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Abstract

Objective: The importance of the central and peripheral serotonin systems in

regulating energy balance and obesity development has been highlighted in animal

models. Yet, the role of both serotonin systems has not been systematically

assessed in humans. The purpose of this study was to investigate the association of

genes within both serotonin systems with obesity outcomes in black adolescents.

Methods: African–American adolescents (n = 1052) whose mothers participated

the Memphis New Mother's Study were assessed. In total, 110 polymorphisms

mapped to 10 serotonin genes were examined for their associations with stan-

dardized body mass index (BMI‐z) scores and waist circumferences using general-

ized estimating equation models.

Results: Over 39% of adolescents were overweight or had obesity. Three single

nucleotide polymorphisms (SNPs) within TPH2, HTR3B, and SLC6A4, were signifi-

cantly associated with BMI‐z scores (p < 1.7 � 10−3). Two SNPs in TPH2 were

nominally associated with waist circumferences. One SNP in HTR2C was associated

with BMI‐z scores (p = 0.001) and waist circumferences (p = 0.005) only in girls.

Tissue‐specific expression indicates that three identified genes are predominantly

expressed in the brain.

Conclusion: The central serotonin system may play a key role in obesity develop-

ment in black adolescents. Future studies are warranted to explore additional se-

rotonin system genes and their potential obesogenic mechanisms in humans.
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1 | INTRODUCTION

Recent studies in rodents have shed light on the important role of the

serotonin (5‐hydroxytryptamine [5‐HT]) pathways in the develop-

ment of obesity.1–3 5‐HT in the central nervous system has been

identified as participating in the regulation of appetite, food intake,

and glucose homeostasis in the hypothalamus and the brain stem

nucleus of the solitary tract.4,5 It also modulates the thermogenic

function in brown adipose tissue through the sympathetic system.2 In

addition to a role in the central 5‐HT system, 5‐HT derived from the

peripheral tissues has recently been discovered to modulate lipid

metabolism, hepatic glucose production, and energy expenditure.1,3

In particular, potential obesogenic mechanisms involved in the pe-

ripheral 5‐HT system include regulation of the browning process,
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thermogenesis, and lipolysis in adipose tissues and energy expendi-

ture in skeletal muscles. The broad effects of the central and pe-

ripheral 5‐HT systems on energy homeostasis have driven a growing

interest in their potential as weight loss therapeutic targets.

5‐HT is synthesized from l‐tryptophan through the activity of

tryptophan hydroxylases (TPHs).6 TPH1 is predominantly expressed

in peripheral tissues, such as intestinal enterochromaffin cells,

pancreatic and liver cells, and adipose tissue, whilst TPH2 is primarily

expressed in the brain. The function of 5‐HT is mediated though

binding to different serotonin receptors (HTRs, seven subfamilies),

expressed on neurons or in peripheral tissues. The availability of 5‐
HT further regulated by its reuptake through the transporter enco-

ded by the SLC6A4 gene and catabolized by monoamine oxidase.7

Since the5‐HTsystems play an important role in energy regulation
in rodent models, this role may also be conserved in humans. Exami-

nation of variations within the 5‐HT system genes may identify a

contribution to the development of obesity in humans. To date, the

most frequently assessed genetic variations within the 5‐HT systems
related to obesity are located at the SLC6A4 gene, although findings

are not consistent.8–14 Variations in SLC6A4 have also been linkedwith

obesogenic eating behaviors, such as appetite, energy intake, dis-

inhibited eating, and emotional eating.9,15–17 In addition to SLC6A4,

several 5‐HT receptor genes and TPHs, including HTR1B,18,19

HTR2A,20–23 HTR2B,24 HTR2C,11,18,20,25–27 HTR6,28 HTR7,19 TPH1, and

TPH224,29 have also been assessed for potential associationswith body

weight measures and/or eating behaviors. However, the majority of

the results have been inconsistent.

