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Abstract

This study evaluated the relationship between water pH and the physicochemical properties

of water while controlling for the influence of heavy metals and bacteriological factors using

a nested logistic regression model. The study further sought to assess how these relation-

ships are compared across confined water systems (ground water) and open water systems

(surface water). Samples were collected from 100 groundwater and 132 surface water loca-

tions in the Tarkwa mining area. For the zero-order relationship in groundwater, EC, TDS,

TSS, Ca, SO4
2-, total alkalinity, Zn, Mn, Cu, faecal and total coliform were more likely to pre-

dict optimal water pH. For surface water however, only TSS, turbidity, total alkalinity and Ca

were significant predictors of optimal pH levels. At the multivariate level for groundwater,

TDS, turbidity, total alkalinity and TSS were more likely to predict optimal water pH while

EC, Mg, Mn and Zn were associated with non-optimal water pH. For the surface water sys-

tem, turbidity, Ca, TSS, NO3, Mn and total coliform were associated with optimal water pH

while SO4
2-, EC, Zn, Cu, and faecal coliform were associated with non-optimal water pH.

The non-robustness of predictors in the surface water models were conspicuous. The

results indicate that the relationship between water pH and other water quality parameters

are different in different water systems and can be influenced by the presence of other

parameters. Associations between parameters are steadier in groundwater systems due to

its confined nature. Extraneous inputs and physical variations subject surface water to con-

stant variations which reflected in the non-robustness of the predictors. However, the car-

bonate system was influential in how water quality parameters associate with one another in

both ground and surface water systems. This study affirms that chemical constituents in nat-

ural water bodies react in the environment in far more complicated ways than if they were

isolated and that the interaction between various parameters could predict the quality of

water in a particular system.
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Introduction

Water is and will continue to be an important part of life. water bodies such as lakes, rivers

and streams are the most essential reservoirs for freshwater [1]. Groundwater remains an

essential source of potable water, serving as the primary water resource in arid regions.

Compromising the quality of ground and surface water endangers the health and safety of resi-

dents within its catchment areas. Assessing the quality of water is mainly based on its physico-

chemical components, biological quality and heavy metals concentrations [2]. Water systems

are considered contaminated when the presence of organic, inorganic, biological, thermal or

radiological substances in them are at a level which tend to degrade or adversely affect the

quality of water and consequently affecting it usefulness [3].

The quality of water in a reservoir is governed by anthropogenic processes such as indus-

trial, agricultural, human exploitations and natural process including precipitation, weather-

ing, erosions, mineral deposits and other geological phenomena [4]. Surface waters are the

most susceptible and vulnerable water bodies to contamination as a result of being exposed to

various types of waste and runoffs [5]. Ground water on the other hand is better protected

against direct runoffs and waste disposals, however, once contaminated, it remains contami-

nated for longer periods [6], and as such there is the need to keep it safe for use.

pH is probably by far the most important physicochemical parameter controlling the

behavior of other water quality parameters as well as metals concentration in the aquatic envi-

ronments [7]. Chemical processes in aquatic systems such as acid-base reactions, solubility

reactions, oxidation-reduction reactions and complexations are all influenced by hydrogen

ions concentration (pH). Water bodies around the vicinity of mining activities are susceptible

to receiving metals from dumpsite leachate and other waste discharge from the mining activi-

ties [8]. Metal pollution has become a major concern due to their ability to bioaccumulate

along the food chain [9]. The availability of these metals can however be influenced by pH,

making pH an important factor in determining the chemical and biological properties of

water.

pH may also influence the lives of bacteria and the availability of other contaminants in

water. In general, very high or very low pH can make water unpleasant for certain purposes.

At very high pH, metals tend to precipitate while chemicals such as ammonia become toxic to

aquatic life; water tend to have unpleasant smell and taste in alkaline conditions [10]. At low

pH, solubility of metals tend to be high, chemicals like cyanide and sulphide become more

toxic. Acidic waters also corrode metal pipes. Therefore, heavy metals in water with a low pH

tend to be more toxic, as they become more soluble and bioavailable. Exposures to extreme

water pH via drinking and skin contact are known to be associated with irritation to the eyes,

skin, and mucous membranes [11]. Many municipal water suppliers voluntarily test the pH of

their water to monitor for pollutants [12]. Thus, the determination of pH could serve as a sen-

sitive indicator for contamination.

Water quality monitoring is given a high priority for the determination of current condi-

tions and long-term trends for effective management. Given that water is one of the most

important life requirements and taking into account the challenges of its quality management,

there is the need to identify and assess the sources of contamination through monitoring and

evaluation. However, high cost of data sampling and collection provides a challenge on the

implementation of water quality monitoring programs. Field measurements may not always

give a perfect view of the reality due to sensors having bad contact resulting from fouling, clog-

ging or lack of maintenance. Measurement can also be influenced by external factors: humid-

ity, temperature extremes or electromagnetic fields. The calibration of the measuring

instrument may also give rise to problems. In an attempt to reduce the challenges in
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measurement and monitoring, water quality modelling provides an alternative for characteriz-

ing and predicting water quality parameters and to evaluate potential contamination using few

measured parameters.

Several modelling techniques has been deployed in water quality monitoring and evaluation

including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA),

Stepwise logistic regression and multiple linear regression (MLR). Given the large amount of

data for assessing quality parameters, there is the need to develop indirect approaches (models)

to predicts fluctuation in the factors affecting the quality of the environment. Multidisciplinary

research techniques provide opportunities in addressing the challenges associated with under-

standing the links that exist between mining operations and how it affects the environment.

These models offer an alternative approach to a better interpretation of data and to understand

water quality [13–15], while making it possible to assess factors influencing the behavior of an

environmental system and offers a valuable tool for managing resources as well as solution to

pollution problems.

