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a b s t r a c t

This study introduces an innovative contour detection algorithm, PeakCET, designed for rapid and effi-
cient analysis of natural product image fingerprints using comprehensive two-dimensional gas chro-
matogram (GC � GC). This method innovatively combines contour edge tracking with affinity
propagation (AP) clustering for peak detection in GC � GC fingerprints, the first in this field. Contour edge
tracking significantly reduces false positives caused by “burr” signals, while AP clustering enhances
detection accuracy in the face of false negatives. The efficacy of this approach is demonstrated using
three medicinal products derived from Curcuma wenyujin. PeakCET not only performs contour detection
but also employs inter-group peak matching and peak-volume percentage calculations to assess the
compositional similarities and differences among various samples. Furthermore, this algorithm compares
the GC � GC fingerprints of Radix/Rhizoma Curcumae Wenyujin with those of products from different
botanical origins. The findings reveal that genetic and geographical factors influence the accumulation of
secondary metabolites in various plant tissues. Each sample exhibits unique characteristic components
alongside common ones, and variations in content may influence their therapeutic effectiveness. This
research establishes a foundational data-set for the quality assessment of Curcuma products and paves
the way for the application of computer vision techniques in two-dimensional (2D) fingerprint analysis
of GC � GC data.
© 2024 The Author(s). Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Natural products, rich in essential oils, play a significant role in
the cosmetics industry [1]. These products also serve as medicinal
materials, offering prevention and treatment for various diseases
[2,3]. In this context, hundreds of phytochemicals deliver thera-
peutic effects in specific proportions [4]. However, the accumula-
tion of secondary metabolites is heavily influenced by genetics and
climate, echoing the well-known “Nanju Beizhi” phenomenon
where environmental changes affect oranges [5]. Additionally,
ethnic medicine reveals intricate patterns of “multiple medicines
from a single plant” and “one medicine from multiple botanical
sources” [6,7]. Consequently, finding a “Rosetta stone” to improve
the quality of medicinal materials is a challenging task, especially
with the increasing demand for efficacy and safety [8e10].
n1976@xtu.edu.cn (M. He).
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Over the past two decades, the fingerprinting strategy has
emerged as a practical approach for assessing the quality of me-
dicinal materials [11e16]. Nonetheless, relying solely on one-
dimensional (1D) separation techniques for natural products
leads to issues such as co-elution of similar compounds and chal-
lenges in detecting trace compounds. Comprehensive two-
dimensional gas chromatography (GC � GC) has advantages such
as high peak capacity, and has found extensive applications in
pharmacy, herbal medicine, and food-omics [17e20]. The detectors
in conjunction with GC � GC, such as the time of flight mass
spectrometry (TOF MS), quadrupole mass spectrometry (qMS),
quadrupole time of flight mass spectrometry (qTOF MS), and flame
ionization detection (FID), have seen increasing use in medicinal
material analysis. This includes work on Artemisia annua, vetiver,
Cyperus rotundus, among others [21e24].

Data mining from two-dimensional (2D) fingerprints is a key
area of study for chemometric scholars [25e28]. The core challenge
lies in quickly and accurately detecting 2D peaks and extracting
relevant information. Traditional methods, such as the drain
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algorithm, often lead to over-segmentation due to noise artifacts
[29]. For instance, Peters et al. [30] adapted 1D chromatography
algorithms for modulated peak detection, employing a decision
tree for clustering and merging into 2D peaks. Viv�o-Truyols [31]
also used a conventional 1D peak detection algorithm, followed by
Bayesian posterior probability calculations for optimal peak
arrangement combinations. Kim et al. [32] introduced a normal-
exponential Bernoulli (NEB) model for defining peak regions,
peak selection, and subsequent merging based on mass spectral
similarities. However, these existing algorithms, primarily based on
1D peak detection methods, struggle with noise sensitivity and
difficulty in detecting overlapping peaks, presenting significant
challenges in GC � GC analysis of complex samples like essential
oils.

Advancements in computer vision, a branch of artificial intelli-
gence that interprets information from visual inputs, have led to
remarkable progress in image analysis [33], the food industry [34],
remote sensing image registration [35], and scientific instrument
“fingerprint” data. Yeap et al. [36] combined computer vision with
gas chromatography/differential mobility spectrometry (GC/DMS)
data for chemical signature alignment across datasets. The use of
speeded up robust features (SURF) detection and fast library for
approximate nearest neighbors (FLANN) matching algorithm has
been effective in evaluating the similarity of GC�GC fingerprints of
Chinese patent medicines [37]. Recently computer vision based on
pattern recognition algorithmoffer enhanced trackingof untargeted
Fig. 1. The parsing process of comprehensive two-dimensional gas chromatogram (GC � GC)
(contour edge tracking and mass spectra clustering). 2D: two-dimensional; I: the scanning p
number of modulations. TIC: total ion chromatogram.