Although multiple genes within the 5‐HT systems have been

examined for their associations with obesity, individual studies have

typically focused on one or two genes within the systems and have

not systematically evaluated if both the central and peripheral 5‐HT
systems play a role in obesity development in humans. Therefore, the

purpose of this study was to investigate the association of genetic

variants mapped to ten genes within the central and peripheral 5‐HT
systems with obesity outcomes in African‐American adolescents, a

group with a high prevalence of obesity. Genes within both central

and peripheral 5‐HT systems were hypothesized to be associated

with obesity outcomes.

2 | METHODS

2.1 | Study design and population

African–American adolescents (n = 1168) whose mothers partici-

pated the Memphis New Mother's Study (NMS) were included in this

study initially.30,31 In brief, NMS was a randomized controlled trial

that investigated the effect of the nurse–family partnership home

visiting program on pregnancy outcomes and maternal and child

health. The original cohort of women and their offspring were

assessed at an 18‐year follow‐up assessment between 2008 and

2013. During the assessment, saliva samples and sociodemographic

data were collected from two groups of offspring: 600 index children

who were born during the initial NMS study and 568 subsequent

children who were born within 5 years of the index children. The

NMS study and the current study were both approved by the

university Institutional Review Board.

2.2 | Anthropometric, sociodemographic, and
lifestyle measures

Height, weight, and waist circumference were measured in each

offspring. Age‐ and sex‐specific body mass index (BMI) percentiles

and standardized BMI (BMI‐z) scores were calculated according to

the Centers for Disease Control growth curve data (https://www.cdc.

gov/nccdphp/dnpao/growthcharts/resources/sas.htm). Because the

current study focused on adolescents, offspring participants whose

ages were more than 20 years old were excluded (n = 41). Smoking

was reported as smoking during the past 6 months (yes or no).

Alcohol intake was categorized based on the times of drinking during

the past month (0, 1–2, >2). Illicit drug use was reported as usage of
illicit drug during the past month (yes or no). Education was divided

according to whether participants graduated from high school or

passed high school equivalency (yes or no). Parity was grouped based

on the number of live births delivered by the female participants (0,

1, >1); male participants were coded as “0.” Participants (n = 14) with

missing data on anthropometric and sociodemographic measures

were also excluded.

2.3 | Genotyping of genes with the serotonin
pathways and ancestry informative markers

Saliva samples were collected using Oragene collection and preser-

vation kits (DNA Genotek). DNA was extracted following the man-

ufacture's standard protocol. A total of 109 single nucleotide

polymorphisms (SNPs) and the 5‐HTTLPR polymorphism mapping to

ten 5‐HT pathway genes, including TPH1, TPH2, SLC6A4, HTR1A,

HTR1B, HTR2A, HTR2B, HTR2C, HTR3A, and HTR3B were assessed

using the Illumina GoldenGate assay (see Table S1).32 SNPs were

excluded from the analyses, if (1) genotype call rate <0.8, (2) minor
allele frequency <1%, (3) Hardy–Weinberg equilibrium test of

p < 1 � 10−4. Additionally, five participants were excluded from the

subsequent children group because they were identical twins and had

relatively lower genotyping rates.

To avoid spurious genetic associations resulting from the popu-

lation structure, 186 ancestry informative markers (AIMs) were

genotyped and AIMs scores were generated to represent partici-

pants' ancestry make‐up and population structure.32 To reduce het-

erogeneity, participants with minimum African ancestry scores were

excluded (scores < 0.05; n = 39 index children; n = 17 subsequent

children). The remaining adolescents had African ancestry scores

between 0.394 and 0.968. The AIMs scores were also used as

covariates in the subsequent genetic analyses to control population

structure.
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2.4 | Statistical analysis

Obesity outcomes included BMI‐z score and waist circumference.

