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The master transcriptional repressor DREAM (dimerization partner, RB-like, E2F and
multivulval class B) complex regulates the cell cycle in eukaryotes, but much remains
unknown about how it transmits repressive signals on chromatin to the primary tran-
scriptional machinery (e.g., RNA polymerase II [Pol II]). Through a forward genetic
screen, we identified BTE1 (barrier of transcription elongation 1), a plant-specific com-
ponent of the DREAM complex. The subsequent characterization demonstrated that
DREAM complex containing BTE1 antagonizes the activity of Complex Proteins Asso-
ciated with Set1 (COMPASS)-like complex to repress H3K4me3 occupancy and inhib-
its Pol II elongation at DREAM target genes. We showed that BTE1 is recruited to
chromatin at the promoter-proximal regions of target genes by E2F transcription fac-
tors. DREAM target genes exhibit characteristic enrichment of H2A.Z and H3K4me2
modification on chromatin. We further showed that BTE1 directly interacts with
WDR5A, a core component of COMPASS-like complex, repressing WDR5A chroma-
tin binding and the elongation of transcription on DREAM target genes. H3K4me3 is
known to correlate with the Pol II transcription activation and promotes efficient elon-
gation. Thus, our study illustrates a transcriptional repression mechanism by which the
DREAM complex dampens H3K4me3 deposition at a set of genes through its interac-
tion with WDR5A.
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Transcriptional regulation is fundamental to all cellular events. RNA polymerase II
(Pol II) initiates the transcription of protein-coding genes and some noncoding genes,
and it undergoes subsequent pause/release, elongation, and termination steps (1). The
conserved multiprotein machinery known as the DREAM complex (dimerization part-
ner, RB-like, E2F and multivulval class B) represses gene expression and acts as the
master player to regulate cell proliferation in eukaryotes (2, 3). However, little is
known about how DREAM complex components communicate with the chromatin to
alter Pol II activity and direct transcriptional repression.
The conserved multiprotein machinery known as the DREAM complex (dimerization

partner, RB-like, E2F and multivulval class B) represses gene expression and acts as
the master regulator of cell proliferation in eukaryotes (2, 3). Multivulval class B
(MuvB) proteins were the first identified DREAM complex components in Caenorhabditis
elegans (4, 5), and homologs were subsequently identified and characterized in Drosophila
melanogaster (6, 7), mammals (8), and plants (9, 10). The MuvB core complex composed
of LIN9, LIN37, LIN52, LIN54, and RBBP4 associates with E2F, DP, and RB-like pro-
teins to form the multisubunit DREAM complex (2). Previous studies have shown that
the nuclear-localized DREAM complex acts as the master regulator to maintain the quies-
cent state of the cell by binding to the chromatin of around a thousand cell-cycle genes
and repressing their transcription in animals (2). In Arabidopsis, as core components of
the DREAM complex, E2F transcription factors have been implicated in broad regulation
of cell phase-specific gene expression, stem cell maintenance, and energy metabolism
(11–14). Plant DREAM complex subunits have recently been systematically identified by
immunoprecipitation-mass spectrometry and were shown to repress transcription of genes
involved in cell-cycle control and DNA methylation maintenance (10).
Extensive studies have revealed that the histone modification H3K4me3 is actively asso-

ciated with gene transcription in eukaryotes. In mammalian cells, the interaction of
H3K4me3 with TAF3, a component of general transcription factor TFIID, is important
for the preinitiation complex formation (15). In plants, H3K4me3 is linked to the tran-
scription activation and promotes efficient transcription elongation (16, 17). H3K4me3 is
catalyzed by the methyltransferases embedded in the conserved Complex Proteins
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Associated with Set1 (COMPASS) or COMPASS-like complexes
in yeast, mammals, and plants (18, 19). The COMPASS-like
complex in Arabidopsis contains three structural components
WDR5A, RbBP5 LIKE (RBL), and ASH2 RELATIVE (ASH2R)
(19). There are two homologs of human WDR5, WDR5A, and
WDR5B. The null mutant of wdr5a is lethal in both Arabidopsis
and rice, while no obvious phenotypes of wdr5b mutants have
been reported at present (20, 21). Previous studies have demon-
strated that the interaction of multiple factors with WDR5A,
including transcription factors, chromatin remodelers, and non-
coding RNAs, could promote H3K4me3 deposition and activate
the expression of genes involved in the regulation of flowering,
grain yield, thermo-morphogenesis and endoplasmic reticulum
stress (21–26).
In this work, by taking advantage of forward genetic screen-