Models such as PCA provides understanding to the underlying relationships between the

variables. Verma and Singh [16] successfully used an artificial neural network (ANN) model to

predict water quality parameters of coalmine discharge, Individual techniques such as multiple

linear regression (MLR) might not be very useful in addressing problems involving complex

and non-linear data and thus might not provide the best and accurate prediction [17], it is also

difficult to describe the quality of water in a quantitative manner by relying solely on models.

However, methods that combines these models will allow a more accurate prediction. The task

of monitoring water quality can be facilitated if the relationship between various water quality

parameters can be established, the inter-parameter relationship offers remarkable information

on the source and pathway of parameters. The existence of such associations can help predict

the existence of other parameters. Knowledge of these relationships can also help assess condi-

tions of unmonitored water bodies by inferring from already measured parameters and also

identify human activities that significantly contribute to pollution as well as areas that are at

risk and promote management practices to reduce non-point source pollution [18].

In this study, a nested logistic regression model was used to examine the relationship

between water pH levels and physicochemical factors while controlling for heavy metals and

biological factors in water systems (surface and ground water) in the Tarkwa mining area.

Modelled and predicted pH could serve as means of detecting abnormal values, discontinuities

and recording drifts from routine measurements. In as much as pH affects the biological, phys-

ical and chemical properties of water, it is also affected by the water’s geochemistry. Ewusi

et al. [13] affirmed in their study that regression models were appropriate for water quality

modelling.

Materials and methods

Study area

Samples for this study were taken in Tarkwa, a mining town in the Western Region of Ghana.

Tarkwa lies within the south-western equatorial climate zone. The country falls between lati-

tudes 4˚ 0´ 0@ N and 5˚ 40´ 0@ N and longitudes 1˚ 45´ 0@ W and 2˚ 1´ 0@ W. A total of 232

locations (ground water = 100 and surface water = 132) were sampled for this study. Sampling

was done on quarterly basis between January 2019 and December 2019. Tarkwa is one of the

areas in the country that experience high rainfall. This causes heavy runoffs and leaching of

surface soil chemicals. The area was selected for this study due to the high-level of anthropo-

genic activities including mining activities, welding and other mechanical servicing activities

that serve as the main sources of pollution to water supply systems [19, 20].
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Boreholes, hand-dug wells, streams and rivers are the major source of water supply in

Tarkwa for both domestic and commercial purpose. The majority of these water supply sys-

tems serve as a source of drinking water for nearby communities. The average well depth in

the area is about 35.4m [21]. The quality of the water supply systems in the area is highly

affected by mine contaminants and mining-related activities, leakage from underground stor-

age tanks, improper waste disposal and agrochemicals from agricultural fields. The study area

is located within a drainage basin of the Ankobra River Basin. The Bonsa, Huni and Ankobra

Rivers and their tributaries are the main sources of drainage system in the area [21, 22].

Data description

A total of 17 parameters, which include 10 physicochemical parameters (electrical conductiv-

ity, total dissolved solids, total suspended solids, turbidity, total alkalinity, magnesium, cal-

cium, sulphate, nitrate and phosphate), 5 heavy metals (arsenic, zinc, iron, manganese and

copper) and 2 biological parameters (faecal coliform and total coliform) were obtained from

ground and surface water systems in the study area. These parameters were carefully chosen

based on their data availability, significance and concentrations with respect to the WHO

guideline values.

Water pH was the focus variable of this research. pH was selected as the response variable

because pH is notably one of the most important physicochemical parameters that controls the

behavior of other water quality parameters as well as metals concentration in aquatic environ-

ments [7]. Chemical processes in aquatic systems such as acid-base reactions, solubility reac-

tions, oxidation-reduction reactions and complexation are all influenced by pH. The WHO

has a standard drinking water guideline for pH. In this instance, all drinking waters should be

within a pH range of 6.5–8.5. In this study, pH values that were within this range were classi-

fied as optimal and coded with “1” while pH values that were outside of this standard were

classified as “non-optimal” and coded as “0” to get a binary outcome (non-optimal/ optimal).

Logistic regression analysis

In this study, a logistic regression statistical model was deployed, This model relates to the

response variable through a link function by allowing the magnitude of the variance of each

measurement to be a function of its predicted value under the assumption of binary response

(non-optimal/ optimal) [23], Via the link function, there are several potential techniques that

could be deployed for a logistic regression analysis: the logit model, probit model, negative

log-log and complementary log-log model. Both logit and probit link functions have the same

property, that is the probability that an observation in a specified category of a binary outcome

variable has the same probability of approaching 0 as well as approaching 1 (50% non-optimal,

50% optimal). Given that, the observations of a binary outcome have an asymmetrical success

of probability, that is, fewer 0s than 1s or more 0s than 1s, then the link function complemen-

tary log-log or negative log-log is chosen respectively. In this study 64% and 79.5% of the loca-

tions had optimal pH for drinking water for ground water and surface water respectively. For

this reason, the complementary log-log link function was appropriate for modelling water pH

levels.

The odds ratios (OR) were built in a nested model starting from the physicochemical

model, heavy metals model and bacteriological model. An OR of 1 meant that higher values of

the predictor did not affect the odds of optimum or non-optimum water pH; OR> 1 meant

that the predictor was associated with odds of optimum water pH; and OR< 1 meant the pre-

dictor variable was associated with odds of non-optimum water pH.
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All statistical analyses were performed using Stata 15 (StataCorp, College Station, Texas) SE

software at a statistical significance of 0.05 and at a confidence interval of 95%.

Water sampling

The sampling was carried out in accordance with the protocols developed by the America Pub-

lic Health Association (APHA) [24]. Sampling bottles were washed with detergent and rinsed

with 10% hydrochloric acid and double-distilled water prior to sampling. At each of the sam-

pling locations, bottles used to collect samples were thoroughly rinsed with the water to be

sampled three times to reduce possible contamination of the sampling bottles. Surface water

samples were taken midstream with conscious effort not to disturb water sediments by gently

submerging the sample bottle horizontally into the water to fill the bottles while facing

upstream, taking reasonable measures to avoid suspended/floating debris. Thus, surface water

samples were collected at the subsurface in order to avoid the colloidal layer as this can influ-

ence the concentration of certain parameters. Personnel entry into the water body was mini-

mized as much as possible. 1000 mL of water was collected from each sample location using

two 500 mL transparent plastic bottles, which were placed in an opaque material (black poly-

ethylene bag), tied and finally kept in a cooler box. Bottles containing samples were labelled

using first letters of sampling site and numbers. This procedure minimized the possible growth

of micro bacteria, flocculation and reduce any adsorption on container surfaces, processes

which could affect the results.

