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Abstract

Background: Neurodevelopmental disabilities persist in survivors of neonatal hypoxic-ischemic encephalopathy (HIE)
despite treatment with therapeutic hypothermia. Cerebrovascular autoregulation, the mechanism that maintains
cerebral perfusion during changes in blood pressure, may influence outcomes. Our objective was to describe the
relationship between acute autoregulatory vasoreactivity during treatment and neurodevelopmental outcomes at
2 years of age.

Methods: In a pilot study of 28 neonates with HIE, we measured cerebral autoregulatory vasoreactivity with the
hemoglobin volume index (HVx) during therapeutic hypothermia, rewarming, and the first 6 h of normothermia. The
HVx, which is derived from near-infrared spectroscopy, was used to identify the individual optimal mean arterial blood
pressure (MAPOPT) at which autoregulatory vasoreactivity is greatest. Cognitive and motor neurodevelopmental
evaluations were completed in 19 children at 21–32 months of age. MAPOPT, blood pressure in relation to
MAPOPT, blood pressure below gestational age + 5 (ga + 5), and regional cerebral oximetry (rSO2) were compared to
the neurodevelopmental outcomes.

Results: Nineteen children who had HIE and were treated with therapeutic hypothermia performed in the average
range on cognitive and motor evaluations at 21–32 months of age, although the mean performance was lower than
that of published normative samples. Children with impairments at the 2-year evaluation had higher MAPOPT values,
spent more time with blood pressure below MAPOPT, and had greater blood pressure deviation below MAPOPT during
rewarming in the neonatal period than those without impairments. Greater blood pressure deviation above MAPOPT
during rewarming was associated with less disability and higher cognitive scores. No association was observed
between rSO2 or blood pressure below ga + 5 and neurodevelopmental outcomes.
(Continued on next page)
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Conclusion: In this pilot cohort, motor and cognitive impairments at 21–32 months of age were associated with
greater blood pressure deviation below MAPOPT during rewarming following therapeutic hypothermia, but not with
rSO2 or blood pressure below ga + 5. This suggests that identifying individual neonates’ MAPOPT is superior to using
hemodynamic goals based on gestational age or rSO2 in the acute management of neonatal HIE.

Keywords: Autoregulation, NIRS, Hypoxic-Ischemic Encephalopathy, Therapeutic Hypothermia, Neurodevelopmental
Outcomes

Background
Neonatal hypoxic-ischemic encephalopathy (HIE) affects
approximately 3 in 1000 births and is the most common
cause of perinatal brain injury in full-term neonates
[1, 2]. Long-term severe sequelae of neonatal HIE in-
clude intellectual disability and cerebral palsy. In chil-
dren who received therapeutic hypothermia for HIE,
the incidence of cerebral palsy is approximately 17 %
and the incidence of IQ < 70 is 27 % [3]. Based on these
incidence rates, in the United States, the financial burden
of HIE-induced intellectual disabilities exceeds $3.4 billion
per year, and the costs of HIE-induced cerebral palsy ex-
ceed $1.9 billion per year [3–5]. Multicenter, randomized
controlled trials of therapeutic hypothermia for neonatal
HIE demonstrate incomplete neuroprotection. In the
Total Body Hypothermia for Neonatal Encephalopathy
Trial, 55 % of HIE survivors who received hypothermia
had persistent neurologic abnormalities at age 6–7
years, including 21 % with cerebral palsy and 22 %
with moderate or severe disabilities [6]. The National
Institute of Child Health and Human Development
(NICHD) Neonatal Research Network trial of thera-
peutic hypothermia in HIE found that 35 % of survi-
vors who received hypothermia had moderate or
severe disabilities at 6–7 years of age [3]. Therefore,
additional modifiable factors and potential adjuvant
therapies to hypothermia must be identified to im-
prove neurologic outcomes.
Dysregulated cerebral blood flow may be a key compo-

nent in secondary neurologic injury in HIE [7]. Cerebro-
vascular autoregulation maintains relatively constant
cerebral blood flow across changes in perfusion pressure.
This physiologic mechanism functions within a specific
range of blood pressure, and the mean arterial blood
pressure (MAP) with optimal autoregulatory function is
termed the optimal MAP (MAPOPT). The hemoglobin
volume index (HVx) monitors autoregulatory vasoreac-
tivity by correlating changes in arterial blood pressure to
changes in relative total tissue hemoglobin (rTHb), a
surrogate measure of cerebral blood volume obtained by
near-infrared spectroscopy (NIRS). HVx is based on the
premise that autoregulatory vasodilation and vasocon-
striction induce changes in cerebral blood volume that
are proportional to changes in rTHb [8]. HVx can

identify MAPOPT in neonates with HIE [9, 10]. We pre-
viously reported that blood pressure deviation below
MAPOPT during rewarming is associated with greater
brain injury on MRI in pilot studies of autoregulation
during HIE [9, 10]. However, whether blood pressure
autoregulation during therapeutic hypothermia and
rewarming in the neonatal period is associated with later
neurodevelopmental outcomes remains unknown. Neu-
roprotective blood pressure ranges for HIE are poorly
defined, and many clinicians use regional cerebral ox-
imetry (rSO2) or maintain blood pressures at gesta-
tional age in weeks +5 mmHg (ga + 5) to help guide
hemodynamic goals in neonates [11].
The goal of this observational pilot study was to de-

scribe the relationship between blood pressure autoregu-
lation during therapeutic hypothermia for treatment of
neonatal HIE and cognitive and motor neurodevelop-
mental outcomes at approximately 2 years of age. We
hypothesized that 1) greater blood pressure deviation
below MAPOPT would be associated with neurodeve-
lopmental disabilities; 2) the rSO2 would not be associ-
ated with disability; and 3) greater time spent with
blood pressure below the ga + 5 would not be associ-
ated with disability. We tested each of these hypoth-
eses by comparing autoregulation measurements made
during hypothermia, rewarming, and the first 6 h of
normothermia to neurodevelopmental outcomes of chil-
dren 2 years later.

