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Examining the different stages of learning through play in humans during early life has

been a topic of interest for various scholars. Play evolves from practice to symbolic

and then later to play with rules. During practice play, infants go through a process of

developing knowledge while they interact with the surrounding objects, facilitating the

creation of new knowledge about objects and object related behaviors. Such knowledge

is used to form schemas in which the manifestation of sensorimotor experiences is

captured. Through subsequent play, certain schemas are further combined to generate

chains able to achieve behaviors that require multiple steps. The chains of schemas

demonstrate the formation of higher level actions in a hierarchical structure. In this work

we present a schema-based play generator for artificial agents, termed Dev-PSchema.

With the help of experiments in a simulated environment and with the iCub robot, we

demonstrate the ability of our system to create schemas of sensorimotor experiences

from playful interaction with the environment. We show the creation of schema chains

consisting of a sequence of actions that allow an agent to autonomously perform

complex tasks. In addition to demonstrating the ability to learn through playful behavior,

we demonstrate the capability of Dev-PSchema to simulate different infants with different

preferences toward novel vs. familiar objects.

Keywords: Dev-PSchema, practice play, schemas, action sequencing, schema chains, play and playthings,

modeling of behavior

1. INTRODUCTION

Humans are capable of learning within different environments and of extending their knowledge to
new situations. As new experiences are gained, our capacity to understand the world and to adapt
to changes within it strengthens. We are also capable of generalizing experiences and of repeating
successful behaviors that were previously expressed, in related situations. Developing this capability
in robots is one of the major goals of roboticists. Modeling requires an in-depth understanding of
how we learn from experiences and how we develop our knowledge.

We learn different behaviors throughout our entire life, beginning with initial sensorimotor
experiences that develop to high level cognitive reasoning over time and through a series of stages.
Piaget’s cognitive theory (Piaget and Cook, 1952) proposes different learning stages in humans,
supporting the idea of constructivism. He believed that children develop a variety of cognitive
skills at different ages. The first stage of the cognitive developmental theory is referred to as the
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Sensorimotor stage, where learning is focused on the
sensorimotor experiences of the infants. Experiences that
are gained at this stage are related to the infants’ own actions and
the associated sensory outcomes.

At the early stage of their life infants spend much of their
time playing, a behavior closely coupled with their ability to
learn (Pramling Samuelsson and Johansson, 2006). They explore
their own actions and understand the resulting effects. Owing
to this strong correlation, play is seen as an important part of
cognitive development (Nicolopoulou, 2010). In addition, play
provides a foundation for academic and social learning (Hirsh-
Pasek and Golinkoff, 2008).

Infants appear to be very interested in their surrounding
environment and tend to perform a wide variety of free
play activities in order to explore it. Their actions are not
constrained by any predefined rules other than those related to
physical capabilities. Nevertheless, physical constraints do help
them to scaffold learning, as the infants gradually understand
the different elements related to their behaviors. At the
sensorimotor stage infants learn all relevant elements of the
actions and sensory information that are associated with their
experiences (Baillargeon, 1994). Apart from exploratory play,
infants demonstrate exploitation behaviors during play. They
explore the environment and the objects in it, extending their
learning into novel and identical environments through a process
of generalization (Baldwin et al., 1993; Welder and Graham,
2001).

In robotics, we aim to develop robots that are autonomous
and capable of operating within dynamic environments and
adapting to the changes that occur. The robotic agents ought
to be able to re-use any previously acquired experiences in
order to perform sufficiently in novel situations and under new
circumstances. They should also be capable of learning from
different experiences and through performing different tasks.
Indeed, developmental robotics concentrates on modeling infant
learning so that robots learn and adapt in similar ways to humans.
More specifically, modeling the play behavior of infants provides
a mechanism for robots to explore and discover new knowledge,
acting as a driver for learning (Lee, 2011).

To develop a robot that learns from experiences and
adapt, several learning systems have been proposed to make
it learn from active and passive experiences (Drescher, 1991;
Montesano et al., 2008; Krüger et al., 2011; Aguilar and y Pérez,
2015; Petit et al., 2016; Kansky et al., 2017). Drescher (1991)
proposed a learning mechanism based on Piaget’s schema
mechanism. Following Drescher’s proposed system, Sheldon
(2013) introduced PSchema, a schema-based system that focuses
on learning from sensorimotor associations, where learning
outputs are formulated as schemas that contain sensory
information that is received before and after an action is
performed. At the beginning, the system learns a set of basic
actions by considering only the proprioception of the hand.
This process is referred to as bootstrapping and is inspired
by the reflexive movements of infants toward distant stimuli
(Piaget and Cook, 1952). The next action to be performed is
selected by a mechanism responsible for the calculation of the
excitation associated with each action, in an intrinsic motivation

fashion. Being an open-ended learning system, PSchema is
capable of creating action sequences in addition to generalizing
experiences (Sheldon and Lee, 2011). However, they are only
created when the targeted conditions are provided by the user.