Waist circumference was transformed (1/[square of waist]) to fit a

normal distribution. BMI percentile was not included as an obesity

outcome because its transformations did not fit a normal distribution

(Kolmogorov–Smirnov test p < 0.001). Covariates, including age,

gender, education, parity, smoking, alcohol intake, illicit drug use,

maternal treatment status during the initial NMS study, and AIMs,

were adjusted in the analyses due to their potential effects on

obesity measures. Adolescents from the initial maternal treatment

and control groups were combined for the genetic analyses because

maternal treatment status was not significantly associated with ad-

olescents' obesity measures (p = 0.63).

Descriptive statistics were used to summarize the characteristics

of the participants. Generalized estimating equation (GEE) models

were used to control family cluster and examine the association of

SNPs with obesity outcomes. Three genetic models (i.e., additive,

dominant, and recessive) were assessed separately. Bonferroni‐
adjusted significance level (p < 1.7 � 10−3) was used to correct for

multiple testing with ten genes and three genetic models. Addition-

ally, identified SNPs were assessed in the two adolescent groups,

respectively. SNPs mapped to the HTR2C gene were analyzed in

males and females, separately, because it locates on the X chromo-

some and its inheritance pattern and genetic effect may be different

between males and females. All analyses were conducted using

STATA 15.0.

To assess the combined effect of the 5‐HT pathway on obesity

outcomes, genetic risk score (GRS) was created using the identified

SNPs (calculation of the GRS is described in Table S1). GEE was used

to estimate the association of GRS with BMI and waist circumference

adjusting for covariates.

2.5 | Functional inference

Functional relevance of the identified SNPs was annotated using

HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/

haploreg.php). Tissue‐specific expression pattern was assessed using

GTEx portal (https://gtexportal.org). Ontological analysis of each

annotated gene was conducted using ToppFun (https://toppgene.

cchmc.org/enrichment.jsp).

3 | RESULTS

3.1 | Participants characteristics

There were 1052 African–American adolescents who were included

in the final analysis. Their ages ranged from 14 to 19 years old

(Table 1). Over 39% of adolescents (n = 413) were within the cate-

gory of overweight or obesity. The prevalence of overweight and

obesity was more common in girls than in boys (48.3% vs. 29.6%;

p < 0.001). Average waist circumference was 31.8 inches with a

range between 22 and 59 inches. Among all of the adjusted de-

mographic and behavior risk factors, only sex was significantly

related to BMI‐z scores (p = 0.0001).

3.2 | Association of serotonin pathway genes with
obesity outcomes

Three SNPs, rs11179071 close to TPH2, rs2276307 in HTR3B, and

rs9903062 in SLC6A4, were significantly associated with BMI‐z
scores (p < 1.7 � 10−3) (Table 2). One SNP, rs7055144 in HTR2C,

was only associated with BMI‐z scores (p = 0.001) in adolescent girls.

Each copy of the minor allele (A) of rs11179071 increased BMI‐z
score by 0.24 (95% confidence interval [CI]: 0.12–0.35). Each copy

of the minor allele (G) of rs2276307 decreased BMI‐z score by 0.26
(95% CI: −0.41 to −0.1). The AA genotype of rs9903062 was asso-

ciated with higher BMI‐z scores than the AG and GG genotypes

(b = 0.63, 95% CI: 0.54–0.72). When adolescents with overweight/

obesity were compared to those with normal weight, each copy of the

minor allele (A) of rs11179071 increased the odds of overweight and

obesity (additive genetic model, odds ratio = 1.31/allele, 95% CI:

1.02–1.68). Each copy of the minor allele (G) of rs2276307 decreased

the odds of overweight/obesity (additive genetic model, odds

ratio = 0.58/allele, 95% CI: 0.42–0.81). The odds ratio of the AA

genotype of rs9903062 was not estimated due to limited number of

adolescents with overweight/obesity carrying AA alleles. In adoles-

cent girls, the carriers with CC alleles of rs7055144 had higher BMI‐z
scores (recessive genetic model, b = 0.16, 95% CI: 0.06–0.25) and

higher odds of overweight/obesity than those with CT and TT geno-

types (odds ratio = 1.37, 95% CI: 1.1–1.71). When these SNPs were

assessed in the index and subsequent children separately, they were

also nominally significantly associated with BMI‐z scores with

consistent coefficient direction both in the index and subsequent

children groups, except for rs7055144 in the subsequent children

group (p = 0.08).