Methods
This study was approved by the Johns Hopkins University
(JHU, Baltimore, MD) Institutional Review Board.
Written, informed consent for HVx monitoring was
obtained from the neonates’ parents upon admission
to the JHU neonatal intensive care unit (NICU) and
again before the 2-year neurodevelopmental follow-up
evaluations, which took place at the Kennedy Krieger
Institute (KKI, Baltimore, MD). All neonates who were
admitted to the NICU between September 2010 and
October 2012 were screened for study eligibility, which
was based on the diagnosis of HIE according to criteria
used by the NICHD Neonatal Research Network’s clin-
ical trial of hypothermia in neonatal HIE [12]. Briefly,
these infants were diagnosed with moderate to severe
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HIE based on clinical exam and blood gas from the um-
bilical cord or first hour of life with pH <7.15 or a base
deficit >10 mmol/L. If a blood gas measurement was
not available, 10-min Apgar score <5 or assisted ventila-
tion for ≥10 min after birth, an acute perinatal event,
and moderate to severe encephalopathy were used to
diagnose HIE. Additional eligibility criteria for this
pilot study included gestational age ≥35 weeks, birth
weight ≥1800 g, initiation of whole-body cooling within
6 h of birth, presence of an arterial blood pressure can-
nula, and a parent who spoke English as the primary lan-
guage. Neonates who did not have an arterial blood
pressure cannula, who had a coagulopathy with active
bleeding, or who had congenital anomalies or other
diagnoses that could make cooling unsafe were not
eligible for the study. Moreover, children who were
involved in the foster care system at the time of neu-
rodevelopmental follow-up were ineligible for the
study. Seventeen of the children in the current study
were part of the cohort in which we previously re-
ported an association between blood pressure autore-
gulatory vasoreactivity measured by HVx and brain
injuries on MRI [9].

Clinical care in the NICU
All clinical care was determined by the treating
clinicians and by NICU protocol. Neonates received
whole-body hypothermia with a cooling blanket (Mul-T-
Blanket Hyper/Hypothermia Blanket and Mul-T-Pad
Temperature Therapy Pad; Gaymar Medi-Therm III,
Gaymar Industries, Orchard Park, NY) to a goal rectal
temperature of 33.5 ± 0.5 °C for 72 h. They were
rewarmed over 6 h (goal 0.5 °C/h) to normothermia
(36.5 °C). The clinicians determined the hemodynamic
goals, decided when to implement vasoactive or ino-
tropic medications, and selected the sedation regimens.
When vasoactive medications were needed, dopamine
was initiated followed by dobutamine, epinephrine, or
milrinone infusions as necessary. Morphine, fentanyl, or
hydromorphone boluses and infusions were used for
sedation as necessary. Full montage electroencephalo-
grams (EEGs) were conducted during hypothermia and
after rewarming in addition to continuous amplitude-
integrated EEG monitoring (Brainz BRM3 Monitor or
CFM Olympic Brainz Monitor, Natus Medical Inc., San
Carlos, CA) during hypothermia, rewarming, and the
first 6 h of normothermia. Phenobarbital was adminis-
tered to treat electrographic or clinical seizures; there-
after, levetiracetam, fosphenytoin, or topiramate was
used for persistent seizures. Clinicians could view the
rSO2, as measured by the NIRS, and blood pressure, as
measured by continuous cardio-respiratory monitors,
but they were blinded to HVx. Respiratory support
parameters, including nasal cannula, high flow nasal

cannula, or ventilator support with endotracheal tube
were recorded during the rewarming period. Clinical
histories and clinical variables were obtained by chart
reviews.

Autoregulation monitoring
Adhesive, neonatal cerebral oximetry probes were placed
bilaterally on the neonates’ foreheads and connected
to an INVOS 5100 NIRS machine (INVOS; Covidien,
Boulder, CO) according to manufacturer guidelines.
We synchronously sampled the NIRS signals and arterial
blood pressure from the patient hemodynamic monitor at
100 Hz and processed the data with ICM+ software
(Cambridge Enterprises, Cambridge, UK) using a bed-
side computer. The ICM+ software calculated HVx
using a continuous, moving correlation coefficient be-
tween MAP and the rTHb (a surrogate measure of
cerebral blood volume obtained by NIRS) after filter-
ing out high-frequency waves from pulse and respir-
ation [8, 13]. Each calculation of HVx incorporated
consecutive, paired, 10-s averaged values from 300-s
duration, thereby utilizing 30 data points for each
HVx calculation. HVx is a continuous variable that
ranges from –1 to +1. Negative or near-zero HVx
represents functional vasoreactivity (and therefore in-
tact autoregulation) because MAP and rTHb either
negatively correlate or are not correlated. When blood
pressure decreases and vasoreactivity becomes impaired,
HVx becomes positive and approaches +1 because MAP
and rTHb positively correlate. We manually removed arti-
facts in the NIRS and MAP signals (e.g., arterial line
flushes), and we excluded data that comprised <1 % of the
recording period as an additional measure to remove
artifacts.
The right and left HVx values were averaged and