Water from the community boreholes was collected at the faucet after it had been pumped

for a while to obtain a steady flow before sampling. This was to be sure that the water being col-

lected is freshly extracted from the borehole.

Field analysis

pH, conductivity and turbidity were measured in situ during the sampling. Calibrations were

conducted in the field at the sample site. The pH probe was calibrated with pH 7 and 10 buffer

solutions on the day of sampling.

Laboratory analysis

Laboratory tests were conducted in compliance with “Standard Methods for the Examination

of Water and Wastewater” of the American Public Health Association, 1998 Edition. Analysis

of metals As, Fe, Mn, Cu and Zn were carried out by homogenizing samples, filtered and acid-

digested in accordance with USEPA protocol 2002 and analyzed using flame atomic absorp-

tion spectroscopy (AA240FS) following USEPA protocol 2002 [25]. Unprocessed water sam-

ples were also analyzed for electrical conductivity, and for chloride, sulphate, nitrate,

phosphate, and alkalinity concentrations. Faecal coliform and total coliform were also deter-

mined by the membrane filtration technique.

Results

Descriptive statistics

Table 1 shows a statistical summary (mean, standard deviation, minimum and maximum) of

pH and the predicting variables selected for the study. A total of 100 ground water locations

were sampled. Maximum and minimum pH values recorded were 7.850 and 5.240 respectively

with a mean pH of 6.737, indicating an acidic to slightly alkaline groundwater samples. Out of

the 100 locations, 36 recorded pH values outside the range of the WHO standard for drinking
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water [26]. The remaining 64 locations however recorded pH values within the WHO guide-

lines for drinking water quality.

For surface water sources, there were132 sample locations. The mean pH value recorded

was 7.005 With maximum and minimum values of 9.950 and 4.160 respectively. Out of the

132 locations, 27 recorded pH values outside the range of the WHO standard for drinking

water quality.

Most of the other physicochemical parameters were within the guideline limits with few

sample locations recording values above the guideline limit. On average, surface water

recorded high values for heavy metals as compared to groundwater. Coliform bacteria were

relatively high in ground water than surface water sources.

Correlation analysis for water quality parameters in groundwater and

surface water sources

Pearson’s correlation analysis (r) for the selected parameters were carried out. From the

correlation matrix for ground water (Table 2), conductivity was highly correlated with

total dissolved solids (r = 0.963). The strong correlation between conductivity and total

dissolved solids gives an indication of the extent to which salts dissociate into ions and

influence conductivity. Conductivity is the ability of water to conduct electrical current

and it is related to the concentration of ionized substances in the water. Total suspended

solids was moderately correlated with magnesium (r = 0.601), calcium (r = 0.556) and sul-

phate (r = 0.682). Magnesium showed a moderate correlation with total alkalinity

(r = 0.633), while phosphate was also moderately correlated with total coliform (r =

-0.525). pH was moderately correlated with nitrate (r = -0.525). For surface water sources

in Table 3, conductivity again showed a strong correlation with total dissolved solids

(r = 0.963) and moderately correlated with nitrate (r = 0.581). pH was weakly correlated

with all parameters selected for the study.

Table 1. Statistical summary of predictors and explanatory variables.

Variables Ground water Surface water

Mean Std. Dev. Min Max Mean Std. Dev. Min Max

pH 6.737 0.663 5.240 7.85 7.005 0.82 4.16 9.95

Conductivity 281.37 168.218 35 751 304.439 182.904 39 821

Total dissolve solids 185.03 118.735 14 682 199.508 124.457 14 542

Total suspended solids 72.7 202.399 1 1310 190.682 894.586 3 7300

Turbidity 61.346 220.107 0.01 1540 89.737 307.706 0.13 3180

Magnesium 5.788 6.17 0.01 40.3 6.74 5.126 0.01 31

Calcium 21.74 27.268 0.01 200 25.364 21.231 0.01 100

Nitrate 9.53 15.545 0 86.2 23.904 26.122 0.01 118

Sulphate 28.386 46.813 0 401 58.616 73.46 0 338

Phosphate 5.825 10.278 0.05 39.7 7.522 11.972 0.1 55.2

Arsenic 0.005 0.005 0.001 0.029 0.005 0.006 0.001 0.025

Zinc 0.131 0.267 0.01 2.14 0.102 0.165 0.01 0.8

Iron 0.056 0.14 0.01 1.3 0.129 0.232 0.01 1.5

Manganese 0.017 0.020 0.001 0.098 0.01 0.024 0.001 0.25

Copper 0.567 0.855 0 2.95 0.386 0.753 0 5

Total alkalinity 0 1 -1.02 5.87 0 1 -0.825 9.272

Faecal coliform 207.61 1159.458 0 8220 14.288 106.596 0 870

Total coliform 1461.08 5971.452 0 41100 871.174 4452.74 0 35620

https://doi.org/10.1371/journal.pone.0262117.t001
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Zero-order relationship between pH and selected water quality parameters

Table 4 shows the results of the association between individual parameters and their odds

of predicting pH levels in ground and surface water sources. For ground water physico-

chemical factors, conductivity (OR = 1.004, p < 0.001), total dissolved solids (OR = 1.005,

p < 0.001), total suspended solids (OR = 1.003, p < 0.05), calcium (OR = 1.023, p < 0.05)

and sulphate (OR = 1.009, p < 0.05) were significantly associated with higher odds of opti-

mum water pH. Similarly, higher values of total alkalinity (OR = 1.720, p < 0.05) was sig-

nificantly associated with higher odds of optimum water pH. Turbidity, magnesium,

nitrate and phosphate showed no association with pH in groundwater. Among the heavy

metals, zinc (OR = 0.091, p < 0.05), manganese (OR = 1.37E-13, p < 0.05) and copper

(OR = 0.578, p < 0.05) were statistically significant in predicting water pH levels. Here,

higher values of zinc, manganese and copper were associated with non-optimal water pH.