ing, we performed comprehensive characterization of BTE1
(barrier of transcription elongation 1), a subunit of the plant
DREAM complex (10) and revealed a transcription repression
mechanism by which the DREAM complex specifically inhibits
transcription of the noncoding RNA HID1-LIKE 1 (HIL1)
gene through its promoter binding in the tandem duplicated
noncoding RNA gene pair, HID1 and HIL1, within 2 kb in
distance. More broadly, DREAM complex containing BTE1
generally represses hundreds of target genes by binding to their
proximal promoters. We showed that BTE1 is recruited to
chromatin of target genes by E2F transcription factors and that
BTE1 inhibits WDR5A enrichment at target genes, resulting in
a decrease in H3K4me3 and Pol II elongation, thus repressing
transcription. Our study suggests that BTE1-WDR5A interac-
tion appears to be a mechanism that contributes to DREAM
complex-mediated transcription repression.

Results

Identification of BTE1 as a Genetic Suppressor of HID1. For
several years, we have studied the conserved noncoding RNA
HID1, which engages in light-dependent biological processes and
functions in transcriptional regulation (27, 28). By performing a
sequence homology search, we identified HID1-LIKE 1 (HIL1)
as a homolog of HID1 (SI Appendix, Fig. S1), which sits 1.8 kb
downstream of the HID1 locus (Fig. 1A). In wild type (WT)
seedlings, the expression level of HID1 exceeds that of HIL1 by
more than five-fold (Fig. 1A). Under normal growth conditions,
the 9-d-old seedlings of hid1 mutants exhibited retarded and
pointed leaf phenotypes (29) (Fig. 1B and SI Appendix, Fig. S2).
Overexpression of HIL1 in the single hid1 mutant suppressed the
hid1 phenotype (Fig. 1 B and C and SI Appendix, Fig. S3A), sug-
gesting the functional substitutability of HID1 and HIL1 during
seedling development.
To further investigate why the expression of HIL1 is controlled

at a lower level compared to the expression of HID1 in chroma-
tin only as close as 1.8 kb, our study began with the attempt to
identify genetic suppressor(s) of HID1 through construction of
an ethyl methane sulfonate (EMS) mutagenesis library of a hid1
Agrobacterium transferred DNA (T-DNA) insertion mutant.
Screening of this library identified a total of five recessive suppres-
sor mutants of hid1. All five mutants showed complete rescue of
the hid1 leaf phenotype to the WT phenotype at the seedling
stage (Fig. 1D and SI Appendix, Fig. S3B). The mutation in each
of the five mutants was found to map to one linkage group,
which we named BTE1 (barrier of transcription elongation 1)
(Fig. 1E). We also showed that hid1 bte1 double mutant seed-
lings phenocopied WT seedlings (Fig. 1F and SI Appendix, Fig.
S3C). Cloning by resequencing confirmed that these five mutant

alleles represented mutations in a single gene: AT2G40630
(BTE1). Further genetic analyses performed with FLAG- and
(green fluorescent protein) GFP-tagged BTE1/hid1 bte1 trans-
genic plants confirmed that BTE1 functioned as a genetic sup-
pressor of HID1 (Fig. 1F and SI Appendix, Fig. S3C).