sorted into 5-mmHg bins of MAP to generate bar
graphs. (None of the neonates had unilateral intracranial
lesions on follow-up MRI.) We identified the MAPOPT

in each time period (hypothermia, rewarming, first 6 h
of normothermia) as the bin that had the most negative
HVx when the bar graph exhibited an overall trend of
increasing HVx values as MAP deviated from this nadir
(Fig. 1a and b). When a nadir in HVx could not be iden-
tified, the neonate was coded as having an unidentifiable
MAPOPT (Fig. 1c and d). These values were identified by
an investigator who was blinded to the neurodevelop-
mental outcome (JKL).
Blood pressure data were analyzed by three methods

within each of the three time periods. First, we calcu-
lated the amount of time the neonate spent with blood
pressure below, at, or above MAPOPT and analyzed this
as a percentage of the autoregulation monitoring period.
Second, we determined the maximal blood pressure
deviation below or above MAPOPT [9, 10]. Third, we
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calculated the area under the curve (AUC) to combine
the extent of blood pressure deviation below MAPOPT

and the amount of time spent with blood pressure below
MAPOPT. We analyzed time as the absolute duration of
autoregulation monitoring to determine the AUC. The
AUC (min•mmHg/h) was calculated as time (minutes)
spent with blood pressure below MAPOPT and blood
pressure deviation (mmHg) below MAPOPT, and then
normalized for the duration of monitoring (hours) [10].
In addition, we calculated the percentage of time that
neonates spent with blood pressure below the ga + 5 in
each period. Finally, we analyzed the rSO2 using the
mean between right and left cerebral hemispheres.

Neurodevelopmental evaluation
When the children were 21–32 months of age, they were
evaluated for neurodevelopmental function in a single
visit at KKI during a routinely scheduled clinical visit or
a one-time research visit. Clinical visits were part of rou-
tine and regularly scheduled care in the KKI NICU
follow-up clinic and included a neurologic exam, admin-
istration of the Capute Scales [14, 15] completed by or
under the supervision of a developmental pediatrician or
neonatologist, and a motor evaluation by a physical ther-
apist. The Capute Scales are designed to assess language
and visual–motor streams of development in children
with a cognitive age ≤36 months. At research visits, the
children participated in a battery that included the

Mullen Early Scales of Development and the Gross
Motor Function Measure (GMFM) administered by a
neuropsychologist or a neurodevelopmental pediatrician.
The Mullen is a comprehensive standardized measure of
visual perception, language, and motor skill acquisition
in children from birth to 68 months of age [16]. The
GMFM is a detailed and quantitative measure of gross
motor development that is frequently used to evaluate
motor skill acquisition in individuals with cerebral palsy
[17]. Neurodevelopmental outcomes were classified as
impaired based on a Mullen Early Learning Composite
Standard Score or Capute Full Scale Developmental
Quotient <85 and a Gross Motor Function Classification
(GMFC) of II-V based on GMFM performance or
clinical neurologic and motor exam [18, 19]. This
classification translates functionally to below average
cognitive ability and the ability to walk with limita-
tions. In contrast, neurodevelopmental outcomes were
classified as unimpaired based on a Mullen Early
Learning Composite Standard Score or Capute Full
Scale Developmental Quotient ≥ 85 and a GMFC of I
based on GMFM performance or clinical neurologic
and motor exam. This classification translates func-
tionally to average cognitive ability and the ability to
walk without limitations. Investigators who conducted
or supervised the neurodevelopmental examinations
(VJB, GG, EC) were blinded to the blood pressure and
autoregulation data.

Fig. 1 Representative hemoglobin volume index (HVx) bar graphs from individual neonates illustrate identification of the optimal mean arterial
blood pressure (MAPOPT) at the nadir of HVx. MAPOPT values were 45 mmHg for patient 1 (a) and 50 mmHg for patient 2 (b). Patients 5 (c) and
25 (d) did not have a nadir in HVx and were therefore coded as having an unidentifiable MAPOPT
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Statistical analysis
Data were analyzed with SigmaPlot (v11.0, Systat Software
Inc., Chicago, IL) and SAS v9.2 (SAS Institute Inc.,
Cary, NC). Graphs were generated with GraphPad
Prism (v5.03, GraphPad Software Inc., La Jolla, CA).
We present the data as means with standard devia-
tions (SD) or medians with interquartile ranges (IQR)
when appropriate. Differences were considered signifi-
cant at p < 0.05. Neurodevelopmental outcomes were
dichotomized into impaired or unimpaired, and the
Mullen Early Learning Composite scores were analyzed as
a continuous variable. MAPOPT values and the percentage
of time spent with blood pressure below MAPOPT during
each period (hypothermia, rewarming, and the first 6 h of
normothermia) were compared by using Wilcoxon signed
rank tests. Blood pressure, MAPOPT, and rSO2 data with
respect to neurodevelopmental outcomes were tested sep-
arately within each time period. MAPOPT; the percentage
of time spent with blood pressure below, at, or above
MAPOPT; the maximal blood pressure deviation below or
above MAPOPT; AUC; the percentage of time spent with
blood pressure below ga + 5; and rSO2 were compared be-
tween children with and without impairments by using
Mann Whitney rank sum tests. MAPOPT, blood pressure
data in relation to MAPOPT and ga + 5, and rSO2 were
compared to Mullen scores by using Spearman correla-
tions. Seizure activity and the receipt of a vasopressor
(dopamine, dobutamine, or epinephrine) were compared
between children with and without impairments by using
Fisher exact tests.