Of the bacteriological factors, faecal coliform (OR = 1.000, p < 0.05) showed significant

association with pH levels, however, odds of faecal coliform did not affect the odds of pre-

dicting pH levels in ground water.

For surface water sources, only total suspended solids (OR = 1.008, p< 0.05), turbidity

(OR = 1.014, p< 0.05), calcium (OR = 1.023, p< 0.05) and total alkalinity (OR = 2.014,

p< 0.001) were statistically associated with predicting pH levels. Here, higher values of total

suspended solids, turbidity, calcium and total alkalinity were associated with higher odds of

optimum water pH. None of the heavy metals and bacteriological factors was significant in

predicting pH levels in surface water at the bivariate level.

Table 2. Pearson’s correlation matrix for analyzed water quality parameters in groundwater.

Ground water Correlation

pH EC TDS TSS Turbidity Mg Ca NO3 SO4
2- PO4

3- AS Zn Fe Mn Cu T.

alkalinity

F.

coli

T.

coli

pH 1.000

EC 0.381 1.000

TDS 0.354 0.963 1.000

TSS 0.046 0.135 0.115 1.000

Turbidity -0.341 -0.140 -0.105 0.325 1.000

Mg -0.066 0.328 0.408 0.601 0.394 1.000

Ca 0.428 0.457 0.445 0.556 -0.053 0.582 1.000

NO3 -0.525 -0.253 -0.210 0.195 0.321 0.225 -0.179 1.000

SO4
2- -0.011 0.181 0.152 0.682 0.247 0.177 0.080 0.288 1.000

PO4
3- -0.050 0.248 0.366 0.253 0.183 0.455 0.040 0.224 0.282 1.000

As 0.004 0.026 -0.005 -0.187 -0.319 -0.135 0.041 -0.193 -0.237 -0.272 1.000

Zn -0.359 -0.194 -0.029 -0.085 0.206 0.169 -0.356 0.325 -0.027 0.382 -0.107 1.000

Fe 0.088 -0.094 -0.014 0.173 0.388 0.269 0.027 0.070 0.122 0.188 -0.226 0.222 1.000

Mn -0.272 -0.174 -0.118 -0.013 0.365 0.033 -0.166 0.338 0.059 0.165 -0.135 0.219 0.231 1.000

Cu -0.280 -0.174 -0.210 -0.072 0.288 -0.033 -0.273 0.314 0.055 -0.269 -0.011 0.060 -0.253 0.274 1.000

T.

alkalinity

0.359 0.423 0.388 0.414 0.058 0.633 0.787 -0.148 -0.043 0.144 0.067 -0.315 0.186 0.039 -0.159 1.000

F. coli 0.057 0.094 0.065 -0.061 -0.352 -0.080 0.055 0.101 -0.075 -0.141 0.078 0.051 -0.181 -0.120 0.014 0.041 1.000

T. Coli 0.067 0.036 -0.036 -0.031 -0.063 -0.169 0.019 -0.219 0.052 -0.525 0.004 -0.212 -0.176 -0.091 0.292 -0.017 0.408 1.000

Note: �In bold are significant correlations.

https://doi.org/10.1371/journal.pone.0262117.t002
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Table 3. Pearson’s correlation matrix for analyzed water quality parameters in surface water.

Surface water Correlation

pH EC TDS TSS Turbidity Mg Ca NO3 SO4
2- PO4

3- AS Zn Fe Mn Cu T.

alkalinity

F. coli T. coli

pH 1.000

Cond 0.203 1.000

TDS 0.165 0.963 1.000

TSS 0.227 0.063 0.049 1.000

Turbidity 0.278 0.090 0.059 0.692 1.000

Mg -0.008 0.276 0.329 0.394 0.294 1.000

Ca 0.131 0.304 0.231 0.004 -0.051 0.130 1.000

No3 0.166 0.581 0.542 0.127 0.070 0.336 0.268 1.000

SO4
2- 0.053 0.413 0.479 0.022 0.119 0.299 0.178 0.253 1.000

PO4
3- 0.018 0.107 0.237 0.059 0.055 0.386 -0.037 -0.035 0.361 1.000

As 0.046 -0.016 -0.100 -0.020 0.119 -0.222 -0.146 -0.158 -0.062 -0.093 1.000

Zn -0.215 0.073 0.120 -0.019 -0.070 0.107 -0.129 -0.080 0.237 0.232 -0.090 1.000

Fe 0.009 -0.164 -0.129 0.224 0.489 0.148 -0.212 -0.271 0.147 0.386 0.118 0.186 1.000

Mn -0.123 0.010 0.024 0.212 0.299 0.363 -0.310 0.014 0.035 0.170 0.203 0.161 0.265 1.000

Cu -0.046 -0.169 -0.158 0.240 0.124 0.004 -0.151 -0.349 -0.076 -0.141 0.033 0.187 0.102 -0.079 1.000

T.

alkalinity

0.306 0.343 0.274 0.382 0.354 -0.042 0.282 0.085 -0.065 -0.165 0.089 -0.196 -0.018 -0.084 0.052 1.000

F. coli 0.318 -0.002 -0.033 0.059 0.075 -0.245 -0.240 0.004 -0.022 -0.254 0.142 -0.059 -0.101 -0.127 0.161 -0.029 1.000

T. coli 0.369 -0.010 -0.082 -0.007 0.063 -0.313 0.092 -0.028 0.019 -0.036 0.211 -0.220 0.037 -0.228 0.032 0.290 0.223 1.000

Note: � In bold are significant correlations.

https://doi.org/10.1371/journal.pone.0262117.t003

Table 4. Zero-order complementary log–log regression showing the relationship between pH and selected water quality parameters.

