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Abstract Molecular-assisted precision oncology gained tremendous ground with high-throughput

next-generation sequencing (NGS), supported by robust bioinformatics. The quest for genomics-

based cancer medicine set the foundations for improved patient stratification, while unveiling a wide

array of neoantigens for immunotherapy. Upfront pre-clinical and clinical studies have successfully

used tumor-specific peptides in vaccines with minimal off-target effects. However, the low muta-

tional burden presented by many lesions challenges the generalization of these solutions, requiring

the diversification of neoantigen sources. Oncoproteogenomics utilizing customized databases for

protein annotation by mass spectrometry (MS) is a powerful tool toward this end. Expanding

the concept toward exploring proteoforms originated from post-translational modifications (PTMs)

will be decisive to improve molecular subtyping and provide potentially targetable functional nodes

with increased cancer specificity. Walking through the path of systems biology, we highlight that

alterations in protein glycosylation at the cell surface not only have functional impact on cancer pro-

gression and dissemination but also originate unique molecular fingerprints for targeted therapeu-

tics. Moreover, we discuss the outstanding challenges required to accommodate glycoproteomics in

oncoproteogenomics platforms. We envisage that such rationale may flag a rather neglected

research field, generating novel paradigms for precision oncology and immunotherapy.
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Neoantigen-based cancer vaccines: status and mile-

stones for clinical translation

Targeted therapeutics, alone or in combination with chemo

and radiotherapy, have constituted a crucial milestone in the
management of cancer patients, being particularly important
for those at advanced stage facing limited therapeutic options

[1,2]. Over the last ten years, a plethora of antibodies has been
developed targeting proteins overexpressed by cancer cells,
which play key roles in relevant oncogenic pathways and

tumor vasculature development [3,4]. A few antibody-based
treatments have already been introduced in clinical practice
and many more are undergoing the late phase of clinical trials

[5,6]. Cancer antibodies have also been shown to inhibit cancer
growth and spread by blocking key cellular processes and
inducing antibody-dependent cellular cytotoxicity (ADCC),
promoting cancer cell elimination [7]. The introduction of anti-

bodies capable of inhibiting checkpoint molecules responsible
by immune tolerance to cancer cells such as PD-1, PD-L1,
and CTLA-4 has decisively boosted cancer immunotherapy,

showing effective results, especially in combination with chemo
and radiotherapy [8,9].

Currently, many worldwide reference oncological centers

provide comprehensive treatment options, which are elected
according to the molecular features of the targeted lesions
and adjusted to the spatio-temporal evolution over the course
of disease management. However, the enormous potential of

antibody-based targeted therapeutics has been, to some extent,
limited by off-target toxicity and high tumor molecular hetero-
geneity [10]. On the other hand, a pre-existing immunogenic

fingerprint translated by high mutational burden appears to
be a pre-requisite for effective immunotherapies, limiting the
generalization of immune checkpoint inhibitors [11].

The limitations inherent to antibody-based immunotherapy
have prompted a quest for cancer neoantigens, i.e., peptides
(segments of proteins) specifically found on the surface of can-

cer cells. Although classically associated to alterations in pro-
tein primary sequences due to non-synonymous mutations, it
became widely accepted that these neoantigens may also arise
from altered splicing mechanisms, gene fusions, endogenous

retroelements, and other processes occurring at the genome
and transcriptome levels [12–14]. Post-translational modifica-
tions (PTMs) may also decisively contribute to unique cancer

molecular signatures, which can be explored to unleash
immune responses against cancer cells [15,16] (Figure 1).
However, at early stages of neoantigen discovery, the

immunotherapy field has neglected the potential of protein
neoantigens due to tremendous molecular heterogeneity and
limited potential for ‘‘one fits all” pharmacological solutions

[17]. In recent years, the technological readiness of high-
throughput molecular characterization platforms has chal-
lenged this concept. Next-generation DNA sequencing has
allowed rapid tackle of the cancer genome for mutations that

have been subsequently explored in vaccine formulations [18].
Moreover, mass spectrometry (MS) has been used to quantita-
tively characterize cancer neoantigens [19–21], and increasingly

sophisticated bioinformatics tools are aiding in the real-time
identification of most suited protein species to include in vac-
cine formulations [22]. Finally, lab-scale peptide synthesizers

allow real-time production of small quantities of diverse mole-
cules for vaccines under good manufacturing practice (GMP)
conditions, providing an opportunity for vaccine production
in loco [23]. Increasing numbers of improved vaccine delivery
vehicles are also emerging, which are designed to boost immune

responses against otherwise less immunogenic cancer neoanti-
gens [24]. So far, pre-clinical studies in mice support the excel-
lent therapeutic potential of whole genome-based multivalent

cancer vaccines for melanomas and neuroblastomas [25–28].
These solutions have remarkably reduced tumor burden and,
in some cases, completely eradicated tumors in animal models,

while generating an immunological memory capable of pre-
venting metastasis [25–28]. This has provided blueprints on
how such approaches can be translated into clinical applica-
tions in humans. Namely, a phase I clinical trial is ongoing to

evaluate the safety and effect of personalized neoantigen vacci-
nes for pancreatic cancer based on next-generation sequencing
(NGS) and major histocompatibility complex (MHC) affinity

prediction algorithm (NCT03558945). The study hypothesizes
that personalized neoantigen vaccines will be safe and capable
of generating measurable neoantigen-specific CD4+ and

CD8+ T cell responses. Moreover, combination therapies with
immune checkpoint inhibitors have allowed to unleash previ-
ously compromised immune responses in pre-clinical trials

[29,30]. Such findings fostered phase I/II clinical trials focused
on personalized cancer vaccines derived from mutated peptides
in combination with nivolumab and ipilimumab, in patients
with metastatic non-small cell lung cancer, microsatellite stable

colorectal cancer, gastroesophageal adenocarcinoma, and
metastatic urothelial cancer (NCT03953235 and
NCT03639714). These initiatives illustrate the materialization

of precision oncology and will, most likely, constitute the next
cornerstone in cancer management.

While no longer considering blue-sky approaches, the effi-

ciency of patient-tailored cancer neoantigen vaccines is still
challenged by the low mutational frequency presented by many
lesions [31]. More strikingly, comparative genomics has shown

that, in some cases, metastases present a rather limited array of
mutations in comparison to primary lesions [32]. As such,
extending neoantigen discovery beyond peptide identification
based on genomic sequencing stands as the next logical step.