None of the SNPs were significantly associated with waist

circumferences after adjusting for multiple testing. Two SNPs,

rs11179071 and rs10506647 in TPH2, were nominally signifi-

cantly associated with waist circumferences with consistent co-

efficient direction in the entire adolescents, the index, and the

subsequent children groups, respectively (p < 0.05, Table 2). Also,

rs7055144 in HTR2C was nominally associated with waist cir-

cumferences in adolescent girls (p = 0.005). The minor allele (A)

of rs11179071 and CC alleles of rs7055144 were associated with

increased waist circumferences, consistent with their associations

with BMI‐z scores (waist circumferences were inversely trans-

formed). The carriers of the TT genotype of rs10506647 had

higher waist circumferences than those with the TC and CC

genotypes.

Unweighted GRS was created using the identified SNPs,

rs11179071, rs2276307, rs9903062, and rs10506647, to assess the

accumulative effect of the serotonin pathway on obesity outcomes.
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The SNP, rs7055144, was not included in the GRS calculation due to

its distinct impact on girls and not on boys. The range of the GRSs

was from 0 to 4. The GRSs were significantly associated with BMI‐z
scores (p < 0.0001; Figure 1A). A higher score was associated with a

greater BMI‐z score (b = 0.26, 95% CI: 0.17–0.36) and increased risk

of overweight/obesity (odds ratio = 1.49, 95% CI:1.21–1.83). The

GRSs were also positively significantly associated with waist cir-

cumferences (p < 0.0001; Figure 1B).

3.3 | Ontological analysis of the identified SNPs and
genes

Functional relevance of the five identified SNPs and SNPs in linkage

disequilibrium (LD; R2 ≥ 0.8) was analyzed using HaploReg. Three

SNPs, rs2276307, rs9903062, and rs10506647, and SNPs in LD

reside within promoter histone markers, enhancer histone markers,

or DNAse hypersensitive regions. Tissue‐specific expression levels

were analyzed using GTEx portal for the four identified 5‐HT
pathway genes, TPH2, HTR3B, SLC6A4, and HTR2C. Three of these

genes, except for SLC6A4, are predominantly expressed in the brain.

Ontological analyses were also conducted for these 5‐HT pathway

genes using ToppFun. These genes were associated with obesity

related human diseases and mouse phenotypes, such as appetite,

body temperature, activity, and stress (Figure 2).

4 | DISCUSSION

The purpose of this study was to assess the relationship between

the serotonin pathway and obesity outcomes in African–American

adolescents. The results indicated that four 5‐HT pathway genes,

TPH2 (rs11179071, rs10506647), HTR3B (rs2276307), SLC6A4

(rs9903062), and HTR2C (rs7055144) were associated with BMI‐z
scores. The GRSs that combined the effects of the identified SNPs

was also significantly associated with BMI‐z scores and waist

circumferences. Specifically, adolescents with higher GRSs had

increased odds of overweight and obesity and larger waist cir-

cumferences. Functional analysis indicated three identified SNPs

are located within cis‐regulatory elements and possibly participate

in transcription regulation of relevant genes. In addition, the

majority of the identified genes are prominently expressed in the

brain, which implies the potential role of the central 5‐HT
system in the development of obesity in African–American

adolescents. The obesogenic mechanisms that these 5‐HT
pathway genes are likely to be involved in eating regulation,

TAB L E 1 Participants' characteristics at 18 years' follow‐up assessments

Characteristic

Total (n = 1052) Index (n = 514) Subsequent (n = 538)