Variables GROUND WATER SURFACE WATER

OR Robust SE P Value Conf. Interval OR Robust SE P Value Conf. Interval

Conductivity 1.004 0.001 0.001 1.002 1.006 1.000 0.001 0.947 0.999 1.001

Total dissolved solids 1.005 0.002 0.001 1.002 1.008 1.000 0.001 0.771 0.999 1.002

Total suspended solids 1.003 0.001 0.026 1.000 1.006 1.008 0.004 0.026 1.001 1.016

Turbidity 1.002 0.002 0.218 0.999 1.005 1.014 0.006 0.025 1.002 1.027

Total alkalinity 1.720 0.331 0.005 1.179 2.509 2.014 0.573 0.014 1.154 3.517

Magnesium 1.016 0.021 0.440 0.976 1.057 1.006 0.021 0.776 0.965 1.049

Calcium 1.023 0.009 0.011 1.005 1.041 1.023 0.006 0.000 1.010 1.035

Sulphate 1.009 0.004 0.043 1.000 1.017 1.000 0.001 0.792 0.997 1.002

Nitrate 0.972 0.022 0.207 0.929 1.016 1.008 0.005 0.062 1.000 1.017

Phosphate 1.001 0.012 0.911 0.977 1.026 1.012 0.009 0.177 0.994 1.031

Arsenic 339169.8 8573454 0.614 1.03E-16 1.1E+27 1.6E-05 0.00032 0.580 1.69E-22 1.5E+12

Zinc 0.091 0.096 0.023 0.012 0.721 0.326 0.238 0.124 0.078 1.359

Iron 18.655 38.183 0.153 0.338 1030.359 1.445 0.753 0.479 0.521 4.010

Manganese 1.37E-13 1.69E-12 0.016 4.55E-24 0.004 0.005 0.048 0.607 5.31E-12 3871298

Copper 0.578 0.105 0.003 0.404 0.826 0.819 0.136 0.230 0.592 1.134

Faecal coliform 1.000 5.46E-05 0.027 1.000 1.000 0.991 0.016 0.570 0.961 1.022

Total coliform 1.000 0.000049 0.300 1.000 1.000 1.000 0.00031 0.190 1.000 1.001

Note: �In bold are significant predictors.

https://doi.org/10.1371/journal.pone.0262117.t004
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Multivariate complementary log–log regression model showing the

relationship between pH and selected water quality parameters for

groundwater

Table 5 shows the results of the multivariate regression analysis of three different models for

ground water. Model 1 presents the results for the physicochemical parameters. Model 2

accounted for physicochemical and heavy metals and in the third model, physicochemical fac-

tors together with heavy metals and biological parameters were accounted for. Model 1 showed

that, conductivity (OR = 0.990, p< 0.05) and magnesium (OR = 0.735, p< 0.05) were less

likely to be associated with optimal water pH. Total dissolved solids (OR = 1.020, p< 0.05),

turbidity (OR = 1.002, p < 0.05) and total alkalinity (OR = 2. 780, p< 0.05) were statistically

associated with higher odds of pH, thus higher values of total dissolved solids, turbidity and

total alkalinity were associated with higher odds of predicting optimal water pH for drinking

groundwater sources.

In the second model, where heavy metals were accounted for, the odds of prediction for

conductivity and magnesium remained less likely in predicting optimal water pH. Total dis-

solved solids, turbidity and total alkalinity were still significantly associated with predicting

optimal pH in ground water systems. There was however partial mediation by the heavy metals

(changes in significant values). It was observed that, total suspended solids was not statistically

significant in model 1, but became statistically significant in model 2, indicating mediation by

Table 5. Multivariate complementary log–log regression model predicting the relationship between pH and water quality parameters for groundwater.

GROUND WATER

Physicochemical parameters Physicochemical parameters and Heavy Metals Physicochemical, Heavy metal and Biological

parameters

Model 1 Model 2 Model 3

Variables OR Robust

SE

P Value Conf.

Interval

OR Robust

SE

P Value Conf. Interval OR Robust

SE

P Value Conf. Interval

conductivity 0.990 0.004 0.010 0.982 0.998 0.984 0.004 0.000 0.976 0.992 0.984 0.004 0.000 0.976 0.992

Total dissolved

solids

1.020 0.007 0.003 1.007 1.033 1.032 0.008 0.000 1.016 1.048 1.032 0.008 0.000 1.016 1.048

Total suspended

solids

1.007 0.004 0.095 0.999 1.016 1.015 0.006 0.009 1.004 1.027 1.016 0.006 0.005 1.005 1.027

Turbidity 1.002 0.001 0.007 1.001 1.004 1.002 0.001 0.001 1.001 1.003 1.002 0.001 0.001 1.001 1.003

Magnesium 0.735 0.073 0.002 0.606 0.892 0.710 0.076 0.001 0.576 0.876 0.709 0.074 0.001 0.578 0.870

Calcium 1.041 0.022 0.052 1.000 1.085 1.033 0.024 0.164 0.987 1.081 1.034 0.023 0.126 0.991 1.080

Sulphate 1.007 0.008 0.385 0.992 1.022 0.998 0.011 0.876 0.977 1.020 0.999 0.011 0.931 0.978 1.021

Nitrate 0.980 0.019 0.306 0.944 1.018 0.985 0.015 0.299 0.957 1.014 0.985 0.015 0.336 0.956 1.016

Phosphate 0.992 0.028 0.773 0.937 1.049 0.995 0.022 0.817 0.952 1.039 0.998 0.024 0.944 0.952 1.047

Total alkalinity 2.780 1.024 0.005 1.351 5.721 3.558 1.418 0.001 1.629 7.769 3.436 1.382 0.002 1.562 7.557