To examine the effect of the BTE1 mutation in the hid1
mutant, we first checked the expression of HID1 and its homo-
log HIL1. Analysis of the hid1 bte1 double mutant showed that
HIL1 expression was significantly increased in the double
mutant in comparison with WT plants (Fig. 1G). In addition,
further analysis of the hid1 bte1-2 hil1 triple mutant, which
was generated using CRISPR/Cas9 genome editing, indicated
that the triple mutant phenocopied the single hid1 mutant
(Fig. 1 H and I and SI Appendix, Fig. S3D). These results sug-
gest that, in WT plants, BTE1 genetically acts through HIL1
and represses its expression, while HIL1 is highly expressed in
hid1 bte1 double mutants, in which it performs a function
equivalent to that of HID1.

BTE1 Mediates Transcriptional Repression by the DREAM Complex.
An early study in Arabidopsis reported that the WD40-repeat
protein MSI1 (multicopy suppressor of IRA1) coprecipitates
with BTE1 (30). A later study identified BTE1 as DREAM
component 2 (DRC2) (10). To further characterize the func-
tion of BTE1 within the DREAM complex, we examined the
subcellular localization of BTE1. Experiments using plants
expressing BTE1-GFP clearly indicated that BTE1 is mainly
nuclear-localized (Fig. 2A). We further confirmed this conclu-
sion via immunostaining assays using transgenic seedlings
expressing BTE1-FLAG (Fig. 2B). Next, chromatin immuno-
precipitation combined with high-throughput sequencing
(ChIP-seq) analysis using a polyclonal BTE1 antibody gener-
ated in this study (SI Appendix, Fig. S4A) identified 1742
BTE1 peaks that were significantly enriched at the transcription
start sites (TSS) of target genes, including HIL1 (Fig. 2C).
BTE1 occupies euchromatic loci of genes with moderate
expression levels (SI Appendix, Fig. S4 B and C). Our BTE1
ChIP-seq and mRNA-seq analyses together revealed that the
majority of differentially expressed and BTE1-bound genes
showed up-regulated expression in the bte1 mutant (116/118)
(Fig. 2D). We defined a set of BTE1-unbound genes (control
genes) with expression levels similar to those of the 116 BTE1
target genes in WT plants, and we found that the BTE1 target
genes had significantly elevated expression levels in bte1-2
plants in comparison with those of the control genes (Fig. 2E).
These results indicate that BTE1 occupancy is negatively corre-
lated with gene expression.

Pursuing the idea that BTE1 may mediate the transcriptional
repression function of the DREAM complex, we monitored the
impact of BTE1 on Pol II occupancy and global accumulation
of nascent RNA. By performing Pol II ChIP-seq using an anti-
body that recognizes both phosphorylated and unphosphory-
lated forms of Pol II (total Pol II), as well as global nuclear
run-on coupled deep-sequencing (GRO-seq) analyses, we found
that the disruption of BTE1 function caused significant accu-
mulation of Pol II and nascent RNAs on BTE1 target genes
(Fig. 2 F and G), as illustrated by several examples (Fig. 2 H
and I). These results suggest that BTE1 inhibits Pol II activity
and represses target gene expression at the transcriptional level.

BTE1 is Recruited to Chromatin by E2F Transcription Factors.
We next explored how BTE1 is deposited on chromatin by specif-
ically focusing on three dominant suppressor mutations of hid1
(1066A1, 475A2 and 199A1) identified in our aforementioned

2 of 9 https://doi.org/10.1073/pnas.2206075119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2206075119/-/DCSupplemental