2

and targeted fingerprints [38]. However, challenges remain in
reducing false positives/negatives and detecting overlapping peaks.
Fully exploiting MS data, such as using subwindow factor analysis
andmass spectral information for peak alignment, is another hurdle
[39,40]. Hierarchical clustering has been beneficial in natural
product discovery [41,42] and microbial classification [43,44].

This research introduces a new algorithm, PeakCET, for 2D peak
(depicted in vertical view as contour) detection assisted by mass
spectra clustering. Following a specific flowchart (Fig. 1), PeakCET
effectively addresses over-segmentation and overlapped peak
(contour) detection. It is applied to GC � GC fingerprints of three
medicinal products derived from Curcuma wenyujin Y. H. Chen et C.
Ling. PeakCET also facilitates comparative analysis of GC � GC data
between Radix/Rhizoma Curcumae Wenyujin and other Radix/Rhi-
zoma Curcumae samples from different botanical origins.

2. Material and methods

2.1. Materials

Three medicinal products (Rhizoma Wenyujin Concisum, Rhi-
zoma Curcumae Wenyujin, and Radix Curcumae Wenyujin) were
collected from the same plant (Curcuma wenyujin Y. H. Chen et C.
Ling) in TaoshanTown, Rui'an, China. These samples were identified
by Zhuzhou Institute for Food and Drug Inspection, China. Other
samples of Radix Curcumae and Rhizoma Curcumae were obtained
fingerprint based on PeakCET algorithm. (A) Data pre-processing. (B) Contour detection
oints in each modulation period; J: the mass-to-charge (m/z) range for each scan; K: the
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from Zhejiang Province, Sichuan Province, and Guangxi Zhuang
Autonomous Region, respectively. Among them, Radix (Rhizoma)
Curcumae phaeocaulis were also microscopically identified. The
alkane standard solution (C7-30) was purchased from Fluka
Chemika (Buchs, Switzerland).

2.2. Extraction of essential oil

50 g samples of Radix Curcumae or Rhizoma Curcumae was
precisely measured and mixed with 400 mL of distilled water each.
After being left at room temperature for 6 h, the samples under-
went hydrodistillation for 3 h following the standard extraction
method outlined in the Chinese Pharmacopoeia 2020 edition. The
resulting essential oils were stored in sealed vials at 4 �C for im-
mediate analysis.

2.3. GC � GC-TOF MS determination for different essential oils

Acombination of the 7890BGC (Agilent Corporation, Santa Clara,
CA, USA), electron ionization (EI)-0610 TOF MS (Hexin Instrument
Co., Ltd., Guangzhou, China), and SSM1810E solid-state thermal
modulator (J&X Technologies, Shanghai, China), were used to
analyze essential oils from curcuma samples. The 1D and 2D columns
used were DB-WAX (30 m � 0.25 mm � 0.25 mm) and DB-17 MS
(1.1 m � 0.15 mm � 0.15 mm), respectively, while the modulation
column was HV (C5eC30þ) type (1.2 m � 0.25 mm) from J&X
Technologies. The modulator period was set to 4 s. The injection
temperature was set at 250 �C, with the initial temperature starting
at 40 �C for 5min, then increasing to 260 �C at a rate of 4 �C/min, and
held for 1 min. The carrier gas used was helium with a purity of
99.999%, and a constant flow rate of 1.0 mL/min was maintained.

For the EI-TOF MS, the ionization temperature was set at 220 �C,
the temperature of the MS transmission line was set to 240 �C, and
the ionization energy was set at 70 eV. The scanning mass-to-
charge (m/z) range was from 40 to 400 amu, and an acquisition
frequency of 100 Hz was used. The data processing was done using
the Canvas and GC Image software.

2.4. PeakCET algorithm for GC � GC-TOF MS fingerprint processing

2.4.1. Data preprocessing
As shown in Fig. 1A, data preprocessing is delineated in three

distinct steps:
The initial raw signals are treated as a three-dimensional (3D)

array X (I, J, K), where I (1, 2, …, i) indicates the scanning points in
each modulation period, J (1, 2, …, j) represents the m/z range for
each scan, and K (1, 2,…, k) denotes the number of modulations. In
this dataset, the modulation period remains constant, and the m/z
range is identical across all scanning points. The researchers first
use MATLAB to process the raw data (in .CDF format), transforming
it into a column-wise augmented data matrix X (I � K, J).