The emerging field of proteogenomics, exploring customized
protein sequence databases by integrating genomics and tran-
scriptomics data, provides a unique tool to interrogate the can-

cer proteome [33]. In fact, the integration of genomics and
transcriptomics is crucial for protein identification, bringing
proteomics one step closer to the exome. Accordingly, paired

genomics, transcriptomics, and proteomics data of samples
from the same tumors have demonstrated that the proteome
contains novel information that cannot be discerned through
genomic analysis alone [34].

An additional level of molecular complexity arises from the
array of PTMs that decisively define protein biophysical and
biochemical properties as well as functional roles. PTMs pro-

vide microenvironmental context and exponentially increase
the number of protein species defined by the exome, leveraging
a more complete view of tumor molecular heterogeneity and

cancer biology [35]. Particularly, glycosylation is amongst the
main PTMs of membrane proteins and it is well established
that cancer cells present altered glycosylation patterns in com-

parison to corresponding healthy tissues [36,37]. A significant
number of studies have also consensually postulated an array
of glycan modifications that appear of pancarcinoma nature
[38,39]. Moreover, many reports advocate that such molecular



Figure 1 Neoantigens generated by modifications at DNA, RNA, and protein levels as well as by PTMs

Cancer cells frequently express unique protein species that are not present in healthy tissues (neoantigens), holding tremendous potential

for targeted therapies and immunotherapy. Neoantigens may derived primarily from alterations in genome but also in RNA processing

and other events underlying protein synthesis. Protein maturation with PTMs, such as glycosylation and phosphorylation, adds a second

layer of specificity, which is valuable toward more effective targeted therapeutics. Beyond genetic alterations, epigenetic regulation plays a

key role in governing gene expression as well as processing, significantly contributing to the formation of a wide array of proteoforms

either directly or indirectly modulating the expression of enzymes involved in PTMs of proteins. Me, methyl; Ac, acetyl; SLeA, sialyl-Lewis

A; SLeX, sialyl-Lewis X; S3T, sialyl-3-T; STn, sialyl-Tn; GPI, glycosylphosphatidylinositol; PTM, post-translational modification.
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features are responsible for generating unique glycopeptide sig-

natures at the cell surface [40]. Identifying these distinctive
cancer-specific glycoproteoforms will provide bispecific (at
the glycan and protein levels) molecular targets, with the

potential to limit off-target effects.
The proof of concept regarding the potential of glycan-

based proteogenomics has been highlighted in two recent stud-
ies, supporting the pursuit of more comprehensive research

efforts [41,42]. As such, this review focuses on illustrating the
role of proteogenomics as a decisive tool for systems biology
and, ultimately, precision oncology. Focus is set on the impor-

tance of addressing protein glycosylation and integrating gly-
comics and glycoproteomics into neoantigen discovery
platforms, envisaging the generalization of cancer vaccines to

tumors of distinct molecular natures.
Oncoproteogenomics toward neoantigen discovery

Cancer biomarker discovery has been mostly centered on the
genome and transcriptome, with less, but growing emphasis,
on the proteome. While the complexity of the tumor genomic

background is being rapidly uncovered by large dimension
sequencing studies [32,43,44], translation of its findings into
resulting proteome remodeling remains poorly understood

and explored. In fact, many reports disclosed a landscape of
genetically relevant alterations and dysfunctional transcrip-
tomes that reflect large numbers of non-synonymous single-
nucleotide variants (SNVs), insertions and deletions (indels),

alternative splicing variants, copy-number aberrations, and
abnormal fusion genes [45]. However, the transcriptome fre-
quently fails to mirror the proteome’s abundance, diversity

[46,47], and consequent functional impact on tumor initiation,
progression, dissemination, and response to treatment. This
has limited the easy translation of elegant transcriptome-

derived patient stratification models into the everyday practice
of most pathology laboratories. It has also delayed the identi-
fication of clinically relevant proteins for rational design of tar-

geted therapeutics. The number of protein surrogates and/or
targetable biomarkers for molecular-based patient stratifica-
tion reaching the clinics remains scarce. The few successful
examples include prostate-specific antigen (PSA) for detection
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[48], carcinoembryonic antigen (CEA) for patient management
and prognosis [49], and CA125/mucin 16 (MUC16), which is a
diagnostic marker and holds potential for targeted therapies

[50], in prostate, colon, and ovarian cancer, respectively.
On the other side of the equation, the initial enthusiasm

with oncoproteomics in the post-genomic era, which started

20 years ago, has been gradually losing ground. This is mostly
due to protein identifications in conventional proteomics
workflows relying on general protein databases that fail to

reflect the uniqueness of the cancer transcriptome [51], limiting
the breadth of identified biomarkers. Oncoproteogenomics has
arisen from the pressing need to correct this discrepancy,
enabling the accurate interpretation of large datasets generated

by modern high-resolution mass spectrometers. Proteoge-
nomics exploits sample-matched genomics and transcriptomics
datasets to customize protein annotation, providing definitive

proofs of protein translation [52]. The most used approaches
for generating protein databases include whole-genome or
exome sequencing, with emphasis on six-frame translation of

whole genome sequences, which enables the identification of
previously undiscovered exons and open reading frames [53].
Available exon annotations on the human genome may also

be explored to generate junction sequences for all possible
exons in a gene. DNA/RNA sequencing is also available to
obtain SNV data and corresponding tumor-specific protein
sequences [54].

When applied to cancer, proteogenomics is an exciting new
concept, which attempts to detect tumor-specific changes in
proteoforms that result from mutations or an altered tran-

scription process, rather than solely focusing on improving
proteome characterization (Figure 2). Over the past five years,
these methodologies have become sufficiently mature to sup-

port the transition from proof of concept studies in cell lines
and animal models to large-scale translational studies using
human samples. Several examples show how oncoproteoge-

nomics may complement and improve on the molecular sub-
typing and prognostication of breast [55], gastric [41],
colorectal [46], and ovarian [56] tumors beyond previous
genomics- and transcriptomics-based patterns. Most of these

reports provide proteome-based networks highlighting func-
tional protein nodules for targeted intervention. Furthermore,
the depth of tumor proteogenomics profiling has led to the

identification of breast cancer protein neoantigens that result
from previously undescribed gene variants and non-coding
gene regions, defying old paradigms and expanding our under-

standing of cancer molecular biology [20]. Such molecular sig-
natures are possibly the consequence of significant cancer
genome instability and arise as strong candidates for
immunotherapy.