No. (%) p No. (%) p No. (%) p

Weight outcome

Obesity 228 (21.7) – 115 (22.4) – 113 (21.0) –

Overweight 185 (17.6) – 100 (19.5) – 85 (15.8) –

Waist circumference (inches), mean (SD) 31.8 (5.4) – 31.5 (5.4) – 32.0 (5.5) –

Demographic and lifestyle characteristics

Age, mean (range) 17.8 (14–19) 0.59 18.4 (17–19) 0.07 17.2 (14–19) 0.61

Male 507 (48.2) 0.0001 240 (46.7) 0.006 271 (50.4) 0.008

Maternal treatment (intervention group) 301 (28.8) 0.63 155 (30.2) 0.61 148 (27.8) 0.90

Smoking (yes) 192 (18.3) 0.51 110 (21.4) 0.98 82 (15.2) 0.76

Alcohol

1–2 Times 181 (17.2) 0.53 109 (21.2) 1.0 72 (13.4) 0.77

>2 Times 43 (4.1) 0.07 33 (6.4) 0.19 10 (1.9) 0.17

Drug use (yes) 501 (47.7) 0.36 250 (48.7) 0.45 251 (46.7) 0.74

Parity

1 Live birth 75 (7.1) 0.64 37 (7.2) 0.39 38 (7.1) 0.15

>1 Live births 20 (1.9) 0.83 15 (2.9) 0.72 5 (0.9) 0.13

Education (high‐school degree) 274 (26.1) 0.18 201 (39.1) 0.18 73 (13.6) 0.58

Note: Obesity was determined by BMI percentile ≥95. Overweight was determined by BMI percentile ≥85 and <95. p Value is estimated from the GEE

models on BMI‐z score controlled for AIMs.

Abbreviations: AIM, ancestry informative marker; BMI, body mass index; BMI‐z, standardized BMI; GEE, generalized estimating equation; SD, standard

deviation.
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body temperature modification, sleep alteration, physical activity,

and stress response.

Specifically, TPH2 participates in the biosynthesis of 5‐HT in the

brain.6,33 A previous study examined a SNP (rs4570625) in TPH2 in

patients with Prader–Willi syndrome, a genetic disorder linked to

morbid obesity, and identified the risk allele was associated with

hyperphagia.29 In the current study, two SNPs, rs11179071 and

rs10506647, mapped to TPH2 were potentially associated with

obesity outcomes in African–American adolescents. Studies con-

ducted using mouse models revealed that Tph2 knockout mice

(Tph2‐/‐) displayed decreased food intake and reduced body

weight.34 Conditional knockout Tph2 in caudal 5‐HT neurons also

affected appetite.35 Hence, the two identified SNPs within TPH2 may

be involved in the modification of energy balance by regulating eating

behaviors, such as appetite and satiety.

HTR3B encodes a subunit of 5‐HT type 3 receptor and is highly

expressed in several brain regions, such as the amygdala, caudate,

and hippocampus.36 Previous studies have shown variations in

HTR3B were associated with substance dependence and antiemetic

therapy.37,38 The results indicated that the SNP, rs2276307, within

an intron region of HTR3B might contribute to BMI variability in

African–American adolescents. A potential obesogenic mechanism

involving 5‐HT type 3 receptor is appetite regulation. Ontological

analysis indicated that HTR3B was associated with anorexia. A study

in rats also found that hindbrain 5‐HT could induce hypophagia by

activation of 5‐HT3 and 5‐HT2C receptors.39

F I GUR E 1 (A) Scatter plot and box plots of the distribution of standardized body mass index (BMI‐z) residuals according to genetic risk
scores; and (B) scatter plot and box plots of the distribution of waist circumference residuals according to genetic risk scores. The residuals

were estimated using linear regression in the index children controlling for all covariates
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SLC6A4 encodes 5‐HT transporter which terminates the action

of 5‐HT by uptake into cells or presynaptic neurons.40 With regards

to obesity, SLC6A4 is the most frequently assessed gene within the 5‐
HT systems. Several genetic variations mapped to this gene have

been examined, which include an insertion/deletion variant within

the 5‐HT transporter linked polymorphic region (5‐HTTLPR),8,9,11–13

and a 17‐bp variable number of tandem repeats sequence in the

second intron (Stin2).8,10,13 5‐HTTLPR was assessed in this study.