When visualizing the GC � GC contour matrix C (I, K) as a 2D
image, signal size is indicated through contour lines or varying
colors, with each component's corresponding area depicted as a 2D
“spot”. In a 3D representation, each compound appears as a peak
with a conical structure, where its volume signifies signal intensity.
Hence, each peak within the GC � GC contour matrix is charac-
terized by both its position and peak volume.

The contour detection function in OpenCV only recognizes
grayscale images with pixel values ranging from 0 to 255. Thus, the
signal intensity in the GC � GC contour matrix must be mapped
onto pixels. This involves normalizing the intensity within the
range of positive integers [0, 255]. The conversion of the contour
matrix C (I, K) into the GC � GC pixel matrix C* (I, K) is executed
using Eq. 1, as shown below:
3

Inew ¼ I � Amin
Amax � Amin

� ð255� 0Þ þ 0 (1)

In this equation, Amin and Amax symbolize the minimum and
maximum intensity values in the GC � GC contour matrix,
respectively. The variable “I” corresponds to the original intensity of
each point in the matrix, while “Inew” signifies each point's
normalized value. This normalization is crucial for allowing the
direct input of the normalized GC � GC contour matrix for contour
edge tracking, sidestepping the conventional method of image
input [45] and subsequent detection.
2.4.2. Affinity propagation (AP) clustering-assisted contour
detection

As observed in Fig. 1B, the contour edge tracking [46] process
begins by applying OpenCV to the pixel matrix data C*. This in-
volves using the binary threshold method on C* for edge tracking.
The primary objective is to establish an appropriate threshold such
that pixel values below this threshold become 0, and those above it
are set to 1. This binary division effectively separates the 2D peak
clusters from the background, as outlined in Eq. 2.

Iðx; yÞ ¼
�
0; if Iðx; yÞ< threshold

1; otherwise
(2)

Using the “cv2.findContours” function in OpenCV, a number of
contours are identified, each composed of various points repre-
senting a peak cluster. The point with the highest response in-
tensity within each contour is then identified and designated as the
standard point for that contour.

Given the potential for overlapping edges, there is a risk of
missing some 2D peaks during contour edge tracking. To address
this, additional detection is performed to identify false negatives.
This involves analyzing the mass spectra vectors of local maximum
points within the contour using AP clustering [47], which optimizes
the detection results. In this process, each data point is treated as a
potential class center, and AP is utilized to identify the standard
points of peaks that might have been missed within the contour.
The AP algorithm procedure includes:

Input the dataset, x ¼ xðn�kÞ ¼ ðx1; x2;……; xnÞT , which contains
mass spectrumvectors of length k for the nmaximumpoints within
the contour.

Step 1: Initialize the algorithm and calculate the initial similarity
matrix using Euclidean distance S0 ¼ ðSijÞn�n, which is calculated
by Eq. 3.

sij ¼ sði; jÞ¼ � d2
�
xi; xj

�¼ ���xi � xj
��2 (3)

Step 2: Set the initial reference P and the number of iterationsM,
and P is calculated by Eq. 4.

P¼ Pðn�1Þ ¼ ðP1; P2;……; PnÞT (4)

Pi ¼ PðiÞ, is called the reference degree of xi, which refers to the
reliability of using xi as the clustering center. n is the number of
vectors, and it represents the number of local maximum points
within the contour. Generally, the reference degree is set as the
median of the similarity value, which means P ¼ median ðSÞ.

Step3, compute theattraction indexbetweendatapoints as Eq. 5.

rij ¼ rði; jÞ¼ sij �max
ksj

�
sik þ aij

�
(5)

Step 4, determine the attribution ratio aij between data points
using Eq. 6, with self-attribution akk being the sum of attractions
from other points.
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8>><
>>:

aij ¼ min

8<
:0; rii þ

X
ksi;j

max
�
0; rjk

�9=
;

akk ¼
X
ksj

max
�
0; rjk

� (6)

Step 5, to avoid oscillation, when AP algorithm is updated, the
decay coefficient l is introduced, followed the attraction index rij
and the attribution ratio aij are updated iteratively by Eq. 7.
8><
>:

rðmþ1Þ
ij ¼ l$rðmÞ

ij þ ð1� lÞ$rðmþ1Þ;old
ij l2½0:5;1

�

aðmþ1Þ
ij ¼ l$aðmÞ

ij þ ð1� lÞ$aðmþ1Þ;old
ij l2½0:5;1

� (7)

Among these variables, the convergence coefficient, represented
by l, is primarily used to regulate the convergence speed of the
algorithm and the stability of the iteration process. The variable
“old” denotes the original value. Eq. 7 shows that each data point is
set to the sum of l times the updated value from the previous
iteration and 1� l times the original value.