Despite several examples of considerable technology
readiness, when facing clinical translation, some outstanding
challenges persist for oncoproteogenomics. Perhaps the most

pressing difficulty relates to the fact that databases of putative
protein sequences derived from genomics experiments are sig-
nificantly larger than those explored in conventional pro-

teomics, which dangerously increases the probability of false
positives during protein annotation. Moreover, the incorpora-
tion of large genomics datasets into proteomics poses a signif-

icant computational challenge, translated by long processing
times and frequently high false discovery rates [57]. This is fur-
ther aggravated by the low relative abundance of peptide
sequences derived from genetic abnormalities over protein
species arising from genomics predictions. Alternatively,
libraries inferred directly from RNA-seq, expressed sequence
tag (EST), and cDNA bring us one step closer to the exome,

while significantly reducing the amount of generated data in
comparison to whole-genome sequencing [58]. Furthermore,
transcriptome-generated databases allow the proteomic identi-

fication of RNA editing products, splice junctions, and fusion
proteins. Nevertheless, oncoproteogenomics continues to be a
fast-evolving field, and more detailed information on the

opportunities and limitations of analytical and bioinformatics
tools to assist database customization and accommodating
genomics information can be found in recent reviews [59,60].
Another key aspect is the capacity to translate proteogenomics

data into relevant targets for immunotherapy. This aspect has
been elegantly tackled by several computational pipelines to
elect peptides with higher binding affinity to MHC-I molecules

[61–63]. Moreover, neural networks exploiting annotated data
on the binding kinetics of known peptides are being used to
refine these models to estimate cancer neoantigen affinity to

a wide array of different MHC classes and haplotypes, provid-
ing means for a more educated election of suitable immuno-
gens [64–66]. However, even if a peptide has strong MHC

binding prediction, this may be ineffective if upstream process-
ing such as proteolysis prevents the actual loading of that pep-
tide. Accordingly, several software are now available to aid
prediction of proteasome specificity and protease cleavage

sites, including NetChop20S, NetChopCterm, and Pro-
teaSMM for MHC class I antigens, and PepCleaveCD4 and
MHC-II-NP for MHC class II antigens, offering a second level

of predicted peptide quality control [67–70]. The notion that
many predicted neoantigens may never constitute proteolysis
products capable of being presented by MHC has again

prompted proteomics. MHC molecules and associated pep-
tides are currently being isolated from different cancers for
tandem mass spectrometry (MS/MS) identification, generating

key data for training machine learning algorithms to improve
neoantigen prediction [71]. The thorough accomplishment of
such goals will be decisive for translating oncoproteogenomics
into clinically useful targets. Finally, critical challenges persist

concerning the capacity of oncoproteogenomics to infer on rel-
evant functional mechanisms adopted by cancer systems at
multiple biological scales, ultimately pinpointing key biologi-

cal network nodes for intervention [72]. A plethora of reports
shows that this goal requires a comprehensive understanding
of PTMs [39,73]. PTMs are key for defining and regulating

protein functions, degradation pathways, and even cellular
locations, and many times play an essential role in the signal-
ing pathways that define cell fate [72]. PTMs, such as phospho-
rylation, methylation, and glycosylation, are pivotal in the

rapid modulation of protein functions in response to microen-
vironmental cues, providing potential links between metabolic
alterations and protein activity [74]. Therefore, incorporating

PTMs into oncoproteogenomics setups will bring us one step
closer to systems biology settings, even though at the expenses
of a new set of interdisciplinary analytical challenges.

PTMs are often of a transient nature, but exponentially
increase the number of proteoforms, raising problems for
accurate protein identification. Such dynamics are often

accompanied by a complex and non-templated molecular
organization, as is the case of glycosylation. As a result, more
than half of the spectral information generated by MS/MS
experiments usually remains unassigned due to the presence



Figure 2 Integrated multiomics data toward discovery of potential clinically relevant biomarkers and targeted therapeutics

Oncoproteogenomics concerns genomics and transcriptomics data from tumor samples, which is used for generating customized

databases, to support protein annotation. The inclusion of glycomics information in the workflow allows more effective protein

identification by MS/MS, including glycosylation site mapping, illustrating its value to gain insight on molecular information that cannot

be achieved by the other omics toward precision oncology. Overall oncoproteogenomics is supported by several bioinformatics tools,

which also contributes for identification of more suitable antigens toward cancer vaccines. WGS, whole-genome sequencing; SNV, single-

nucleotide variant; indel, insertion and deletion; MS/MS, tandem mass spectrometry; HexNAc, N-acetylhexosamine; Hex, hexose.
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of PTMs, as elegantly demonstrated by Chick and his col-
leagues [75]. The accommodation of these subtleties requires
an adaptation of conventional proteomics protocols, namely

the incorporation of pre-enrichment methods and different
separation techniques, inclusion of a diversified array of pro-
teases and other enzymes prior to MS analysis, diversification

of MS ionization and fragmentation methods, and dedicated
bioinformatics analysis [76]. In addition, the physicochemical
alterations resulting from PTMs may decisively interfere with

MS-based protein identification at different levels. It is widely
known that acid groups and other hydrophilic species are
detrimental to ionization and might reduce the identification
of modified peptides by electrospray analysis, which is used

by the bulk of modern mass spectrometers [77]. Nevertheless,
this effect may be significantly attenuated by the acidic buffers
generally used in proteomics experiments to produce positive

charged species at lower pH. It may also be compensated by
the very high sensitivity and resolution of modern spectrome-
ters, particularly when coupled to liquid chromatography (LC)

operated in nano-settings. Another critical aspect is PTM site
annotation. Site assignment is particularly challenging because
MS/MS experiments involving modified peptides often origi-

nate fragment ions that are not accurately identifiable by the
bioinformatics tools used in routine proteomics workflows.
In fact, conventional proteomics search algorithms can
dynamically accommodate several anticipated modifications

but fail to identify peptides carrying unknown alterations
[75]. And even the identification of peptides carrying
expectable modifications may not be straightforward. Com-

mon database search algorithms face difficulties to score with
high-confidence complex fragment ion spectra quite often con-
taining information on PTM neutral loss or non-canonical

fragmentation pathways [78]. This difficulty is generally over-
come by resorting to the combination of different MS/MS
fragmentation strategies [79,80]. Nevertheless, recent advances

in bioinformatics tools have generated reliable analytical plat-
forms capable of supporting large dimension studies at this
level. A key example is the generalization of the Byonic soft-
ware, which has been used as a more reliable tool for glycopro-