Results
Twenty-eight neonates with HIE received therapeutic
hypothermia and had HVx monitoring. Nineteen of
those children participated in neurodevelopmental
follow-up examinations at 21–32 months of age.
Therefore, data are presented for 19 children (10 girls, 9
boys). Their mean gestational age was 38.9 weeks (n = 19;
SD = 1.5). During the autoregulation monitoring period,
11 (58 %) neonates had clinical or electrographic seizures
that were treated with phenobarbital. Four of these neo-
nates received additional antiepileptic therapy, including
levetiracetam, fosphenytoin, lorazepam, or topiramate for
persistent seizures. Thirteen (68 %) neonates received va-
sopressors during HVx monitoring, including 13 with
dopamine, four with dobutamine, and one with epineph-
rine. Morphine infusions were administered to four neo-
nates, and a hydromorphone infusion was given to one
neonate. Fourteen neonates were intubated for synchro-
nized intermitted mandatory ventilation (13) or high fre-
quency jet ventilation (1). Seven neonates received nasal
continuous positive airway pressure or high-flow nasal
cannula respiratory support. During the rewarming
period, four intubated neonates had adjustments to their

ventilator respiratory rate (range of increase in respiratory
rate: 5–14 breaths/min) or peak inspiratory pressure
(range of change in peak inspiratory pressure: 1–6
cmH2O). One neonate had inhaled nitric oxide initiated
during rewarming. Nine neonates had adjustments made
in the inhaled oxygen concentration delivered through
nasal cannula (2), high flow nasal cannula (1), or endo-
tracheal tube (6; range of change in inhaled oxygen con-
centration: 5–55 %). No patients received extracorporeal
membrane oxygenation (ECMO). Clinical data upon ad-
mission to the NICU and physiologic and laboratory data
are presented in Tables 1 and 2.

Neurodevelopmental outcomes
Nineteen children had neurodevelopmental outcomes
evaluated at a median age of 25 months (range, 21–32
months). Fifteen children were evaluated in research
visits. Because one of those participants did not
complete the GMFM, the GMFC level was determined
by using the Mullen Gross Motor performance and clin-
ical judgment. Four children had clinical evaluations.
Children who participated in the full research battery
had a mean performance on the Mullen Early Learning
Composite within the normal range (n = 15; mean = 88.87;
SD = 18.52). GMFM scores (n = 14; mean = 84.23; SD =
22.57) were similar to those of 2–4-year-old children with
cerebral palsy who can walk without assistance (n = 25;
mean = 81.2; SD = 13.5) [18]. The children who had clin-
ical visits also had average mean performance (n = 4;
mean = 86.00; SD = 51.61). Overall, 11 (58 %) children had
typical performance or mild delays in neurodevelopment
based on cognitive performance in the average range and
the ability to walk without limitations. These 11 children
were coded as having an unimpaired neurodevelopmental
outcome for the analysis. Eight (42 %) children had more
significant delays based on below-average cognitive per-
formance or the inability to walk without limitations.
These eight children were coded as having an impaired
neurodevelopmental outcome for the analysis. Seizures or

Table 1 Clinical characteristics of neonates with hypoxic-ischemic
encephalopathy upon admission to the neonatal intensive
care unit

Parameter N Median (IQR)

Apgar at 1 min 19 1 (1, 2)

Apgar at 5 min 19 3 (2, 5)

Apgar at 10 min 19 5 (3, 6)

Cord blood pH 15 7.00 (6.91, 7.05)

Cord blood base deficit 15 −11 (–10,–15)

Arterial pH within 1 h of life 19 7.07 (6.94, 7.24)

Base deficit within 1 h of life 19 −17 (–13,–22)

IQR interquartile range
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the receipt of a vasopressor were not associated with hav-
ing an impaired neurodevelopmental outcome (p = 1.000
for seizures; p = 1.000 for vasopressors).