Step 6, the process concludes if the number of actual iterations
m exceeds M or if the cluster center remains unchanged after
several iterations, assigning data points to their respective classes.
If not, the loop restarts at Step 3.

The AP algorithm's key advantage is its independence from the
need to predefine the number of clusters, allowing researchers to
identify all standard points for contours with unknown compound
quantities and minimize false negatives following contour edge
tracking.

2.4.3. Inter-group peak matching and peak-list filling
To generate a peak list that includes inter-group information

from various sets of fingerprints, an effective peak matching algo-
rithm is essential. This algorithm ensures that a specific peak in one
fingerprint corresponds accurately to the same peak in another. The
procedure encompasses four key steps, detailed in Section S1 of the
Supplementary data. Following the completion of these steps, the
peak-list data can undergo further statistical analysis. One such
method is the partial least squares-discriminant analysis (PLS-DA)
models, which can be accessed through the libPLS platform avail-
able at www.libpls.net. This analysis allows for a more in-depth
understanding and interpretation of the data, facilitating the
identification of patterns and correlations within the peak lists
derived from the fingerprint sets.

2.4.4. Visualize PeakCET as a software
Using the Pycharm 2022 compiler and the Python language, one

can develop the PeakCET program. This program is adept at auto-
matically creating 2D images for GC � GC data and conducting con-
tour detection. It efficiently extracts both the position and intensity
data from the identified 2D peaks. For access, PeakCET is available for
free download upon contacting the corresponding author.

3. Results and discussion

3.1. Methodology of PeakCET

Data 1, 2, and 3 were derived from the aroma components of
three mango cultivars using MEGA-WAX Plus (1D column) and DB-
17 MS (2D column) in a GC � GC-TOF MS system. Data 4, charac-
terized by “burr” signals, was obtained from Citrus reticulata Blanco
using GC � GC-TOF MS system. Data 5 was acquired from mor-
pankhi oil through an Rtx-5Sil MS (1D column) and BPX-50 (2D
column) in a GC � GC-qMS system.
4

Initially, data 1, 2, and 3, which displayed excellent separation
performance, were analyzed using PeakCET. The “minval” param-
eter plays a critical role in contour edge tracking as it sets the
minimum threshold value for detection. Taking “Xiaotai mango”
data 1 (Fig. S1) as an example, four different thresholds were
applied for contour detection (Fig. S2A). The findings indicated that
a higher threshold leads to reduced interference but increases the
likelihood of false negatives in the PeakCET algorithm. Before
comparing PeakCET with commercial software (Fig. S2B), theoret-
ical lists for the contour count in the threemango fingerprints were
compiled based on two principles: 1) Only spots within the in-
tensity range of 5�104�12�106 were recognized as contours suit-
able for qualitative and quantitative analysis with practical
significance; 2) true positives and true negatives were identified
through manual comparison of contours in the images against the
results detected by PeakCET or commercial software.

Subsequently, data 1, 2, and 3were analyzed using PeakCETwith
thresholds of 2 or 5 (Fig. S3). The number of true positives, false
positives, and false negatives were tallied for the test fingerprints
by comparing them to the theoretical lists. Using Eqs. 8�10, the
detection results were evaluated based on the accuracy rate (P),
recall rate (R), and F1-score. A comprehensive evaluation of the
PeakCET algorithm was then conducted against commercial soft-
ware. As shown in Fig. 2A, both methods yielded accurate detection
results, with F1-scores over 90% and 75%, respectively. The key
difference was that PeakCET detection resulted in more false neg-
atives, while the commercial software, relying on the local
maximum principle, produced more false positives. In this context,
AP clustering effectively improved false negatives due to “overlap”
in PeakCET detection, e.g., 1 peak (“Xiaotai mango” data 1), 3 peaks
(“Jinhuangmango” data 2), and 1 peak (“Qingpi mango” data 3). For
the commercial software, increasing the threshold augmented the
false negative rate, while decreasing it significantly raised the false
positive rate, including “column bleeding” or other errors. This led
to numerical discrepancies in precision, recall, and F1-score be-
tween the two methods.

P¼ TP
TP þ FP

(8)

R¼ TP
TP þ FN

(9)

F1-score ¼ 2P � R
P þ R

(10)

The researchers also analyzed data 4 (which comprised 87 peaks
of sufficient intensity), as shown in Fig. S4 (supplementary data).
Fig. 2Bi reveals that PeakCET successfully detected a reasonable
number of peaks, whereas commercial software demonstrated
reduced precision and F1-score due to its sensitivity to “burr” sig-
nals. In GC�GC detection, such “burr” signals are often the result of
electrical disturbances, such as unstable power supply, instrument
performance issues, or other interferences, which can adversely
affect peak detection. As depicted in Fig. 2Bii, the commercial
software erroneously interprets each “burr” signal as a peak,
leading to a high number of false positives. However, as illustrated
in Fig. 2Biii, the PeakCET algorithm, employing the contour edge
tracking method, successfully avoids this error.