tein and glycopeptide annotations [81,82].
Despite such challenges, there are already some demonstra-

tions upholding the decisive role of PTM monitoring for

patient stratification. Most studies have explored phosphoryla-
tion to demonstrate its decisive role for pinpointing relevant
disease-associated molecular pathways and how this informa-

tion may be comprehensively fit into clinical models to
improve patient management [56,83,84]. Histone acetylation
has also been explored to gain insight on endometrial carcino-
genesis, foreseeing new therapeutic approaches [85]. Emerging

reports now point out the need to include protein glycosylation
to gain insight on different levels of molecular information
that cannot be deciphered by genomics, transcriptomics, and

proteomics alone [37,39]. Previous studies have shown the sig-
nificance of glycosylation for patient stratification and identifi-
cation of novel biomarkers and therapeutic targets [41,42]. As

example, altered sialylation and fucosylation have been used to
improve the predictive value of PSA [86–88]. Targeting sialyl-
Tn (STn) glycoforms of plasminogen in the serum of patients

holds potential for non-invasive clinical diagnosis of individu-
als with gastric precancerous lesions [89]. Also, MUC16-STn
was identified as an independent predictive biomarker of
decreased response to chemotherapy in bladder cancer,
whereas MUC16 and STn alone were not [90]. Furthermore,
by greatly extending the number of identifiable cancer-
specific proteoforms, PTMs will retrieve unforeseen cancer

neoantigens to support cancer vaccine development based on
a more comprehensive approach.

Cancer glycosylation for precise cancer targeting

Glycosylation is the most abundant and structurally complex

PTM of membrane-anchored and secreted proteins. Despite
presenting a non-templated structural nature, it is subjected
to strict cellular regulation, rapidly responding to physiologi-
cal alterations and distinct pathological contexts. As such, gly-

can heterogeneity reflects the harmonized activity of nucleotide
sugar transporters, glycosyltransferases, and glycosidases in
the endoplasmic reticulum (ER) and Golgi apparatus (GA)

[36]. Altered glycogene expression, loss of cellular homeostasis,
including metabolic shifts impacting in nucleotide sugar avail-
ability, and alterations in subcellular localization of glycosyl-

transferases and glycosidases are amongst the main events
driving changes in glycan chains in cancer cells [36,91]. On
the other hand, loss-of-function mutations in glycogenes are
not frequent and have therefore little impact on the establish-

ment of this malignant glycophenotype [92]. The main classes
of cell surface glycans are O-N-acetylgalactosamine (O-
GalNAc) glycans, set up in the GA through the attachment

of a GalNAc to serine (Ser) or threonine (Thr), and
N-glycans, initiated in the ER with the addition of an oligosac-
charide moiety to an asparagine (Asn) residue in a peptide con-

sensus sequence of Asn-X-Ser/Thr (X corresponding to any
amino acid except proline) [36]. Glycans are further processed
throughout the secretory pathways according to the cellular

repertoire of glycosyltransferases, glycosidases, and substrates.
This may comprehend branching and/or elongation of core
structures, sialylation, and termination with Lewis blood
group-related antigens or ABO(H) blood group determinants,

amongst other epitopes. Sialic acids may be further modified
by O-acetylation, and galactose (Gal) and GlcNAc by sulfa-
tion, greatly expanding the complexity of the glycome [36].

Mature glycans may still experience structural remodeling by
extracellular glycosyltransferases and glycosidases freely circu-
lating in the plasma or carried by platelets, further increasing

the breadth of its structural dynamics [93]. It is likely that this
may also occur at the surface of cancer cells in solid tumors,
which has not yet been demonstrated.

Glycans are crucial in early steps of protein biosynthesis
and maturation, ensuring quality control of protein folding
and contributing to define protein conformation and func-
tional roles. Alterations in the composition of glycan chains

and the distribution and the density of glycosites in proteins
are common in cancer [39]. Glycomics studies of different nat-
ure and involving a wide number of distinct types of cancer

have consistently demonstrated that more aggressive cancer
cells increase the degree of protein sialylation and N-glycan
branching [36,91]. Concomitantly, glycoproteins may lose the

capacity to present elongated O-glycans, thus acquiring simple
cell glycophenotypes translated by the accumulation of short
glycoforms such as the Tn, STn, and T antigens [94–96]. These
events induce major phenotypic alterations toward enhanced

cell motility and cell invasion and activate relevant oncogenic
pathways, namely the EGFR and ErbB2 receptors [95–99].
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The expression of truncated glycans further impacts the inter-
actions of cancer cells with the immune system. Examples
include STn antigen recognition by Siglec-15 on macrophages

and dendritic cells, and sialyl-T (ST) antigen recognition by
Siglec-9 on neutrophils and Siglec-7 on natural killer cells
[100]. These interactions trigger an array of inhibitory signals

on antigen-presenting cells, ultimately precluding T cell-
mediated responses against tumor cells, as demonstrated by
recent studies [101,102]. It is likely that a deeper understanding

of functional interactions between glycans and glycoconjugates
with immune system intermediates may constitute the next
cornerstone for immune checkpoint inhibition and, poten-
tially, a more rational design of cancer vaccines. Cancer cells
also often overexpress sialylated Lewis antigens such as
sialyl-Lewis A (SLeA) and X (SLeX). These are terminal epi-

topes of glycan chains in proteins and glycolipids that play a
decisive role in cancer cell hematogenous dissemination by
interacting with E-selectin on activated endothelial cells

[103]. Moreover, they promote cancer cell adhesion to platelets
through P-selectin and lymphocytes through L-selectin, which
are critical aspects to support survival in circulation and evade

immune responses [104]. There are many other examples of
how glycans impact key cancer hallmarks, as elegantly high-
lighted by recent reviews [39,105].