genetic screen (Fig. 3A and SI Appendix, Fig. S5). Interestingly,
these single nucleotide polymorphism (SNP) mutation sites were
all positioned in the proximal-promoter region of HIL1 (Fig. 3B),
and analysis of seedlings harboring each of these sites revealed that
HIL1 expression was elevated to a high level similar to that
observed in hid1 bte1 mutants (271A2) (Fig. 3C); none of these
suppressor mutations affected HID1 expression. An mRNA-seq
analysis of seedlings with the 475A2 allele revealed no obvious dif-
ferences in global gene expression compared to WT seedlings (SI
Appendix, Fig. S6). It was highly notable that these three suppres-
sor mutations in the HIL1 promoter region all map to a consensus
cis-element that can be recognized by E2F transcription factor
family members E2FA, E2FB, and E2FC (SI Appendix, Fig. S7).
ChIP-qPCR analysis using BTE1 antibody showed that the BTE1
interaction with HIL1 promoter region were significantly dis-
turbed in hid1hil1-2D and hid1hil1-3D in comparison with WT
(Fig. 3D). Reanalysis of our BTE1 ChIP-seq data using a peak

summit width of 200 bp showed that 36.2% (630/1742) of the
BTE1-occupied genes had a consensus E2F-binding motif present
at their BTE1 binding peak summit (SI Appendix, Fig. S7).

ChIP-seq using BTE1 and E2FA antibodies generated in this
study and mRNA-seq analyses revealed that BTE1 and E2FA
co-occupied 1,304 genes (Fig. 3E and SI Appendix, Fig. S8), of
which 38 were up-regulated by at least 1.5-fold (false discovery
rate < 0.05) in bte1 mutant seedlings and seedlings of a weak
e2f triple mutant (Fig. 3F). These results suggest that BTE1
and E2Fs work together to regulate transcription of these genes.
We next assessed genome-wide chromatin occupation of BTE1
and E2FA and detected significant overlap between BTE1 and
E2FA peaks at the TSS of target genes (Fig. 3G). After con-
firming that BTE1 interacts with E2F transcription factors in
planta (SI Appendix, Fig. S9), we examined the interdependence
of BTE1 and E2FA in chromatin binding. Combined analysis
of our ChIP-seq data showed that although the levels of E2FA
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Fig. 1. bte1 suppresses the retarded and pointed leaf phenotype of hid1. (A) Integrative genomics viewer (IGV) screen shots showing the RNA-seq and ChIP-
seq signals of Pol II, H3K4me3, and H3K27me3 at the loci of HID1 and HIL1. (B) Phenotypes of WT, hid1, and 35S:HIL1/hid1 transgenic seedlings. Scale bar,
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binding to the TSS of its target genes were comparable in WT
and bte1 seedlings, the binding of BTE1 was dramatically
decreased in the e2f triple mutants and bte1-5 mutants, both
globally (Fig. 3 H and I) and at individual loci (Fig. 3 J and K).
Taken together, these results suggest that the dominant sup-
pressor mutations impair the binding of BTE1 to the promoter
of HIL1 thus enhance HIL1 expression, and clearly suggest that
BTE1 is recruited by E2Fs to a subset of target genes, where it
represses their transcription.

BTE1 Facilitates H3K4me2 and Inhibits H3K4me3 Deposition
on its Target Genes. Seeking potential relationship(s) between
distinct epigenetic states and BTE1-mediated gene repression
of BTE1 target genes, we compared the epigenetic features of
BTE1 target and control genes using a variety of publicly avail-
able histone modification profiling datasets (31). Intriguingly,
we found that the density of three histone marks—H2A
histone variant H2A.Z, H3K4me2, and H3K4me1—on BTE1
target genes was obviously higher than the corresponding den-
sity of each mark on the control genes (Fig. 4A), suggesting
that these histone modifications are related to BTE1 binding.
The H2A.Z ChIP-seq analysis revealed that the H2A.Z peaks
downstream of the TSS in the WT plants showed stronger

enrichment at BTE1 target genes in comparison with control
genes (Fig. 4 B and F). Additionally, the extent of H2A.Z
incorporation around the TSS of BTE1 target genes in bte1
seedlings was lower than that of WT seedlings. Along with the
previously reported finding that Caenorhabditis elegans DREAM
promotes H2A.Z incorporation on gene bodies to repress gene
expression (32), our observations suggest that an increased
extent of H2A.Z incorporation is also a feature of plant
DREAM targets.