Additionally, the phenomenon of “overlap” sometimes occurs in
GC � GC fingerprints, particularly when the physicochemical
properties of analytes are very similar. Fig. 2C shows that several
peaks, impacted by co-elution (indicated by the red area), are
indistinguishable using contour edge tracking. To address the
resultant false negatives, 89MS vectors from all maximumpoints in

http://www.libpls.net


Fig. 2. An evaluation of the PeakCET algorithm was conducted against commercial software. (A) The detection results of two methods for three “high-quality” fingerprints. (B) The
detection results of two methods for fingerprint with “burr” signals (i); the influence of “burr” on peak detection of commercial software (ii); and the influence of “burr” on peak
detection of PeakCET (iii). (C) The PeakCET solution for the “overlap” contours. 2D: two-dimensional; AP: affinity propagation.
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the overlapped contours were analyzed. The researchers then
applied the proposed AP clustering method to enhance contour
detection, identifying seven clustering centers. This method, when
applied to the complex data 4, yielded satisfactory results. As per
Fig. 2Bi, contour edge tracking effectively reduced false positives
caused by “burr” signals, achieving an F1-score of 96.47%, signifi-
cantly higher than the 21.48% achieved using traditional software.
Further refinement through AP clustering resulted in an improved
F1-score of 97.18%, demonstrating its effectiveness in minimizing
false negatives due to co-elution. While there is a potential for false
positives, the overall F1-score has shown improvement, and almost
all components were detected. In comparison to commercial soft-
ware results, the PeakCET algorithm is particularly effective for
analyzing complex fingerprints with “burr” signals. These findings
suggest that PeakCET is adept at detecting well-separated finger-
prints produced by reverse-phase column systems, with the added
benefit of low false positives. Lowering the detection threshold and
incorporating AP clustering can effectively mitigate the issue of
false negatives.

To illustrate the algorithm's generalization,fingerprint 5, derived
from the GC � GC-qMS system equipped with a normal-phase col-
umn, was analyzed (as shown in Fig. S5). At a threshold level of 10,
5

PeakCET identified 117 peaks (contours), albeit with a few false
negatives. However, reducing the threshold to 5 or 2 resulted in the
detection of numerous false positive peaks. These examples
demonstrate that PeakCET can yield effective results, particularly
when the contours in the image fingerprint are well-separated. For
comparison, commercial software also produced positive outcomes.
In summary, PeakCET exhibits high accuracy with a low false posi-
tive rate. It is noteworthy, however, that PeakCET tends to be
insensitive to contours of very low intensity and is less effective for
image fingerprints that are densely packed (or circuitous) in the 2D
space. This specificity underscores the need for careful threshold
setting and consideration of the unique characteristics of each
fingerprint dataset when using PeakCET for analysis.

3.2. Application of PeakCET in GC � GC fingerprints from Curcuma
wenyujin products

3.2.1. Peak detection and inter-group peak matching of three
fingerprints

Curcuma wenyujin Y. H. Chen et C. Ling, a member of the Cur-
cuma genus within the ginger family, is a versatile plant fromwhich
three distinct types of medicinal materials are derived, a concept



Fig. 3. Comprehensive two-dimensional gas chromatogram-time of flight mass spectrometry (GC � GC-TOF MS) determination of three medical products from Curcuma wenyujin:
(A) Rhizoma Wenyujin Concisum, (B) Rhizoma Curcumae Wenyujin, and (C) Radix Curcumae Wenyujin. 1D: one-dimensional.
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often referred to as “one plant, three medicines” in China [48] (as
illustrated in Fig. S6). Thesemedicinal materials are Radix Curcumae
Wenyujin (known as Wen Yujin in Mandarin), Rhizoma Curcumae
Wenyujin (Wen Ezhu in Mandarin), and Rhizoma Wenyujin Con-
cisum (Pian Jianghuang in Mandarin). Each of these materials is rich
in essential oils, and the specific type or concentration of their
constituents contributes to their unique therapeutic properties.