Arsenic 7.65�10−40 9.95E-38 0.489 1.3E-

150

4.4E

+71

1E-

35

1.4E-33 0.557 1.4E-

152

6.95E

+81

Zinc 0.108 0.105 0.022 0.016 0.727 0.102 0.102 0.022 0.014 0.721

Iron 0.287 0.314 0.255 0.033 2.459 0.288 0.309 0.247 0.035 2.363

Manganese 5.71�10−22 1.23E-20 0.024 2.33E-

40

0.001 6E-

21

1.3E-19 0.027 8.8E-39 0.005

Copper 1.011 0.302 0.970 0.563 1.817 1.047 0.329 0.883 0.566 1.939

Faecal coliform 1.000 0.00043 0.955 0.999 1.001

Total coliform 1.000 9.6E-05 0.862 1.000 1.000

Note: �In bold are significant predictors.

https://doi.org/10.1371/journal.pone.0262117.t005
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the heavy metals. In this instance, total suspended solids (OR = 0.009, p< 0.05) was associated

with predicting optimal pH levels. Among the heavy metals, zinc (OR = 0.108, p< 0.05) and

manganese (OR = 5.71�10–22, p< 0.05) were less likely to predict optimal pH for ground

water systems.

In the third model in which biological parameters were accounted for, the model showed

similar characteristics of model 2. Of the physicochemical parameters, the relationship

between conductivity and magnesium and the likelihood of predicting non-optimal pH levels

persisted in the third model. Total dissolved solids, total suspended solids, turbidity and total

alkalinity remained significantly associated with higher odds of predicting optimal pH and

their odds of prediction persisted as observed in model 2. Among the heavy metals, the rela-

tionship between zinc, manganese and the odds of predicting pH levels also remained robust

and persisted. In this case zinc and manganese were associated with predicting odds of non-

optimal water pH. None of the bacteriological factors were statistically significant in predicting

pH levels in ground water systems in this study.

Multivariate regression model showing the relationship between pH and

selected water quality parameters for surface water

Multivariate regression model for surface water is shown in Table 6. Physicochemical parame-

ters were accounted for in model 1. Model 2 accounted for heavy metals and the third model

controlled for biological parameters. In the first model, turbidity (OR = 1.034, p< 0.05),

Table 6. Multivariate complementary log–log regression model predicting the relationship between pH and water quality parameters for surface water.

SURFACE WATER

Physicochemical Model Physicochemical parameters and Heavy Metal

Model

Physicochemical, Heavy metal and Biological

Model

Variables OR Robust

SE

P Value Conf.

Interval

OR Robust SE P Value Conf. Interval OR Robust

SE

P Value Conf. Interval

Conductivity 0.992 0.004 0.052 0.985 1.000 0.987 0.005 0.018 0.977 0.998 0.993 0.005 0.163 0.984 1.003

Total dissolved

solids

1.009 0.006 0.148 0.997 1.022 1.010 0.007 0.183 0.995 1.025 1.001 0.007 0.878 0.988 1.014

Total suspended

solids

1.009 0.007 0.208 0.995 1.023 1.018 0.008 0.024 1.002 1.035 1.028 0.017 0.096 0.995 1.063

Turbidity 1.034 0.017 0.049 1.000 1.068 1.023 0.012 0.045 1.000 1.047 1.116 0.039 0.002 1.043 1.195

Calcium 1.055 0.014 0.000 1.027 1.083 1.080 0.025 0.001 1.032 1.131 1.089 0.027 0.001 1.037 1.143

Magnesium 0.967 0.037 0.381 0.897 1.042 0.963 0.042 0.392 0.884 1.049 0.956 0.047 0.354 0.869 1.052

Sulphate 0.994 0.003 0.029 0.988 0.999 0.999 0.004 0.862 0.992 1.007 0.988 0.007 0.102 0.974 1.002

Nitrate 1.006 0.007 0.437 0.991 1.020 1.017 0.012 0.140 0.994 1.040 1.028 0.012 0.019 1.005 1.052

Phosphate 1.026 0.017 0.130 0.993 1.060 1.014 0.019 0.436 0.979 1.051 1.029 0.021 0.169 0.988 1.072

Total alkalinity 1.043 0.489 0.929 0.416 2.614 4.523 3.694 0.065 0.912 22.423 5.488 7.599 0.219 0.364 82.790

Arsenic 0.002 0.047 0.829 5.4E-29 4.63E

+22

4.8E-

32

1.9E-30 0.066 1.7E-65 135.304

Zinc 0.003 0.008 0.031 1.7E-05 0.583 0.002 0.007 0.124 5.2E-07 5.700

Iron 4.938 4.770 0.098 0.743 32.796 1.404 1.598 0.766 0.151 13.068

Manganese 168614.3 583503.2 0.001 191.092 1.49E

+08

1.5E

+07

7.9E+07 0.002 509.349 4E+11

Copper 0.593 0.123 0.012 0.394 0.892 0.569 0.165 0.052 0.322 1.004

Faecal coliform 0.985 0.003 0.000 0.979 0.991

Total coliform 1.005 0.002 0.005 1.002 1.009

Note: �In bold are significant predictors.

https://doi.org/10.1371/journal.pone.0262117.t006
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calcium (OR = 1.055, p< 0.001) and sulphate (OR = 0.994, p < 0.05) showed statistically sig-

nificant association with water pH levels. In this case, turbidity and calcium were more likely

to predict optimal water pH levels. Contrariwise, sulphate was associated with non-optimal

values of pH in surface water.

In the second model, where heavy metals were accounted for, only turbidity (OR = 1.023,

p< 0.05) and calcium (OR = 1.083, p< 0.05) persisted in predicting water pH levels. How-

ever, new relationships appeared, indicating mediation by the heavy metals. Here, conductivity

(OR = 0.987, p< 0.05) and total suspended solids (OR = 1.0180, p< 0.05) were statistically

significant in predicting water pH levels. Conductivity in this scenario was less likely to predict

optimum water pH levels while total suspended solids was more likely to predict optimal water

pH. Of the heavy metals, manganese (OR = 168614.3, p< 0.05), zinc (OR = 0.003, p< 0.001)

and copper (OR = 0.593, p< 0.05) were statistically associated with the odds of predicting

water pH. In this instance, manganese was more likely to predict optimal water pH levels.

