojan horse
attacks. The intensities of the signal, decoy, and vacuum states are m 5 0.6, n 5 0.2 and
0, respectively, and the pulse number ratio is 65251. The single-photon avalanche
detectors in our experiment are the id200 model of id Quantique. The dark count
probabilities of the detectors, after-pulse probability and detection efficiency, are
approximately 4 3 1025/gate, 0.358% and 11%, respectively.

We use a personal computer (PC) to control Alice and Bob simultaneously. The
entire system is synchronized at 1 MHz. The major limitation comes from the rising
and falling times of the commercially available VOAs, which take approximately
250 nm to switch from maximum to minimum attenuation. The master clock of the
system is generated by a PCI-6602 Data Acquisition (DAQ) card (National
Instruments) at Alice’s site, and it is distributed to Bob through a DG535 delayer
(Stanford Research Systems) for accurate synchronization. A PCI-6602 DAQ Card is
used to trigger the laser and another DAQ Card USB-6353. The random numbers
used to select the basis and states are generated by a software pseudo-random number
generator and then transformed to a hardware control signal by a USB-6353 card. The

USB-6353 card also records the single-photon detection events from the SPDs, and
the collected raw data are transferred to the PC for basis sifting and post processing.
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