Autoregulatory vasoreactivity
All 19 neonates with measured neurodevelopmental out-
comes were monitored during therapeutic hypothermia.
HVx monitoring was terminated before rewarming in
one neonate because of technical complications with
monitoring and in a second who was transferred to the
pediatric ICU for potential ECMO (ECMO was not
initiated). One neonate did not receive HVx monitoring
during normothermia because the arterial blood pres-
sure cannula was removed. MAPOPT was identified in
15/19 (79 %) neonates during hypothermia, 17/17
(100 %) during rewarming, and 14/16 (88 %) during the
first 6 h of normothermia. HVx was monitored for a me-
dian of 30.5 h (IQR, 22.4–46.5) during hypothermia,
6.5 h (IQR, 5–8) during rewarming, and 6 h (IQR, 6–6)
during normothermia. MAPOPT ranged from 35 to
65 mmHg, with the majority of MAPOPT values between
45 and 55 mmHg. Values for MAPOPT were similar
during hypothermia, rewarming, and the first 6 h of nor-
mothermia (p = 0.831 for hypothermia vs. rewarming;
p = 0.313 for hypothermia vs. normothermia; and p = 0.685
for rewarming vs. normothermia; Fig. 2).
The MAP ranged from 30 to 70 mmHg but remained

between 40 and 60 mmHg most of the time (Fig. 3). The
percentage of time that neonates spent with blood pres-
sure below MAPOPT was similar between time periods.
More specifically, neonates spent a median of 6 % (IQR,
1–25) of the hypothermia period and 41 % (IQR, 8–59) of
the rewarming period with blood pressure below MAPOPT

(p = 0.119). Neonates spent a median of 31 % (IQR, 0–
87 %) of the normothermia period with blood pressure
below MAPOPT (p = 0.083 for hypothermia vs. normother-
mia; p = 0.903 for rewarming vs. normothermia).
Values for MAPOPT during rewarming were significantly

higher among children who developed impairments

(n = 8) than in those who were unimpaired (n = 9; p =
0.023; Fig. 4a). MAPOPT values were similar between
children with impairments (n = 5) and those without
impairments during hypothermia (n = 10; p = 0.949)
and during normothermia (n = 7 children with impair-
ments; n = 7 children without impairments; p = 0.383).
Neurodevelopmental outcome of children at approxi-

mately 2 years was associated with a longer duration of
blood pressure below the individual neonate's MAPOPT

during the neonatal rewarming period. Children who de-
veloped impairments (n = 8) spent a greater percentage
of time with blood pressure below MAPOPT than did
children without impairments (n = 9; p = 0.048; Fig. 4b).
Additionally, children with impairments (n = 8) had
greater maximal blood pressure deviation below MAPOPT

(p = 0.019; Fig. 4c) and greater AUC below MAPOPT

(p = 0.039; Fig. 4d) during rewarming than did those
without impairments (n = 9). No associations were
identified between impairment at 2 years and the percent-
age of time spent with blood pressure below MAPOPT,

maximal blood pressure deviation below MAPOPT, or
AUC during hypothermia and normothermia (p > 0.10 for
all comparisons; Additional file 1: Table S1).
Better neurodevelopmental outcome was associated

with greater time spent with blood pressure above
MAPOPT and greater blood pressure deviation above
MAPOPT during rewarming. Children who developed

Table 2 Physiologic and laboratory data during autoregulation
monitoring

Parameter Hypothermia
(n = 19)

Rewarming
(n = 17)

Normothermia
(n = 16)

Temperature (°C) 33.5 (0.5) 35.1 (0.9) 36.8 (0.3)

Heart rate (bpm) 110 (17) 117 (17) 133 (18)

pHa 7.38 (0.05) 7.36 (0.07) 7.36 (0.06)

PaO2
a 130 (72) 100 (42) 121 (50)

PaCO2
a 43 (8) 50 (10) 48 (6)

Hemoglobin (g/dL) 15.7 (2.1) 14.0 (0.5) 13.5 (0.7)

All values are presented as mean (SD)
Bpm beats per minute
aArterial blood gas

Fig. 2 Optimal mean arterial blood pressure (MAP) values were
similar during hypothermia (hypoT; n = 15), rewarming (rewarm;
n = 17), and the first 6 h of normothermia (normoT; n = 14). p = 0.831
for hypothermia vs. rewarming; p = 0.313 for hypothermia vs.
normothermia; p = 0.685 for rewarming vs. normothermia by
Wilcoxon signed rank tests. Box plots with whiskers (5th–95th

percentiles) are shown. Each circle represents one neonate
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impairments (n = 8) spent a smaller percentage of the
rewarming period with blood pressure above MAPOPT

(p = 0.039; Fig. 5a) and had less maximal blood pressure
deviation above MAPOPT (p = 0.021; Fig. 5b) than did
children without impairments (n = 9). This association
was not present for hypothermia or normothermia
(p > 0.10 for all comparisons; Additional file 1: Table S1).
Moreover, disability was not associated with the percentage

of time spent with blood pressure at MAPOPT in any
time period (p > 0.10 for all comparisons; Additional
file 1: Table S1).
The Mullen score at the 2-year evaluation also corre-

lated with blood pressure in relation to MAPOPT during
the neonatal rewarming period. A higher Mullen score
correlated with a greater percentage of time spent in the
rewarming period with blood pressure above MAPOPT

(n = 13; r = 0.560, p = 0.044; Fig. 6a) and a greater max-
imal blood pressure deviation above MAPOPT during
rewarming (n = 13; r = 0.585; p = 0.035; Fig. 6b). Simi-
larly, maximal blood pressure deviation below MAPOPT

during rewarming and the Mullen score were negatively
correlated (n = 13; r = –0.563; p = 0.044; Fig. 6c). The
proportion of the rewarming period spent with blood
pressure below MAPOPT did not correlate with the Mul-
len score (n = 13; r = –0.465 p = 0.102). No correlations
were identified between the Mullen score and duration
of time with blood pressure above or below MAPOPT

or blood pressure deviation from MAPOPT during
hypothermia or normothermia (p > 0.10 for all compari-
sons; Additional file 2: Table S2). The Mullen score also
did not correlate with the percentage of time spent at
MAPOPT or with the AUC below MAPOPT in any time
period (p > 0.05 for all comparisons; Additional file 2:
Table S2).