Contrariwise, higher values of zinc and copper were associated with non-optimal levels of pH

in surface water systems.

Total suspended solids and conductivity lost their significance in the third model when bio-

logical factors were accounted for. Indicating mediation by the biological factors. Turbidity

(OR = 1.116, p< 0.05) and calcium (OR = 1.089, p< 0.05) remained robust and persisted in

predicting pH levels. In this case, they were more likely to predict optimal water pH levels. A

new relationship also appeared. Here, nitrate (OR = 1.028, p< 0.05) became statistically signif-

icant in predicting pH levels. Thus, higher values of nitrate was more likely to predict optimal

pH levels. Of the heavy metals, manganese (OR = 1.5�107, p< 0.05) remained significant with

high odds of predicting optimal pH in surface water locations. Among the bacteriological fac-

tors, total coliform (OR = 1.005, p< 0.05) and faecal coliform (OR = 0.985, p< 0.001) were

statistically associated with predicting water pH levels. Total coliform in this scenario was asso-

ciated with the odds of predicting optimal pH values while faecal coliform was associated with

non-optimal pH values.

Discussion

This study analyzed the association between pH and physicochemical parameters while con-

trolling for heavy metals and bacteriological factors for ground water and surface water sys-

tems in the Tarkwa mining area. Nested logistic regression model was used to evaluate the

dynamics of these relationships in groundwater and surface water systems. The chemistry of

water systems, especially heavy metals, are much affected by pH and vice versa [27]. Knowl-

edge of the association between water quality parameters is important for the sustainability

and quality management of water. This study used heavy metals, bacteriological and physico-

chemical factors as predicting variables to assess the association between water quality parame-

ters and pH and how their associations vary in the different water systems. The models in this

study indicated that higher values of pH can be associated with some water quality parameters

and can give an idea of the quality of water system.

In a zero-order relationship for the ground water system, six physicochemical parameters

(conductivity, total dissolves solids, total suspended solids, total alkalinity, calcium and sul-

phate) were associated with predicting optimum water pH levels. High values of these parame-

ters implied high probability of having water optimal for drinking.

At the multivariate level for ground water, total alkalinity was consistent with the odds of

prediction. The addition of heavy metals and bacteriological factors further strengthened the

relationship between alkalinity and odds of predicting optimal pH. The carbonate system is a

function of alkalinity while the various forms of carbonates (carbon dioxide, bicarbonate and
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carbonates) govern pH conditions of water [28]. High alkaline water often has high pH and so

the strong association of total alkalinity with optimal pH indicates that the alkalinity values

reported in this study are not high and thus corresponds to non-optimal pH.

Total dissolved solids were robust in its association with pH. The major contributors of

total dissolved solids are carbonates, bicarbonates and salts of sulphates, phosphates, chlorides

and nitrates. The dissolution of these salts (sulphate and phosphate) influences the availability

of dissolved solids, the presence of dissolved solids indicates the dissolution of salts. Tlili-Zrelli

[29] observed a linear relationship between total dissolved solids and major ions in groundwa-

ter. Solids that dissolve in water break into positively and negatively charged ions thereby

increasing the conducting ability of water [30]. Conductivity, a property that depends mainly

on dissolved salts can be taken as indirect measure for total dissolve solids [31]. These dis-

solved ions consequently become the conductors for electric current. This linear relationship

between conductivity and total dissolved solids was further manifested in the correlation anal-

ysis as a strong positive correlation was observed. The relationship between conductivity and

dissolved solids indicates the degree to which salts dissociate into ions. Armah [32] reported a

significant association between conductivity and total dissolved solids with the distribution of

pH in a ground water system. Interestingly, in this study, increased total dissolved solids indi-

cates optimal pH while increased conductivity indicates non-optimal water pH.

Magnesium was insignificant while sulphate and calcium were significantly associated with

pH levels in the zero-order relationship, however, the opposite occurred in the multivariate

model where other physicochemical parameters, heavy metals and bacteriological factors were

accounted for. In all three models for groundwater, magnesium was significantly associated

with lower odds of predicting optimum water pH with slight decrease in odds as heavy metals

and biological factors were accounted for, indicating that higher values of magnesium is asso-

ciated with non-optimal groundwater pH. The association of magnesium with pH at the multi-

variate level could be mediated by sulphate ions. Kura [33] in his study reported that sulphate

and magnesium ions were significantly associated and could have influence each other in a

complex system. Magnesium bearing minerals such as dolomite is a very common mineral in

groundwater resulting from rock-water interactions. The dissolution of dolomite is a function

of pH, moreover, the fractionation of carbonate rocks is also influenced by water pH [34].

Greiserman [35] also reported similar observation where the dissolution of dolomite into cal-

cium and magnesium ions were effective in acidic medium. These studies are in line with this

current study that, high concentration of magnesium ions in water suggest non-optimal pH

and that the availability of magnesium in water especially in groundwater system is influenced

by pH.

Turbidity was not significant in predicting pH levels in the zero-order relationship how-

ever, it became significantly associated with pH at the multivariate level for groundwater, with

higher values of turbidity in this case indicating an optimal water pH. Suspended solids con-

tribute to the turbidity of water and could be the main parameter that mediated the association

between turbidity and pH. Many studies including Acheampong [36] and Mustapha [30] also

observed a significant relationship between total suspended solids and turbidity. Interestingly,

total suspended solids lost its significance with pH in the physicochemical model. However,

when heavy metals and bacteriological factors were controlled for, the relationship between

pH and total suspended solids reappeared, with higher values of total suspended solids indicat-

ing optimal water pH.