There are numerous studies associating STn, SLeA, and

other glycoforms with worst prognosis and metastatic spread
[106,107]. Notably, STn and SLeA glycans are rarely expressed
by healthy tissues, where they are confined to cells specialized

in secretion across the lumen of the gastrointestinal and respi-
ratory tracts as well as in secreted mucins, acting as a protec-
tive barrier against pathogens and contributing to

immunological homeostasis [37,108]. These glycans are also
not expressed in blood cells in circulation, standing as poten-
tial biomarkers [109,110]. This has prompted their exploitation

with relative success for targeted therapeutics and
immunotherapy in pre-clinical and clinical settings, with
emphasis on chimeric antigen receptor T (CAR-T) cells and
cancer vaccines, as reviewed recently [111,112]. Namely,

CAR-Ts designed against cancer cells expressing the Tn and
STn antigens hold potential toward this objective, given their
restricted expression pattern in healthy human tissues

[111,113]. On the other hand, glycan-based vaccines, while cap-
able of inducing high antibody titters, have not been able to
induce effective and long-lasting cellular immunity against

tumors [114,115].
To this date, the establishment of immunization strategies

capable of overcoming the low immunogenicity and immuno-

suppressive nature of cancer-associated glycans remains an
outstanding challenge. However, the concept of neoantigens
does not apply to glycans alone, [116] with the only known
exception coming from the incorporation of N-

glycolylneuraminic acid (Neu5Gc; sialic acid) from dietary
sources such as red meat, which induces the formation of
xenoantigens in human glycan chains [117]. Neoantigen signa-
3

Figure 3 Zooming in on the sugar coating of cancer cells has

provided the identification of glycoproteins holding potential for

targeted therapies

SLeA, a terminal glycan epitope of glycolipids and membrane

glycoproteins, is commonly overexpressed in gastric tumors and is

an important ligand of E-selectin, playing a key role on E-selectin-

mediated disease dissemination. Exploring the SLeA proteome

allows to increase specificity and overcome some expression

associated with non-malignant conditions. NCL-SLeA, a well-

known mislocalized protein in cancer, has emerged as a top-

ranked targetable glycoprotein at cell membrane in gastric cancer

and a potential E-selectin ligand. Moreover, only the protein

glycoform was associated with decreased overall survival, showing

the added value of glycosylation for biomarker discovery. NCL,

nucleolin; NCL-SLeA, nucleolin-sialyl-Lewis A glycoform;

NCLmem, nucleolin expressed at the cell membrane.
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tures may be obtained from glycopeptides, granting bispeci-
ficity both via the glycan and the peptide chain [118,119]. Sup-
porting this hypothesis, glycoarray-based studies have

identified autoantibodies against distinct mucin variable tan-
dem repeat glycoproteoforms in the serum of cancer patients
[120,121]. Autoantibodies showed cancer-specific recognition
of targeted glycans, regardless of disease-associated variations
in glycan density and distribution in peptide chains, supporting
the existence of molecular fingerprints of disease that should be

explored for cancer targeting. Accordingly, understanding the
repertoire of glycans stands out as a decisive step for zooming
in on the cancer glycoproteome. We have recently explored



Ferreira JA et al / Glycoproteogenomics in Cancer 33
this approach to demonstrate the presence of unusual glyco-
proteins at the cell surface, such as the case of nucleolin
(NCL) [122]. NCL is mostly confined to the nucleus of healthy

cells, but it may migrate to the cell surface where it appears
glycosylated in different types of solid tumors [122–126]
(Figure 3). These are striking observations since NCL presents

neither hydrophobic transmembrane domains nor a targeting
signal to the cell membrane that could justify glycosylation
[127]. The mechanisms governing this protein mislocalization

remain to be fully elucidated; nevertheless, it becomes clear
that this cancer-specific alteration presents enormous potential
for precise targeting. Many similar examples have been
reported in the literature, which set an important novel para-

digm for biomarker research and can be comprehensively
explored in the future [128–130].

When taking into account the relevance of integrating gly-

can information into protein surrogates, there are several
examples on how considering cancer-associated glycoforms
of classical biomarkers has improved their clinical value

(PSA, MUC16, CEA, and CD133) [86,90,131–133]. Moreover,
focusing on glycans on HER2, PD-1, and PD-L1 has allowed
to provide important footprints for patient stratification, bet-

ter predict treatment response, and improve the efficacy of
therapeutic antibodies [102,134–139]. In summary, glycosyla-
tion provides functional and microenvironmental contexts to
cell membrane proteins, and targeting glycosylated moieties

may lead to previously unforeseen glycoproteomics signatures
at the cell surface, paving the way toward disease-specific
glycoproteoforms.

Glycomics and glycoproteomics: concepts, strategies,

and challenges facing biomarker discovery

The comprehensive combination of glycomics and glycopro-
teomics will be crucial toward the identification of novel cancer

biomarkers of clinical value, with emphasis on unforeseen
cancer-specific signatures reflecting molecular alterations at
3
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the genome, transcriptome, proteome, and metabolome levels.
Glycomics addresses the repertoire of glycans in a biological
system and is a critical milestone for identification of glyco-

neoantigens. MS is by far the most widely used analytical tool
in a field that has been progressing fast, backed by the increas-
ing sensitivity and resolution of mass spectrometers [140,141].

Moreover, important steps have been made toward protocol
standardization [142], automatization [143], and bioinformat-
ics [144], setting the foundations for carbohydrate metrology.

However, despite intense research and robust proofs of con-
cept, the implementation of MS-based glycome signatures in
clinical practice has yet to be established and poses significant
analytical, clinical, and regulatory difficulties, namely the lack

of well-defined glycan standards as well as biased reproducibil-
ity resulting from a wide array of MS architectures. Notably,
lectin microarrays of variable architectures have been pro-

posed as high-throughput alternative technologies, which
may be particularly important in the context of liquid biopsies,
but of limited use for glycoantigen discovery [145]. Facing

mature technology, the field should now push toward a com-
prehensive, large-scale interrogation of the human glycome.
This will decisively prompt our understanding of glycan diver-

sity in health and disease, including the foundations to asser-
tively tackle the glycoproteome.

Glycomics

Glycan analysis poses a significant analytical challenge due to
its non-templated and structural heterogeneity and frequent
co-existence of isomeric/isobaric structures in the same sample

[146,147]. MS remains the gold standard technique, but sup-
port from nuclear magnetic resonance (NMR), complementary
enzymatic methods, and immunoassays may be required for

more detailed structural elucidation. Typical protocols initiate
with the selective release of glycans from glycoproteins by
either enzymatic or chemical methods. N-glycans are isolated

by peptide-N-glycosidase F (PNGase F) or PNGase A diges-
he identification of potential targetable glycobiomarkers
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tion, whereas O-GalNAc glycans are obtained by reductive
b-elimination through chemical methods [148].