Cerebral oximetry and blood pressure in relation to
gestational age
When all children were analyzed (including those with
an unidentifiable MAPOPT), the mean rSO2 in any
period (hypothermia, rewarming, or normothermia) was
not associated with future impairment or Mullen score
(p > 0.10 for all comparisons; Additional file 1: Tables S1
and Additional file 2: Table S2). The percentages of time
during the hypothermia, rewarming, and normothermia
periods that neonates spent with blood pressure below
ga + 5 also were not associated with future impairment
or Mullen score (p > 0.10 for all comparisons; Additional
file 1: Table S1 and Additional file 2: Table S2). More-
over, neonates spent little time with blood pressure
below their gestational age (Fig. 3).

Discussion
Several findings relevant to the treatment of neonatal
HIE are suggested by this observational pilot study. The
range of MAP with optimized cerebrovascular autoregu-
latory vasoreactivity may be identified by using HVx.
Further, deviation from MAPOPT during rewarming was
associated with outcome. Children with impairments at
approximately 2 years of age had significantly higher
MAPOPT values during the neonatal rewarming period
than did children without impairments. Neurodevelop-
mental impairment in children was associated with

Fig. 3 The percentages of time during hypothermia (n = 19;
a), rewarming (n = 17; b), and normothermia (n = 16; c) that
neonates spent at each level of mean arterial blood pressure.
Data are shown as means with SDs
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more time spent at blood pressure below MAPOPT,
having greater maximal blood pressure deviation
below MAPOPT, and having greater AUC below MAPOPT

during the rewarming period. Children without impair-
ments spent more time with blood pressure above
MAPOPT and had greater blood pressure deviation above
MAPOPT during rewarming than did those with impair-
ments. Furthermore, higher Mullen scores at 2 years sig-
nificantly correlated with neonates spending more time
with blood pressure above MAPOPT and having greater
blood pressure deviation above MAPOPT during rewarm-
ing. An association was observed only between neurode-
velopmental outcome and blood pressure in relation to
MAPOPT during rewarming; no association was apparent

between outcome and blood pressure during hypothermia
or normothermia. Finally, neither the rSO2 nor time spent
with blood pressure below ga + 5 during hypothermia,
rewarming, or normothermia was associated with neuro-
developmental outcome. Although a causal relationship
between blood pressure autoregulation and neurodevelop-
mental outcomes cannot be determined in this small, ob-
servational pilot study, our findings reveal an association
between better neurodevelopmental outcomes and having
blood pressures that remain within or above MAPOPT

during rewarming. They further suggest that identifying
each individual neonate’s MAPOPT with HVx may serve as
a better method than rSO2 alone or rules based on gesta-
tional age to select blood pressure goals.

Fig. 4 Optimal mean arterial blood pressure (MAP) and blood pressure below optimal MAP during the neonatal rewarming period in relation to
neurodevelopmental outcome at approximately 2 years of age. In comparison to children without impairments (n = 9; unimpaired), children who
developed impairments (n = 8; impaired) had higher optimal MAP values (*p = 0.023; a), spent a greater percentage of time with blood pressure
below optimal MAP (*p = 0.048; b), had greater maximal blood pressure deviation below optimal MAP (*p = 0.019; c), and had greater area under
the curve (AUC) below optimal MAP (*p = 0.039; d) during rewarming. Data were analyzed by Mann Whitney rank sum tests. Box plots with
whiskers (5th–95th percentiles) are shown. Each circle represents one child

Burton et al. BMC Neurology  (2015) 15:209 Page 8 of 13



Although the overall performance of the 19 children
evaluated at 2 years was in the average range, the mean
cognitive scores were lower than those in normative
samples [3, 6], and 42 % of the children had impair-
ments in cognitive or motor function. The large variabil-
ity in performance of the children who had clinical
evaluations was likely due to the small number of chil-
dren in this group. Nine (32 %) children with HIE who
received autoregulation monitoring in the NICU did not
have neurodevelopmental outcome data available for this
study. Nonetheless, the observed associations between
neurodevelopmental outcomes and autoregulation in the
children with available data carry important consider-
ations for the hemodynamic management of neonatal
HIE that deserve further study.
Cerebral NIRS is often used to monitor neonates with