As depicted in Fig. 3, the researchers employed GC� GC-TOFMS
to analyze the essential oils extracted from these three medicinal
products. The GC � GC system, which combines the DB-WAX and
DB-17 MS columns, is capable of effectively separating complex
samples. From Fig. 3A (Rhizoma Wenyujin Concisum) and Fig. 3B
(Rhizoma Curcumae Wenyujin), it can be seen that this system helps
to avoid the issue of “co-eluted” peaks and enhances the detection
of trace components. In the analysis of Radix Curcumae Wenyujin
samples, it was observed that the number of peaks detected using
GC � GC-TOF MS was significantly higher than those identified by
three separate GC-MS instruments (Thermo, Shimadzu, and Agi-
lent), as shown in Fig. 3C. Detailed information regarding the
number of compounds, their names, and retention indices can be
found in Table S1. This comprehensive analysis underscores the
efficacy of GC � GC-TOF MS in providing detailed and nuanced
insights into the chemical composition of these valuable medicinal
materials.

The 2D peaks were analyzed to discern the similarities and
differences in the GC� GC fingerprints of three medicinal products.
As expected, the PeakCET algorithm successfully tracked most of
the 2D peaks. The researchers calculated the F1-scores to compare
the detection outcomes of different samples using both individual
and AP clustering-assisted contour tracking methods. According to
Fig. S7A, AP clustering significantly enhanced the results of contour
tracking, with the F1-scores for most detections exceeding 90%.
6

However, it's important to note that the signal strength directly
influences the tracking outcomes. For instance, samples 1, 2, 3, 4,
and 5, with normal signal responses, achieved F1-scores over 95%
in peak detection, whereas samples 7 and 8, with lower signal re-
sponses, showed a decrease in F1-scores. Fig. S7B demonstrates
that AP clustering effectively reduces the number of false negatives
in individual contour tracking, thereby optimizing detection. The
researchers visualized the clustering effects within the missed-
detection contours using the principal components analysis (PCA)
method for clearer observation. Fig. 4A presents some false nega-
tives in single contour tracking detection. On one side, the missed-
detection range (red contour) is indicated by a red arrow; on the
other, a red dot, pointed out by a white arrow, shows an area
tracked by only one contour. AP clustering was applied to this
suspected region to differentiate the mass spectra of the com-
pounds present. For instance, in example 1 of Fig. 4B, the proximity
of two peaks led to a missed detection in the 2D profile, resulting in
data for only one component data. By applying AP clustering to the
mass spectra at the contour's maximum point, data for two com-
ponents, a-selinene and b-selinene, were obtained, compensating
for the limitations of individual contour tracking detection. In the
missed-detection contour of example 2, six overlapping compound
data were identified using the AP clustering method. However, this
process may also produce a small number of false-positive peaks.
As detailed in Table S2, the F1-scores for PeakCET detection of the
three medicinal products are approximately 95%, demonstrating
the efficacy of the PeakCET algorithm in providing accurate and
comprehensive analyses of GC � GC fingerprints in medicinal
research.

The analysis revealed that Rhizoma Wenyujin Concisum had
the highest abundance of peaks, followed by Rhizoma Curcumae
Wenyujin, and Radix Curcumae Wenyujin had the fewest. To



Fig. 4. Three cases of contour detection assisted by mass spectra clustering. (A) Some false negatives in single contour tracking detection. (B) Affinity propagation (AP) clustering
was applied to these suspected regions to differentiate the mass spectra of the compounds present. PC: principal component.
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further explore the relationships among these samples, the re-
searchers conducted inter-group peak matching. This process
revealed 52 common components between Rhizoma Wenyujin
Concisum and Rhizoma Curcumae Wenyujin, 38 shared compo-
nents between Rhizoma Curcumae Wenyujin and Radix Curcumae
Wenyujin, and 35 common components between Rhizoma
Wenyujin Concisum and Radix Curcumae Wenyujin. Detailed in-
formation on this process is available in Section S2 of the
Supplementary data.

3.2.2. Quantitative comparisons of three fingerprints
After contour edge tracking, the researchers quantified the

contour area by counting pixels and characterized the components
using peak volume. For quantitative analysis of the GC � GC fin-
gerprints, a normalization method was applied to calculate the
component percentages, as shown in Eq. 11:

Vpeak ¼ 1
3
� Pa� Ipeak (11)

Among them, Pa represents the area of peak, and Ipeak repre-
sents the signal intensity at the peak standard-point.