Focusing on N-glycans, PNGase F digestion has the advan-

tage of tagging substituted Asn residues in protein chains,
facilitating downstream glycosite identification by glycopro-
teomics [149]. This can be achieved in proteins in solutions,

immobilized in polyacrylamide gels, and even in tumor
sections [150–152]. However, the immobilization of purified
glycoproteins or protein mixtures on polyvinylidene fluoride

(PVDF) membranes prior to enzymatic and chemical treat-
ments significantly facilitates glycan release from minute
amounts of biological material (nano-femtomole) [153]
(Figure 4A). Notably, PNGase F works well for glycoproteins,

whereas PNGase A is more recommended for deglycosylation
of glycopeptides [154,155]. Moreover, PNGase A differs from
PNGase F in the fact that it is able to cleave N-linked glycans

with or without a(1,3)-linked core fucose residues, whereas
PNGase F is incapable of cleaving glycans showing this
particular structural feature [156]. Glycans may then be

directly analyzed by MS in their native form, providing an
overview on the main classes of available structures. Alterna-
tively, they may be resolved by LC into isomeric structures,

as advocated by glycomics consensus guidelines [157]. The
upfront identification of regioisomers may be accomplished
by LC–MS/MS using different types of columns [hydrophilic
interaction (HILIC) [158], zwitterionic interaction, porous

graphitized carbon (PGC) [159], or C4-C18 reverse phase
[160]]. However, complementary sample treatment with siali-
dases and other specific exoglycosidases may be necessary for

more detailed structural characterization of complex stereoiso-
mers. A promising approach to overcome this limitation is to
include ion mobility spectrometry (IMS) as an additional

gas-phase separation dimension, which will probably consti-
tute routine in a near future [161]. Glycans may be derivatized
prior to analysis to facilitate chromatography and improve

ionization properties. The most popular, well-established,
and widely applied derivatization method is permethylation,
allowing to address both N- and O-glycans at an omics scale.
Permethylation stabilizes labile sugars such as fucose and sialic

acids, preventing fucose migration and enabling detection by
soft ionization methods, such as matrix-assisted laser desorp-
tion/ionization (MALDI) and electrospray ionization (ESI)

[162,163]. Moreover, it renders glycans more hydrophobic,
thus facilitating separation by conventional C18 reverse phase
LC columns and positive ionization by both MALDI and ESI,

and improving sensitivity. Another popular derivatization
approach for N-glycans comprehends reductive amination,
which resorts to labels such as 2-aminobenzamide or
2-aminobenzoic acid, allowing fluorescence detection and

quantification [164]. The introduction of fluorescent tags has
also permitted the construction of MS-independent platforms
for rapid N-glycomics, crucial for the generalization of

glycomics analysis at a wider scale. Other less explored
approaches for quantitative analysis of N-glycans include iso-
baric tags, such as aminoxyTMT [165] and QUANTITY [166].

These tags can be conjugated with the reducing end of
N-glycans, allowing their quantification byLC–MSusing report
ions. Currently, underivatized glycan analysis has been gaining

ground with the introduction of PGC–LC columns that allow a
good separation of isomeric structures. Moreover, important
steps have been made toward standardization, with the recent
establishment of PGC–LC–MS N-glycan retention libraries
and elution mapping resources [167]. While the field evolves
toward less time-consuming PGC platforms, permethylation
still remains by far the most used derivatization method for

glycan analysis at the micromolar scale. In addition, product
ion spectra of permethylated glycans are greatly informative
by providing ions derived from both glycosidic linkages and

cross-ring fragmentations [168,169], and several libraries exist
for the interpretation of LC chromatograms [160,170].

Analysis of O-glycans has been particularly challenging due

to the lack of enzymatic approaches. In fact, until recently
O-glycosidase was the only available enzyme to address this
objective. However, this enzyme catalyzes the removal of core
1 and core 3 O-linked disaccharides from glycoproteins but

does not act on more elongated O-glycans that are commonly
found in human cell glycome [171]. Notably, O-proteases, such
as StcE (acting on mucins) and OpeRATOR, have been

recently introduced for studying O-glycopeptides [172,173],
holding true potential to improve sequence coverage, glycosite
mapping, and glycoform analysis. Accordingly, O-glycomics

analysis still relies on chemical methods that often degrade
the protein backbone and thus significantly reduce the sensitiv-
ity of analysis. However, addition of a reducing agent in the

most widely employed O-glycan release strategy, reductive
b-elimination, prevents the glycan degradation resulting from
‘‘peeling reactions”. The limitation of lacking enzymatic
approaches has been recently addressed by the introduction

of a semi-quantitative method that exploits a mimetic of the
Tn antigen (benzyl-GalNAc) as a scaffold to determine the
structure of more extended glycan chains [174,175]. Moreover,

it increased sensitivity of analysis by 100–1000 folds when
compared to chemical methods and identified a more complex
repertoire of O-glycans [174]. However, while extremely ele-

gant, this technique is limited to cell culture-based approaches,
being unsuited to support studies in vivo or ex vivo. In addi-
tion, many new tools have been introduced in the recent years

to overcome several limitations associated with the analysis
and quantification of both N- and O-glycans. For example,
solid-phase chemoenzymatic approaches have been proposed
to improve N- and O-glycomics [176–178] and several chemical

methods have been introduced for easy identification of differ-
ent types of sialic acid linkages in glycan chains (a2,3, a2,6,
a2,8, or a2,9) [179], which are decisive for defining functional

traits. Overall, MS has paved the way for functional glycomics
and glycobiomarker discovery. In this context, another major
achievement was the introduction of MS imaging, which

enables analysis in situ using fresh but also formalin-fixed
embedded tissues with high sensitivity [180,181]. The general-
ization of this approach confers spatial resolution to glycomics
and glycoproteomics studies and paves the way for more

robust and context-customized glycoproteomics (Figure 4B).
Collectively, the field has reached the maturity to support
large-scale multiomics studies.
Glycoproteomics

The bulk of genetic and epigenetic alterations in protein glyco-

sylation pathways occurring in cancer cells are reflected on the
cell surface [182,183]. These include changes not only in the
structure, length, and charge of glycan chains but also in the

abundance and occupancy of glycosites in a protein, which
decisively shape protein functions and concomitantly provide



Ferreira JA et al / Glycoproteogenomics in Cancer 35
molecular signatures for targeted therapeutics and
immunotherapy [39,91,184]. Providing information on the nat-
ure and abundance of glycosylated proteins, as well as on the

distribution and composition of glycosites for a given biologi-
cal milieu, has been the subject of glycoproteomics. Neverthe-
less, cell membrane glycoproteins constitute a small portion of

the proteome [185]. A sample pre-enrichment for the glycans of
interest, guided by a prior knowledge of the glycome, is often
elected as the starting point to overcome this limitation