Among the heavy metals, only zinc and manganese were significantly associated with pH;

predicting non-optimal pH levels. The environment of every chemical specie has influence on

its behavior and thus affect its reactions with other species. Although solubility of metals

depends on pH, the chemical composition of water systems can influence metal dissolution.
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The availability of metals in a groundwater system is a complex function of many factors

including chemical, biological, and environmental processes [37]. For the bacteriological fac-

tors, both faecal and total coliform were significant predictors of pH in the zero-order analysis

but was however insignificant in the multivariate analysis. Thus, the relationship between coli-

form bacteria and pH in a water system can be mediated by the physicochemical factors and

heavy metals.

For the zero-order analysis in the surface water system, total suspended solids, turbidity,

total alkalinity and calcium were all associated with optimal water pH. However, only turbidity

and calcium were significantly associated with pH in the multivariate regression model. Sul-

phate also became significantly associated with pH.

Calcium showed a strong association with high odds of predicting pH, and was persistent

in all three models, this result indicated that higher values of turbidity and calcium are associ-

ated with optimum water pH. The interaction between carbon dioxide and solid carbonates in

the form of calcium carbonate (calcite) from bedrocks liberates calcium ions and bicarbonate

species in water. Calcium is an important component of the carbonate system and its libera-

tion from carbonate system is affected by pH. Holland [38] observed a linear relationship

between calcium ions and bicarbonate ions in river waters. The association of calcium with

pH in this study further suggest that pH affect the carbonate system. The dissolution of metals

contribute to dissolved ions and thus the introduction of heavy metals influenced the availabil-

ity of dissolved ions and consequently mediating the association of conductivity with pH.

Total alkalinity and total suspended solids were significantly associated with high odds of

prediction in the zero-order analysis but lost their significance in the physicochemical model

of the multivariate analysis for surface water. However, the addition of heavy metals mediated

the association of total suspended solids with surface water pH. Insoluble metal ions in the

form of solid elemental metal precipitates (metal colloids) and solid metal compounds might

have contributed suspended solids. The nature of surface water makes it susceptible to receiv-

ing solids in all forms through runoffs, agricultural inputs, waste water discharge, etc. and

could also contribute to solid particles.

All metals in the zero-order analysis for surface water had no significant association with

pH levels. However, zinc, manganese and copper were significantly associated with pH at the

multivariate level with manganese values associated with high odds of predicting optimum

water pH. Zinc and copper were however not robust in the multivariate model accounting for

biological and physicochemical parameters. The nature of surface water allows it to be much

affected by climatic conditions; the physical conditions of surface water such as temperature,

turbulence and transparency influence its chemical and biological process. Temperature is

known to affect mobility and solubility of chemical species while turbulence affect turbidity via

water overturn (mixing) and consequently affecting water temperature. The variations in

physical conditions of surface water subject water parameters to constant changes and could

account for the non-robustness of some surface water variables.

When biological factors were accounted for in the surface water model, both faecal and

total coliforms showed significant association with pH. Interestingly, total coliforms were asso-

ciated with optimal pH values while faecal coliform were associated with non-optimal water

pH, a similar observation was reported by Aram et al. [39]. This further implied that total coli-

form bacteria survival is much favored in optimal pH conditions. The distribution of feacal

bacteria in water are much affected by physical and climatic factors such as runoffs, tempera-

ture and solar radiations than pH. Both total and faecal coliform bacteria are considered pollu-

tion indication bacteria and are used as a measure for sanitary parameters for water in a

particular environment. Several studies have also reported a significant relationship between

various bacteria in water environment [40–43]. The introduction of biological factors also saw
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nitrate gaining significant association with pH. The association of nitrate with pH suggests

that an increase in the nitrogenous species occur in optimal pH levels. Armah et al. [44]

reported a significant association between nitrate and coliform bacteria and thus nitrate’s sig-

nificance in the biological model could be influenced by the introduction of coliform bacteria.

The variations in chemical composition of surface water are highly influenced by topography,

climate, and mineralogical composition of the bed rock [45]. Empirical research has shown

that the quality of surface water in a particular region is controlled by these natural factors

[46]. Surface water is much affected by temperature and could be an influential factor in the

availability of both faecal and total coliform [47] and consequently their association with water

pH.

Conclusion

This study sough to evaluate the relationship between water pH and physicochemical proper-

ties of water while controlling for the effect of heavy metals and bacteriological factors using a

nested logistic regression model. The study also compared the relationship between water

quality parameters in confined water systems (ground water) and open water systems (surface

water). The findings of this study give the joint effect of water quality parameters on pH and

how they affect each other in a confined and open water system. For the zero order relation-

ship in groundwater, EC, TDS, TSS, Ca, SO4
2-, total alkalinity, Zn, Mn, Cu, faecal and total

coliform were more likely to predict optimal water pH. For surface water however, only TSS,

turbidity, total alkalinity and Ca were significant predictors of optimal pH levels. At the multi-

variate level for groundwater, TDS, turbidity, total alkalinity and TSS were associated with

optimal water pH while EC, Mg, Mn and Zn were associated with non-optimal water pH. For

surface water multivariate regression model, turbidity, Ca, TSS, NO3, Mn and total coliform

were associated with optimal pH while SO4
2-, EC, Zn, Cu, and faecal coliform were associated

with non-optimal water pH. The non-robustness of predictors in the surface water models

were conspicuous. The results indicate that the relationship between water pH and other water

quality parameters are different in different water systems and can be influenced by the pres-

ence of other parameters. Associations between the parameters are steadier in groundwater

systems due to its confined nature. Extraneous inputs and physical variations subject surface

water to constant variations which reflected in the non-robustness of predictors. The carbon-

ate system was influential in how water quality parameters associate with one another in both

ground and surface water systems. This study affirms that chemical constituents in natural

water bodies react in a more complicated ways than if they were isolated and that the interac-

tion between various parameters could predict the quality of water in a particular system.
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