As depicted in Fig. 5A, the PeakCET algorithm successfully
detected the contours in the GC � GC fingerprints of the three
medicinal products. The identified compounds and their
respective percentages are detailed in Table S1. Based on their
elution order, the components were categorized into three seg-
ments: 1e21 min (low boiling point components), 21e41 min
(moderately high boiling point components), and 41e61 min
(high boiling point components). The component percentages in
each segment were calculated. Fig. 5B illustrates that the volatile
profiles of Rhizoma Wenyujin Concisum and Rhizoma Curcumae
7

Wenyujin were similar, especially in the first stage, whereas Radix
Curcumae Wenyujin exhibited fewer volatiles in this stage, with
more high boiling-point components in the second and third
stages. This variance could be attributed to differences in pro-
cessing methods: Rhizoma Wenyujin Concisum is sun-dried when
freshly sliced, whereas Radix Curcumae Wenyujin undergoes
high-temperature steaming before drying. The primary compo-
nents were classified into five groups: monoterpenes, sesquiter-
penes, alcohols, ketones, and esters. Fig. 5C shows that Radix
Curcumae Wenyujin had the highest sesquiterpenoid content,
followed by Rhizoma Curcumae Wenyujin, with Rhizoma Wenyujin
Concisum having the lowest. Conversely, the monoterpene con-
tent was highest in Rhizoma Wenyujin Concisum. These findings
suggest that while the three herbs share similar components,
leading to comparable pharmacological activities, their varying
concentrations contribute to their distinct efficacies. To elucidate
the significance of these components in Curcumae Wenyujin,
platforms like Swisstargetprediction and Pharmmapper were
used for compound-target interaction prediction. Disease-related
targets were collated from GeneCards, Online Mendelian Inher-
itance in Man (OMIM), Disgenet, and Therapeutic Target Data-
base (TTD), taking the intersection of targets from both sources.
The David platform was then employed for Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment. Ultimately,
networks of key targets-components (top 10%), key targets-
diseases (top 10%), and key components-diseases (top 40%), as
seen in Fig. 5D, were depicted. This approach facilitates cross-
cultural understanding between the global East and West.
Detailed information on the specific components and their
pharmacological distinctions can be found in Section S3 of the
Supplementary data and Table S1.



Fig. 5. Quantitative comparisons of three medical products from Curcumae Wenyujin. (A) The comprehensive two-dimensional gas chromatogram (GC � GC) fingerprints were
detected by PeakCET algorithm. (B) The comparative analysis for the component-peaks in the three segments. (C) The comparative analysis for the monoterpenes and sesqui-
terpenes. (D) An in silico network of key components-illness. OMIM: Online Mendelian Inheritance in Man; TTD: Therapeutic Target Database; KEGG: Kyoto Encyclopedia of Genes
and Genomes.
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3.3. Application of PeakCET in Radix/Rhizoma Curcumae Wenyujin
and other products

Radix Curcumae (Yujin in Mandarin Chinese) and Rhizoma Cur-
cumae (Ezhu in Mandarin Chinese) are medicinal herbs with mul-
tiple sources. The former includes Radix Curcumae Wenyujin (Wen
Yujin in Mandarin Chinese), Radix Curcumae kwangsiensis (Gui
Yujin in Mandarin Chinese), Radix Curcumae phaeocaulis (Lvsi Yujin
in Mandarin Chinese), and Radix Curcumae longae (Huangsi Yujin in
Mandarin Chinese). Experts in traditional Chinese medicine
generally believe that Radix (Rhizoma) Curcumae Wenyujin are
widely planted in Rui'an, China; while Radix (Rhizoma) Curcumae
phaeocaulis are widely planted in Chengdu, China and Radix/Rhi-
zoma Curcumae kwangsiensis are planted in Guangxi Zhuang
Autonomous Region, China. Accordingly, three types of Radix/Rhi-
zoma Curcumae were collected from Taoshan Town, Rui'an, China
(Fig. S6), Songqiao Village, Chongzhou, China (Fig. S8), and Luwu
Town, Lingshan County, Guangxi Zhuang Autonomous Region,
China (Fig. S9). These samples, representing different botanical
origins, were analyzed using GC � GC technology. The GC � GC
fingerprints revealed notable differences between samples from
different origins, while variations within samples from the same
origin were minimal (Fig. S10). PeakCET was employed for peak
detection in different Radix Curcuma fingerprints. As shown in
Table S3, Radix Curcumae wenyujin yielded better F1-scores
compared to Radix Curcuma (Guangxi Zhuang Autonomous Re-
gion) and Radix Curcumae phaeocaulis when using contour detec-
tion alone, primarily due to the more complex composition and
overlapping contours of Radix Curcumae phaeocaulis. However, af-
ter applying AP clustering, the recall performance of PeakCET
8

improved significantly. It's important to note that the intensity of
GC � GC fingerprints greatly influences peak detection, necessi-
tating careful parameter setting. Fig. 6A shows the three sources for
two products. Radix/Rhizoma Curcumae Wenyujin predominantly
contains b-elemene, curzerene, furanodiene, b-elemenone, ger-
macron, curcumol, and curdione. Radix/Rhizoma Curcumae phaeo-
caulis is characterized by b-elemene, epi-curzerenone, germacron,
b-elemenone, curcumenol, furanodienone, and isofuranodienone.
The Radix/Rhizoma Curcumae sample from Guangxi Zhuang
Autonomous Region features b-elemene, curzerene, furanodiene,
germacron, b-elemenone, b-eudesmol, and aromaticane B. The
(semi)-volatile components of the three Curcuma species are listed
in Table S4. Clearly, species or genetic differences significantly in-
fluence the content of each component. This variability raises
concerns about the efficacy and safety of Radix/Rhizoma Curcumae
medication and underscores the potential of characteristic com-
ponents to serve as quality markers for different types of medicinal
materials [49,50].