Interestingly, ChIP-seq analyses examining the effect(s) of
BTE1 on the distribution of H3K4 methylation modifications
showed that BTE1 facilitates H3K4me2 occupancy near the
TSS of BTE1 target genes (Fig. 4 C and F). Given previous
studies reporting that H3K4me2 modifications are not as
strongly correlated with transcriptional activation as H3K4me3
(33–35), our results suggest that deposition of H3K4me2 is
possibly linked with BTE1-mediated gene repression. Mean-
while, BTE1 represses H3K4me3 deposition around 50-end of
83% (97/113) BTE1 target genes (Fig. 4 D and F). In addi-
tion, we found that BTE1 inhibits gene body deposition of
H3K4me1 (Fig. 4E).

We next conducted MNase hypersensitivity sequencing
(MH-seq) (36) to check the chromatin accessibility of DREAM
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complex target genes using the seedlings of WT and bte1 lines,
which enabled us to precisely identify the open chromatin
regions around the TSS of all genes. The chromatin accessibil-
ity of BTE1 target genes was obviously higher than that of the
control genes, and this trend was moderately affected by BTE1
depletion (SI Appendix, Fig. S10 A and C). Moreover, the
repressive mark H3K27me3 was virtually undetectable at the
BTE1 target loci in WT and bte1 (SI Appendix, Fig. S10 B
and C), suggesting that BTE1-mediated repression of transcrip-
tion does not rely on this epigenetic mark. Thus, we speculate
that the mechanism by which the DREAM complex represses
gene expression is related to its inhibition of H3K4me3 deposi-
tion on the chromatin of its target genes.

BTE1 Interacts with WDR5A. We therefore performed yeast two-
hybrid assays to identify BTE1-interacting protein(s) that could
modulate H3K4me3. In the yeast two-hybrid assays, we detected
interaction between BTE1 and WDR5A (Fig. 5A), a WD40-
repeat protein homologous to a human protein that functions as
a scaffold for histone-modifying complex assembly (20, 37). We
further confirmed direct interaction between BTE1 and WDR5A
using bimolecular fluorescence complementation (BiFC) and

coimmunoprecipitation (Co-IP) approaches (Fig. 5 B and C). In
light of our finding that BTE1 does not modulate the expression
or nuclear localization of WDR5A (SI Appendix, Fig. S11), we
investigated the functional interaction(s) between these proteins.
We next examined whether BTE1 affects the chromatin binding
of WDR5A. To profile WDR5A occupancy on chromatin at a
global level, we performed ChIP-seq assays using WDR5A-HA
transgenic lines. In bte1 plants, the occupancy of WDR5A-HA
was dramatically increased at BTE1 target genes, but not at con-
trol genes (Fig. 5 D and G), suggesting that BTE1 can inhibit
WDR5A chromatin binding. Since WDR5a was found to be a
presenter for H3K4me3, the increase of H3K4me3 deposition in
bte1 appears to be resulted from the increased binding of
WDR5a on the proximal promoter of BTE1 targets.

BTE1 Represses Pol II Elongation. Given that H3K4me3 at the
50-end of actively transcribed genes promotes the productive elon-
gation and that the elevated Pol II occupancy specifically
observed at BTE1 target genes in bte1 plants (Fig. 2F), it is plau-
sible that BTE1 disrupts the chromatin binding capacity of Pol II.
We therefore examined whether BTE1 disrupts Pol II initiation
and/or elongation. In yeast and humans, the aforementioned
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Ser5P and Ser2P modifications of Pol II are used as markers to
experimentally distinguish Pol II initiation and elongation,
respectively (38, 39). We conducted additional ChIP-seq analyses
of bte1 plants with antibodies against Ser5P and Ser2P. Consis-
tent with previous reports (40, 41), we observed accumulation of
Ser5P Pol II peaks around the TSS and TTS of BTE1 target
genes in WT plants. A comparison against our matching data for
WT plants showed that bte1 mutants exhibited a slightly dis-
persed peak pattern for Ser5P Pol II occupancy at the TSS of
BTE1 target genes, but a dramatic increase in Ser5P Pol II
occupancy in the gene bodies of such genes (Fig. 5 E and G),
suggesting that BTE1 also plays a role in Pol II elongation in
comparison with its role in Pol II initiation. Consistently, analysis
of the Ser2P Pol II dataset showed significantly increased Pol II
occupancy of the gene bodies of BTE1 target genes in bte1 plants
in comparison with WT plants (Fig. 5 F and G). Together, these
results show that BTE1-mediated repression of transcription of
target genes results from its inhibition of H3K4me3 deposition
and productive elongation by Pol II.