Previous findings on this polymorphism were not consistent. Some

studies found the S/S genotype was associated with higher BMI 9;

some studies identified the opposite association 11,13; and the others

found no association.8,12 In this study, the 5‐HTTLPR polymorphism

was not significantly associated with obesity outcomes. Yet, the mi-

nor allele (A) of rs9903062 within SLC6A4 was associated with

increased BMI in a recessive genetic model. Previous studies found

SLC6A4 was implicated in energy intake, stress induced appetite for

sweets, ability to control food intake and emotional eating.9,15–17 In

SLC6A4 knock out mice, 5‐HT reuptake is absent and 5‐HT concen-

tration is markedly reduced.41 These mice also present decreased

food intake but increased body fat and insulin resistance.42,43

Therefore, modification of eating behaviors may be potential obe-

sogenic mechanisms in which the genetic variations within SLC6A4

are involved.

HTR2C is located on chromosome X, which encodes a G‐protein
coupled 5‐HT receptor. This receptor is predominantly expressed in

the brain, particularly nucleus accumbens, caudate, hypothalamus,

and putamen according to the GTEx database. This 5‐HT receptor is

involved in the modulation of pro‐opiomelacortin neurons and the

release of CRH and subsequently regulation of corticosterone.4

Therefore, HTR2C receptor plays a role in the regulation of appetite

and eating behavior. It also plays a role in insulin sensitivity and

glucose homeostasis.44 HTR2C receptor has been previously associ-

ated with weight gain induced by atypical antipsychotics.45 A HTR2C

receptor agonist, lorcaserin (recently withdrawn from the market due

to potential relationship to cancer), was approved by FDA for weight

loss treatment. Previous studies have assessed the association of

SNPs within HTR2C with outcomes related to obesity or weight loss.

In this study, rs7055144 was associated with BMI‐z scores and waist
circumferences in female but not male African–American adoles-

cents. Alternatively, Li et al.20 did not find a significant association of

this SNP with BMI in adult European Americans. However, the as-

sociation of rs7055144 was not assessed separately by sex in their

study. Another SNP, rs6318, has been frequently examined in pre-

vious studies with mixed results.11,20,25 In the current study, rs6318

was not significantly associated with obesity outcomes, which was

consistent with the findings from a recent meta‐analysis on this

SNP.14

Several strengths and limitations need to be considered when

interpreting the results from this study. A strength of the current

study was that multiple SNPs within ten 5‐HT system genes were

assessed with a relatively homogeneous sample of African–American

adolescents. Additionally, spurious genetic associations potentially

arising from population structure were minimized by controlling for

the AIMs. A major limitation of this study is that several 5‐HT re-

ceptor genes, such as HTR1D, HTR1E, HTR6, and HTR7 were not

genotyped and consequently were not assessed in this study,

although common genes involved in the 5‐HT systems were assessed.
Future studies including more 5‐HT genes are suggested to further

F I GUR E 2 The identified 5‐HT pathway
genes linked to obesity related human diseases

and mouse phenotypes. The rainbow segments
represent 5‐HT pathway genes. The orange
segments represent phenotypes in humans. The

blue segments represent phenotypes in mice.
The ribbons represent the associations between
genes and phenotypes. 5‐HT,
5‐hydroxytryptamine ; IGF‐1, insulin‐like
growth factor 1; Temp, temperature
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validate the role of central and peripheral 5‐HT systems in the

development of obesity.

5 | CONCLUSION

The findings from this study suggest a potential role of the central 5‐
HT system in the development of obesity in African–American ado-

lescents. Future studies are warranted to validate current results and

explore potential obesogenic mechanisms associated with the 5‐HT
systems in humans.
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