[90,122]. Samples may be pre-enriched for species of interest
by physical methods, immunoprecipitation, and affinity chro-
matography targeting specific glycans with antibodies or lec-
tins, prior to analysis by MS [80,122,186]. Digestions with

glycosidases may also be introduced to generate desired gly-
costructures for lectin affinity chromatography prior to MS
analysis. As a typical example, many studies addressing glyco-

proteins carrying short-chain STn antigens in cancer employ
sialidases to generate the Tn antigen, enabling enrichment with
the Vicia villosa agglutinin (VVA) lectin [90]. A similar ratio-

nale has been used to enrich samples for proteins carrying
ST antigens using the peanut agglutinin (PNA) lectin [187]
(Figure 4C). Building on these protocols, in the last decade,

Vakhrushev et al. [80] developed an elegant strategy for
high-throughput identification of O-GalNAc glycosites by
exploiting genome editing technologies. This strategy is based
on knockout of COSMC (C1GALT1-specific chaperone),

which restricts O-glycosylation to the simplest Tn and STn
antigens suitable for VVA enrichment [80,186]. This
simplification of cell glycosylation has allowed to overcome

O-glycosylation heterogeneity, facilitating MS/MS-based
glycopeptide identification, which significantly contributes to
expanding current knowledge of human O-glycoproteome

[80,186].
MS coupled to LC using nano-flow stands as the gold stan-

dard technique for glycoprotein annotation from minute

amounts of starting material [188]. The development of highly
Figure 5 Onco-glycoproteogenomics toward safer and more effective

The comprehensive combination of the different omics is crucial f

Moreover, it will allow a thorough understanding of microenvironm

rational design of targeted therapeutics.
sensitive and accurate mass spectrometer analyzers enabled
deep proteome mining, providing the identification and quan-
tification of a vast array of proteins and peptides while simul-

taneously informing on their PTMs [141]. Currently, standard
ionization methods for protein and PTM analyses involve
MALDI and nano-ESI. Additionally, the employment of

hybrid mass analyzers, such as quadrupole time-of-flight
(QTOF), time-of-flight/time-of-flight (TOF/TOF), ion trap/or-
bitrap (IT/Orbitrap), and quadrupole/orbitrap (Q/Orbitrap),

which allow MS/MS experiments, has contributed to increas-
ing confidence in protein identification and accurate mapping
of PTM sites [76]. Moreover, the new generation of mass spec-
trometers with a tribrid architecture, namely combining quad-

rupole, linear ion trap, and orbitrap mass analyzers, will
enhance protein coverage, improve fragmentation, and pro-
vide more comprehensive identification and characterization

of proteomes [189].
Protein and PTM identification by MS can be achieved by

different strategies. The most widely used approach consists in

a bottom-up analysis of peptides derived from the digestion of
proteins with different proteases by nanoLC–MS/MS. Con-
ventionally, C18 reverse phase columns have been shown to

be sufficiently versatile for chromatography prior to MS
[190]. However, HILIC chromatography enables good separa-
tion of glycopeptides from protein mixtures, as well as efficient
separation between neutral and sialoglycopeptides, while

allowing more efficient structural characterization, mainly in
the presence of a neutral or zwitterionic stationary phase
[191,192]. Noteworthily, glycosylation often renders proteins

less prone to proteases, limiting the success of these
approaches [193]. As such, many studies combine different
broad-spectrum proteolytic enzymes to increase protein cover-

age and the chances of glycopeptide identification. Alterna-
tively, the middle-down approach enables the analysis of
large peptides resulting from mild proteolysis [194]. Finally,

top-down analysis contemplates the identification of intact
immunotherapy and precision oncology

or discovery of unforeseen tumor unique molecular signatures.

ental and functional contexts of glycoproteoforms, toward the
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protein mass by MS followed by direct ion dissociation in the
gas phase [195]. Relative and absolute quantification of pro-
teins and PTMs has been classically achieved by 2-DE, before

MS-based approaches emerged [196]. MS-based methods
involve stable isotopic metabolic labeling [stable isotope label-
ing by amino acids in cell culture (SILAC) and stable isotope

labeling with amino acids in mammal (SILAM)] and post-
metabolic labeling [isobaric tags for relative and absolute
quantification (iTRAQ), tandem mass tag (TMT), and

isotope-coded affinity tag (ICAT)] [197]. However, with the
increased resolution and sensitivity of modern mass spectrom-
eters, label-free quantification (LFQ) methods have been gain-
ing ground. These methods generally include the

computational analysis of MS ion intensity, spectral counting,
chromatogram peak area determination, or targeted
approaches, such as selected reaction monitoring (SRM)

[197]. MS/MS, with different fragmentation methods, provides
more structural information, such as glycosites. Collision-
induced dissociation (CID) is the most used and easily

available ion fragmentation methodology. It consists in the
collision of selected molecular ions with an inert gas (argon,
nitrogen, or helium), leading to the fragmentation of proto-

nated amide linkages, while frequently favoring neutral loss
of glycan moieties [198]. Although capable of providing signif-
icant information on peptide sequence, CID does not provide
ideal diagnostic ion information for the identification of

glycopeptides. Contrastingly, electron capture dissociation
(ECD) induces preferential cleavage of peptide backbones at
the N-Ca bond, preventing the glycan-associated neutral loss,

and thus being a better approach for glycopeptide identifica-
tion [199]. More recently, electron transfer dissociation
(ETD) was developed, showing many similarities with ECD;

however, it can be performed in ion trap mass spectrometers
or even in QTOF type instruments [200]. Moreover, high-
energy collision dissociation (HCD) was implemented essen-

tially in orbitrap platforms. Although similar to CID, in
HCD, fragmentation is carried at higher collision energies,
ensuring accurate glycopeptide diagnosis through the genera-
tion of typical glycan oxonium ions [201]. Lastly, electron-

transfer/higher-energy collision dissociation (EThcD) is a
hybrid dissociation method, resulting from combination of
ETD and HCD. It provides higher peptide sequence coverage

by simultaneously providing HCD diagnostic glycan ions and
ETD-derived peptide fragments with preserved information on
modification sites, facilitating PTM site assignment [202].