HIE during therapeutic hypothermia [9, 10, 20–23] be-
cause invasive neurologic monitoring is generally not
feasible in such patients. The predictive value of cerebral
oximetry in relation to neurologic outcomes remains un-
clear in HIE. For neonates with HIE who had selective
head cooling, higher cerebral oximetry values during
hypothermia were associated with worse outcomes, in-
cluding death, cerebral palsy, or global delay [22]. In
contrast, other studies report that cerebral oximetry can-
not predict poor neurologic outcome at 7–10 days of life
[21] or severe encephalopathy [23]. Numerous factors
that affect cerebral oxygen supply and demand create
variability in cerebral oximetry and make immediate in-
terpretation of the readings difficult. These factors in-
clude the administration of sedative or anti-epileptic

medications, seizures, changes in oxygen supply, hyper/
hypoventilation, and fluctuations in hemoglobin levels.
Moreover, the decrease in cerebral metabolic rate during
therapeutic hypothermia and the subsequent increase in
metabolism during rewarming are confounders. Calcu-
lating the cerebral tissue oxygen extraction may offer
better correlation with brain injury than regional cere-
bral oximetry alone [20, 23]. Altered brain oxygen
consumption that may be related to dysfunctional
autoregulation [24] and regional differences in cere-
bral perfusion [25] have been described in preterm
neonates and neonates with HIE or perinatal arterial
ischemic strokes. Methods to assess autoregulation by
correlating blood pressure with tissue oxygen levels
or oxygen extraction measured by NIRS are being
tested in neonates [26–28].
We used the autoregulation metric HVx, which incor-

porates measures of both oxygenated and deoxygenated
hemoglobin. Therefore, HVx should be minimally af-
fected by parameters that change tissue oxygen extrac-
tion or supply, including temperature and metabolic
demand. This method may enable clinicians to develop
an individualized approach for neonates with HIE by
identifying and aiming for the MAPOPT at which auto-
regulation is most functional.
Our ability to identify MAPOPT in neonates by using

HVx showed that MAPOPT values vary among individ-
uals. Children who developed impairments had sig-
nificantly higher MAPOPT during rewarming from
hypothermia than did children who did not develop
impairments. Intracranial hypertension raises the limits of

Fig. 5 Blood pressure above the optimal mean arterial blood pressure (MAP) during the neonatal rewarming period in relation to neurodevelopmental
outcome at approximately 2 years of age. When compared to children without impairments (n = 9; unimpaired), those who developed impairments
(n = 8; impaired) spent a lower percentage of the rewarming period with blood pressure above optimal MAP (*p= 0.039; a) and had less maximal blood
pressure deviation above optimal MAP (*p= 0.021; b) during rewarming. Data were analyzed by Mann Whitney rank sum tests. Box plots with whiskers
(5th–95th percentiles) are shown. Each circle represents one child
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blood pressure autoregulation [29]. It is possible that se-
verely injured neonates are at risk of elevated intracranial
pressure during rewarming [30], which could shift the
blood pressure autoregulation curve to higher pressures
and increase MAPOPT. Identifying MAPOPT would be par-
ticularly critical in these neonates to clarify hemodynamic
goals that support autoregulation.
We also found an association between neurodevelop-

mental impairment and blood pressure deviation from
MAPOPT during rewarming. Children with impairments
spent more time with blood pressure below MAPOPT,
had greater maximal blood pressure deviation below
MAPOPT, and had greater AUC below MAPOPT during
rewarming than did those without impairments. Greater
maximal blood pressure deviation below MAPOPT corre-
lated with a lower Mullen Early Learning Composite
score. Likewise, having blood pressure that remained
above MAPOPT during rewarming was associated with
less impairment. Children without impairments spent a
greater proportion of the rewarming period with blood
pressure above MAPOPT and had greater blood pressure
deviation above MAPOPT than did children with impair-
ments. Moreover, more time with blood pressure above
MAPOPT and greater maximal blood pressure deviation
above MAPOPT during rewarming correlated with a
higher Mullen Early Learning Composite score.
There were no associations between the 2-year neuro-

developmental outcomes and blood pressure deviation
from MAPOPT during hypothermia or normothermia.
The percentages of time that neonates spent with
blood pressure below MAPOPT were similar in the
hypothermia, rewarming, and normothermia periods.
Several possibilities might explain the association be-
tween blood pressure deviation from MAPOPT during
rewarming and neurodevelopmental outcomes. The
inherent risk of secondary neuronal injury may be highest
during rewarming. Additionally, severely injured neonates
may have less stable cardiovascular regulation and dimin-
ished autoregulatory capacity during rewarming. We pre-
viously reported that spending more time and having
greater blood pressure deviation below MAPOPT during
rewarming were associated with greater brain injury on
MRI [9, 10]. This finding might be related to an increase
in MAPOPT during rewarming in severely injured neo-
nates. Rewarming itself might adversely affect cerebral
blood flow autoregulation and increase the risk of stroke
[31]. Intracranial hypertension and hyperemia can occur
in some brain-injured regions during rewarming [30].
Moreover, cytotoxicity from rewarming with resultant
neuronal cell death may be enhanced in the post-hypoxic
developing brain [32]. Other neural cells also are likely
vulnerable to secondary injury after hypoxia in the devel-
oping brain. In the 24 h after rewarming, elevated serum
glial fibrillary acidic protein, a biomarker of astrocyte