In addition to the previously mentioned data, researchers
analyzed different GC � GC fingerprints from 18 commercial sam-
ples of Radix Curcumae. Initially, the PeakCET algorithm was
employed for contour edge tracking, and AP clustering of mass
spectra vectors was used to enhance the detection results. Subse-
quently, a peak matching algorithm was implemented to ensure
that identical component-peaks in one fingerprint corresponded to
the same component-peaks in another. This process, including the
steps involved, is detailed in Section S1 of the Supplementary data.
A notable advantage of the peak matching algorithm is its consid-
eration of displacement factors, coupled with further validation
through the calculation of MS similarity. Upon the completion of



Fig. 6. PeakCET was applied to comprehensive two-dimensional gas chromatogram
(GC � GC) fingerprints from Radix/Rhizoma Curcumae Wenyujin and other products of
different origins. (A) A heat map is depicted for three kinds of Radix (Rhizoma) Cur-
cumae products. (B) The classification of Radix Curcumae Wenyujin and other Radix
Curcumae samples with different botanical origins. PLS: partial least squares.
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peak matching, a comprehensive peak list from the 18 Radix Cur-
cumae fingerprints was generated. This data was then analyzed
using PLS-DA to distinguish between the varieties and to uncover
underlying patterns in the complex dataset [51]. The results, as
shown in Fig. 6B, effectively differentiated the samples of Radix
Curcumae Wenyujin from other Radix Curcumae varieties.

These findings demonstrate that both genetic factors and cli-
matic conditions significantly influence the accumulation of sec-
ondary metabolites in these plants. However, given that more than
ten Curcuma species are cultivated across various provinces and
cities in China [52], there are notable differences in the composi-
tions of Radix Curcumae (Yujin) and Rhizoma Curcumae (Ezhu). It is
well-acknowledged that the quality of medicinal materials pro-
foundly affects their therapeutic efficacy and safety. Consequently,
the implementation and rigorous enforcement of good agricultural
practices and quality traceability systems are essential in China to
ensure the highest standards in traditional medicinal products.
4. Conclusion

Compared to 1D-GC, GC � GC offers superior sensitivity and
resolution, enhancing the separation of complex essential oils from
Curcumawenyujin and other samples. However, efficiently extracting
and analyzing the vast amount of information from GC � GC fin-
gerprints is crucial for inter-group comparison and quality assess-
ment. In this study, the PeakCET algorithm, based on mass spectra
clustering-assisted contour detection, is developed to address
these challenges. Firstly, PeakCET's capability to detect contour edges
in GC � GC fingerprints helps avoid false positives typically caused
by burrs. Additionally, to counter the issue of co-elution, AP clus-
tering is applied to the MS vectors of local maximum points within a
9

contour, thereby optimizing 2D peak detection results. Secondly,
PeakCET is adept at calculating the 2D peak area using the pixels
within a contour, facilitating quantitative analysis by deducing the
peak volume and percentage. The algorithm was applied to analyze
three fingerprints from Curcuma wenyujin (Rhizoma Wenyujin Con-
cisum, Rhizoma Curcumae Wenyujin, and Radix Curcumae Wenyujin),
achieving an average accuracy rate of over 95%. This enabled the
researchers to conduct a comprehensive inter-group peak matching,
effectively comparing the component similarities and differences
among the three medicinal products. Furthermore, the researchers
successfully differentiated Radix (Rhizoma) Curcumae Wenyujin from
other samples of varying botanical origins. Despite these successes, it
is important to recognize the limitations of the PeakCET algorithm.
For instance, automating the removal of false negatives through a
user-friendly interface remains a challenge. In practical applications,
incorporating auxiliary functions such as peak matching, deconvo-
lution, and pattern recognition is essential. In conclusion, the Peak-
CET algorithm offers a novel approach for analyzing complex
GC � GC fingerprints. It holds potential not only for researchers
analyzing chemical constituents in food and medicinal materials but
also for advancing the standardization of 2D chromatographic fin-
gerprints. However, continuous improvements and integration of
additional functionalities are necessary to fully harness its capabil-
ities in various practical scenarios.
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