Namely, it has shown promising results for glycoproteomics
analysis by providing both glycan and peptide fragment spec-
tral information through cleavage of amide and glycosidic
linkages [203]. Regardless of the methodological approach

selected for protein identification, there is still a gap between
protein identification and biomarker discovery. In silico
approaches have revealed more accurate assignments and iden-

tified relevant glycobiomarkers for clinical translation [204].
This strategy encompasses several bioinformatics tools to val-
idate protein identification (SequestHT, Proteome Discoverer,

and SwissProt database), glycosylation sites (NetNGlyc and
NetOGlyc), biological functions (Panther, STRING, Cytos-
cape, and UniProtKB), and associations to histological data

(Oncomine and The Human Protein Atlas) [204] (Figure 4C).
Recently, a novel in silico prediction approach for mucin-
type O-GalNAcylation termed ISOGlyP (https://isoglyp.utep.
edu/) has also been introduced to assist the identification of
potential glycoproteins [205]. Moreover, Byonic software has
emerged as a powerful tool toward automated identification
of glycopeptide mass spectra, at level of glycosite modification.

It allows the use of a generic glycan list, composed by a wide
array of N- and O-glycan structures, or a customized list for
search and identification of modified peptides. Nevertheless,

it still requires manual validation [81,82]. In summary, given
the large panoply of methodological approaches, it is now pos-
sible to personalize workflows toward more accurate access to

cellular and tissue glycome and glycoproteome, ultimately
facilitating clinical translation.
Glycoproteogenomics: a new concept in the cross-

road between nucleic acids, proteins, and carbo-

hydrates

The full characterization of the glycoproteome remains a
daunting analytical enterprise whose success is directly linked

to the level of understanding about the nature of proteoforms
and glycoforms. The array of proteoforms available for glyco-
sylation is dependent on the genome and the subsequent events
that culminate in protein synthesis and maturation [35]. On the

other hand, glycosylation is not a direct gene product, but
rather the result of a highly regulated process mediated by a
wide array of glycosyltransferases, glycosidases, chaperones,

and sugar donors along protein secretory pathways [39]. As
such, not a single omics can accurately predict glycoproteome,
making it necessary to adapt conventional strategies to accom-

modate molecular information of distinct origins. This has
been, to some extent, partially minimized by shaping conven-
tional proteomics workflows to accommodate the presence of

glycans. However, significant amounts of glycoproteomics
data generated by nanoLC–MS/MS runs remain undeciphered
due to the lack of genome-customized protein databases used
for protein annotation.

Glycoproteogenomics is a rather novel concept that
attempts to bridge genes, proteins, and PTMs to bring new
awareness to protein functions and ultimately provide

targetable protein nodes (Figure 5). To our knowledge, the
concept was first explored by Rolland et al. [42] in 2017, by
integrating N-glycoproteomics and transcriptome sequencing

to identify relevant signaling networks and therapeutic targets
in lymphomas. In the following year, Mun et al. [41] combined
mRNA, protein, phosphorylation, and N-glycosylation data to
identify different subtypes of diffuse gastric cancer in young

populations. PTMs are particularly important for defining
subtypes associated with immune- and invasion-related path-
ways. However, the term glycoproteogenomics was only for-

mally introduced by Lin et al. [206] in a study concerning
human serum a-2-HS-glycoprotein. The authors have demon-
strated correlations between gene polymorphisms and changes

in glycosylation for this protein [206]. A wide variability of
proteoforms was also observed, suggesting need for quantita-
tive profiling to foresee improved biomarkers for different dis-

ease states. Taken together, these studies elegantly highlight
the pivotal role played by glycans in human biology and the
importance of associating different omics for improved cancer
biomarkers. However, it remains crucial to progress beyond

incrementality toward more integrated and interconnected
approaches.

https://isoglyp.utep.edu/
https://isoglyp.utep.edu/
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In a broader sense, we conceptualize that glycoproteoge-
nomics addresses the protein species resulting from a wide
array of events, including gene polymorphisms and mutations,

differential transcription, and glycosylation occurring in bio-
logical milieus. These events generate a wide number of glyco-
proteoforms for the same protein, which require integrated

analytical workflows for comprehensive characterization. Pro-
teogenomics has led the way by providing the conceptual
framework to accomplish this goal. Adapting current

approaches to accommodate the structural diversity of glycans
and the physicochemical subtleties introduced by glycosylation
in proteins will be the next logical step toward glycoproteoge-
nomics. We anticipate that genomics and glycomics-

customized protein identification methods will be crucial for
understanding the role of glycoproteins in cancer. The identi-
fication of unforeseen molecular signatures is plausible to pave

the way for neoantigen discovery and novel therapeutics.
Concluding remarks

Novel sources of cancer neoantigens are urgently needed to
address cold tumors, showing low mutational frequencies, lack
of T cell infiltration, and poor response to current immune

checkpoint inhibitors. Glycans are essential components of
biological systems that hold enormous potential toward this
end, since they are present at the cell surface and can be easily

targeted by ligands of different natures, including lectins of the
immune system. Nevertheless, they are often neglected in the
context of biomarker research facing the enormous amount

of information on the cancer genome, transcriptome, and pro-
teome. The technological readiness of high-throughput geno-
mics and proteomics platforms has not only prompted

cancer neoantigen discovery but also led to the generation of
effective cancer vaccines. Moreover, genomics, transcrip-
tomics, and more recently, proteogenomics have improved
the molecular subtyping of human tumors and currently con-

stitute a paramount framework toward precision oncology.
Nevertheless, zooming in on the glycoproteome of cancer cells
backed by a profound understanding about the cancer gly-

come may provide yet unforeseen molecular signatures, consti-
tuting another crucial milestone toward systems biology.
However, mapping of the glycoproteome cannot be achieved

without bridging different sources of information. It becomes
imperative to systematize procedures to bring together geno-
mics and transcriptomics information, enabling the accurate

customization of proteomics databases with the integration
of cancer-specific gene polymorphisms and alternative splicing
transcripts. It is also mandatory to integrate PTMs that deci-
sively define molecular functions. In this sense, glycosylation

holds tremendous potential, as it provides well-known glycan
cancer signatures and confers functional and metabolic con-
texts to the membrane proteome. Furthermore, setting the

aim in cancer glycoproteogenomics-derived peptide identifica-
tion will provide bispecific neoantigens. This wish list comes
with outstanding computational challenges, aiming at integrat-

ing and extracting information from multiple layers of data.
Nevertheless, it will undoubtedly unveil novel and even unex-
pected molecular signatures, providing a more thorough
understanding of biological systems, improved tumor classifi-

cation capacity, and a more rational design of personalized
cancer therapies.
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