Fig. 6 Blood pressure in relation to the optimal mean arterial blood
pressure (MAP) during the neonatal rewarming period and the
Mullen score at approximately 2 years of age. Higher Mullen scores
correlated with a greater percentage of the rewarming period spent
with blood pressure above optimal MAP (n = 13; r = 0.560, p = 0.044; a)
and greater maximal blood pressure deviation above optimal MAP
(n = 13; r = 0.585; p = 0.035; b). Lower Mullen scores correlated with
greater maximal blood pressure deviation below optimal MAP (n = 13;
r = –0.563; p = 0.044; c). Data were analyzed by Spearman correlations.
Each circle represents one child
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injury, was associated with the greatest severity of
clinical and MRI markers of brain injury in neonates
with HIE [33].
Given the small sample size in this pilot study, we

were unable to control for hemoglobin level, PaCO2, or
sedation which might affect cerebral blood flow and po-
tentially confound the interpretation of HVx. Neonates
did not have any clinical changes during rewarming that
would acutely change their hemoglobin level, such as
blood transfusion or hemorrhage. Vasoreactivity is af-
fected by changes in CO2 production [34], including
those secondary to changing metabolic rate at different
temperatures. Nonetheless, HVx is a useful metric
during rewarming because it is derived from both ox-
ygenated and deoxygenated hemoglobin and therefore
should be minimally affected by shifts in the oxy-/
deoxyhemoglobin balance with changing temperature
and metabolic rate [9, 10, 13].
The effects of changing ventilatory support during

rewarming on HVx are unclear. Changes in intrathoracic
pressure can affect cerebral perfusion pressure [35] and
oscillations in arterial oxygen levels from ventilator ma-
neuvers are transmitted to the cerebral microcirculation
[36]. Four intubated neonates in this study had adjust-
ments in their ventilator respiratory rate and/or peak in-
spiratory pressure during rewarming. Because ventilator
frequencies are filtered out before calculating HVx, [8]
mechanical effects of ventilation should be minimal on
HVx unless they substantially increase steady state cere-
bral venous blood volume. Changes in the inhaled oxy-
gen concentration should also minimally affect HVx,
which is derived from the amount of total cerebral
hemoglobin and not just the oxyhemoglobin component.
On the other hand, it is conceivable that the one neo-
nate who received inhaled nitric oxide during rewarming
had increased cerebral delivery of nitrite, which then
could have produced cerebral vasodilation. Formal
studies to examine the effects of changing ventilator
support and oxygen supply on HVx measurements
are warranted.
Regional SO2 and blood pressure based on ga + 5 were

not associated with neurodevelopmental outcomes in
this study. The “normal” MAP for a neonate is often as-
sumed to be the neonate’s ga + 5 [11], a value that fre-
quently serves as the goal blood pressure for critically ill
neonates. Our findings in this pilot study suggest that
using autoregulation monitoring to identify hemodynamic
goals that support autoregulation may be superior to rSO2

or rules based on gestational age.
While the data suggest that maintaining a patient’s

blood pressure near MAPOPT might improve outcome, a
cause and effect relationship between blood pressure
autoregulation and neurodevelopmental outcome cannot
yet be determined in this observational pilot study. The

risks of raising a neonate’s blood pressure must be con-
sidered. While targeting the optimal cerebral perfusion
pressure to support autoregulation has not yet been ex-
plored in neonates with HIE, it is being evaluated in
adult traumatic brain injury [37].
Given the small sample size of this pilot study, we

were unable to control for potential confounders such as
gender, socioeconomic status and access to therapy ser-
vices that might affect neurodevelopmental outcome.
There are factors in addition to hemodynamic manage-
ment that may correlate with neurodevelopmental out-
comes in HIE, including abnormal EEG and brain
imaging [38] and non-neurologic co-morbidities. Also,
the type of neonatal cerebral oximetry probe may affect
the cerebral oximetry measurements in neonates [39].
Because HVx monitoring could only begin after an arter-
ial blood pressure cannula was established during
hypothermia, we analyzed the data as the percentage of
the autoregulation monitoring period and normalized
the AUC for the duration of monitoring to account
for different durations of monitoring during the
hypothermia period. Early instability in cerebral auto-
regulation immediately after the perinatal event was
not captured in this study. We were able to monitor
HVx more consistently during rewarming and the
first 6 h of normothermia. HVx measures only the re-
gional frontal cortex and cannot be used to assess
other regions of the brain, including those thought to
be most at risk from neonatal hypoxic ischemia [40].
Variability in regional brain oxygenation has been re-
ported in models of neonatal HIE, including differ-
ences in oxygenation between cortical and thalamic
regions [41]. Additionally, we could not validate HVx
against other measures of cerebral blood flow, such
as transcranial Doppler, because continuous Doppler
is not feasible for 3–4 days in neonates. Nonetheless,
HVx has been validated against laser-Doppler in a
swine model of HIE [13], HVx correlates with intra-
cranial pressure-derived autoregulation measures in
patients [42], and HVx has been validated against
transcranial Doppler in identifying MAPOPT during
cardiopulmonary bypass [43].

Conclusions
In this observational pilot study of neonatal HIE and
therapeutic hypothermia, we used HVx monitoring to
identify associations between cerebrovascular autore-
gulatory vasoreactivity during the neonatal rewarming
period and 2-year neurodevelopmental outcomes.
MAPOPT varied among individual neonates and was
higher during rewarming in children who developed
impairments than in those who did not. Blood pres-
sure deviation below MAPOPT during rewarming was
associated with greater impairment and lower cognitive
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scores. Although future studies are warranted, our pilot
data suggest that individualizing blood pressure goals
based on MAPOPT, especially during the rewarming
period, may be superior to rSO2 alone or blood pressure
goals based on gestational age to support autoregulation
and improve neurodevelopmental outcomes.
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