BTE1 was Conserved in Plants and Duplicated After the
β-WGD. To further explore the biological function of BTE1, we
compared the sequence of BTE1 by BLAST in eukaryotic
model organism species. Our BLAST searches indicated that
BTE1 is exclusive to the plant kingdom. Further genomic
homology searches indicated that Arabidopsis BTE1 and its
homolog BTE1-LIKE1 (BTL1), which share 32.48% sequence

similarity at the amino acid level, formed two distinct clades
(Fig. 6A). Furthermore, our phylogenetic analysis indicated
that BTE1 is conserved in the land plants (SI Appendix, Fig.
S12). Specifically, this bootstrap-supported analysis suggested a
single origin of BTE1 and BTL1 in the Brassicales after the
divergence of Carica papaya (Fig. 6B and SI Appendix, Fig.
S13). Comparison of the findings from our analysis for the
period after the Carica papaya divergence with previous evolu-
tionary studies of angiosperms (42) clearly indicated that BTE1
and BTL1 represented a segment pair produced after the β
whole genome duplication (β-WGD) (43, 44).

BTE1 and BTL1 Protect Arabidopsis Seedlings from Genotoxic
Stress. We next conducted mRNA-seq in bte1 and btl1 mutants
and focused on up-regulated genes. The number of up-regulated
genes (261) in the bte1 mutant was greater than that of the btl1
mutant (100) (Fig. 6C). The bte1 btl1 double mutant exhibited
more up-regulated genes (834) than either the btl1 or bte1
mutants (Fig. 6C). Gene Ontology (GO) analysis of the set of
shared up-regulated genes for the bte1 and bte1 btl1 mutants indi-
cated enrichment for terms related to DREAM complex target
genes, including DNA replication, cell cycle, and DNA repair
(Fig. 6D). Taken together, these results suggest that BTE1 and
BTL1 have at least partially discrete functions in regulation of
transcription. Consistently, similar, but not identical, GO terms
were enriched among the set of up-regulated genes shared by the
btl1 and bte1 btl1 mutants. It was also notable that the number
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of genes associated with many of these DNA-related GO terms
was consistently higher in the bte1 btl1 mutants in comparison
with either of the single mutants (Fig. 6D and SI Appendix, Fig.
S14). These findings suggest that BTE1 and BTL1 may form
two partially redundant DREAM complexes, while the DREAM
complex containing BTE1 plays the predominant role in repres-
sing gene expression. In a search for visible phenotypes of bte1
and btl1 mutants, we found that treatment of bte1 (but not btl1)
mutant seedlings with the DNA-damage-inducing agent bleomy-
cin resulted in retarded leaf growth in comparison with that of
WT plants. Bleomycin-treated bte1 btl1 double mutant plants
had a stronger leaf growth retardation phenotype than that of
bte1 plants (Fig. 6 E and F and SI Appendix, Fig. S15). These
findings support the role of BTE1 and BTL1 in response to
DNA damage.

Discussion

This study revealed how a plant-specific component in the
DREAM complex mediates the transcription repression in
Arabidopsis. Through the isolation and characterization of both

recessive and dominant suppressors of hid1, we provide strong
genetic evidence demonstrating that the BTE1 subunit of the
plant DREAM complex acts as a suppressor of HID1 (Figs. 1
and 3). DREAM complex containing BTE1 directly binds to
the promoter of HIL1 to repress its expression. At the genome-
wide level, DREAM complex containing BTE1 represses the
transcription of more than 100 target genes, including genes
involved in control of the cell cycle, DNA replication and
repair, etc. Recruited by E2F transcription factors, the DREAM
complex containing BTE1 acts as a barrier on open chromatin
around the TSS of target genes, inhibiting the chromatin bind-
ing of WDR5A that promotes H3K4me3 deposition and the
occupancy of phosphorylated Pol II complex on BTE1 target
gene bodies, thus represses genes transcription. We found in
this study that H3K4me2 is enriched in the 50 regions of BTE1
target genes and associated with BTE1-mediated gene repres-
sion. While the deposition of H3K4me1 in gene bodies of
BTE1 target genes is inhibited by BTE1 (Fig. 4). Although
previous studies indicated that H3K4me1 is functional associ-
ated with transcription activation at specific loci (45, 46), at
the global level H3K4me1 seems not to be associated with
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activation of transcription (34). How BTE1 regulates the depo-
sition of H3K4me2 and H3K4me1 on its target genes remains
currently unknown and deserves further investigation.
Promoter-proximal pausing, best-characterized in metazoans,

has been shown to be prevalent in the transition from transcrip-
tion initiation to productive elongation on tightly regulated
genes. Factors such as negative elongation factor (NELF) and
DRB sensitivity-inducible factor (DSIF), which physically asso-
ciate with Pol II, have been shown to regulate promoter-
proximal pausing. Plants lack homologs of NELFs, and they
generally do not use the same promoter-proximal pausing
mechanism as animals for gene regulation (41). Alternatively, it
appears that plants have different regulatory systems similar to
promoter-proximal pausing; for example, the transcriptional
corepressor TOPLESS mediates the inhibition of mediator
complex activity at the promoter-proximal region of target
genes to maintain a paused transcriptional state (47, 48). The
inhibition of WDR5A and Pol II elongation by the conserved
transcriptional repressor DREAM complex may represent
another form of promoter pausing. It will be of great interest to
identify the developmental and/or environmental signals that
release DREAMBTE1-mediated gene repression for rapid activa-
tion of gene transcription in the near future.

BTE1 and its paralog BTL1 originated after the β-WGD (Fig. 6),
which occurred around 66 million years ago at the Cretaceous-
Paleocene boundary, during an environmentally harsh transition.
During this period, Earth underwent dramatic environmental
stresses, including cooling, extended darkness, and changes in
atmospheric composition (49, 50). Further analysis of the sub-
functionalization and/or neo-functionalization of BTE1 and
BTL1 in response to environmental stresses will provide insight
regarding the retention of the BTE1/BTL1 gene pair in the Bras-
sicale lineage. This plant-specific evolutionary innovation could
be exploited as an alternative route for developing therapeutic
and biotechnological tools requiring transcriptional-repression.

Materials and Methods

Plant materials and growth conditions, phenotype analyses, suppressor screen and
gene mapping, plasmid construction, and the generation of transgenic plants are
described in SI Appendix, Materials and Methods. The detailed procedures of
northern blot analysis, western blot analysis, confocal microscopy, immunofluores-
cence assay, ChIP assay and library preparation, RNA isolation and RNA-seq library
preparation, GRO-seq, MH-seq, yeast two-hybrid assay, bimolecular fluorescence
complementation assay, coimmunoprecipitation assay, phylogenetic analyses, and
synteny mapping are provided in SI Appendix, Materials and Methods. The primers
and probes used in this study are listed in SI Appendix, Table S1.
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Data Availability. RNA-seq, ChIP-seq, MH-seq, and GRO-seq datasets gener-
ated in this study have been deposited in the Gene Expression Omnibus
(GEO) under accession GSE181489 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE181489) (51). All other study data are included in the article
and/or supporting information.
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