Krüger et al. (2011) introduced a learning model for
autonomous agents using sensorimotor experiences, allowing an
agent to interact with the real world and to develop hierarchical
knowledge. The latter is termed Object Action Complexes
(OACs) and constitutes the means by which the system enables
behavior planning. OACs are essentially tuples of (i) an action,
(ii) the sensory-state transition (initial to final predictable state)
caused by the action, and (iii) the reliability of predicting the
resulting state in the environment. Different problem-related
learning algorithms can be used to learn OACs. Wörgötter et al.
(2009) presented the implementation of an OAC model related
to their robotic application. In their work, OACs are learned
through a supervised learning method and are tested on a robotic
arm. The goal of the experiment they presented is to move an
object from one point to another by removing obstacles along
the path. Their results show that the OACs model is capable
of planning and making predictions. However, goals for the
planning are set up by the user rather than the agent itself.
This limits the agents capability for performing open-ended
learning and encouraging continuous play behavior. Moreover,
the capability to generalize experiences is recognized as future
work, limiting its performance within novel environments.

Also inspired by Piaget’s theory, Aguilar and y Pérez (2015)
developed a schema-based learning system called Developmental
Engagement-Reflection (Dev-ER) for autonomous agents.
Learning consists of schemas that contain preconditions, an
action and the postconditions, which are results of applying
the action on the preconditions. The model is employed by a
virtual agent in a 3D virtual environment, where it can passively
observe the environment by moving its head and by fixating to
interesting objects. The latter are found by the use of an attention
process based on an interest value of the perceived objects.
Interest values depend upon three aspects; pre-programmed
preferences, number of object features (properties) and virtual
emotional interest in the object. The agent is initially provided
with two reflexive saccade schemas, through which it develops
its knowledge by interacting in the environment to create more
schemas. The attention system helps the agent to demonstrate
the playful behavior. However, the model is not capable of
planning in order to achieve a goal within the environment, or
to exploit a sequence of actions in order to achieve a state in the
environment which is not possible with a single action.

Most recently, Kansky et al. (2017) developed a schema-
based deep learning network, based on the generative model of
a Markov Decision Process (MDP). The objects are represented
by lists of fixed binary properties, where an object may or may
not have a given property in the environment. The network can
perform planning toward maximizing the reward from the initial
state as it matches the goal state in the environment. To evaluate
the network, an experiment is performed using the environment
of the classic arcade video game Breakout. In the game, a ball
is used to gradually break a brick wall positioned at the top of
the screen by being repeatedly bounced between the bricks and
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the player’s paddle that moves horizontally on the bottom of
the screen. Points are awarded every time a brick is hit by the
ball, which is enough to break it from the wall, without missing
the ball. The performance of the schema network is compared
with two other deep learning network models; Asynchronous
Advantage Actor-Critic (A3C) and Progressive Networks (PNs),
in different experiments containing different variations in the
environment. The results show that the proposed network
outperforms the others in all the variations of the environment,
capable of generalizing and adapting what it has learnt to
variations of the environment. However, the network still needs
a large amount of training to achieve a better result.

The above learning models are comparable to the schema-
based mechanism proposed in this work. However, some of
these systems do not offer open-ended play behavior (Krüger
et al., 2011; Kansky et al., 2017) and some do not offer planning
behaviors to achieve a desired or given state in the environment
(Sheldon, 2013; Aguilar and y Pérez, 2015). Here, we present an
intrinsically motivated open-ended learning and play generator
system, termed Dev-PSchema. By employing it, an agent plays
and learns that a ball can be grasped and moved to a different
location and disappears when dropped in a hole. The system
can learn from a small number of experiences and can combine
them in order to construct higher level reusable chains of actions
to represent more complex hierarchical behaviors. An excitation
mechanism triggers learning by exploratory play during which
the system generalizes schemas and re-uses them in novel
situations. Moreover, with a change in the excitation parameters,
different individual infants are simulated, a feature that is absent
to all of the above discussed learning models. Finally, the system
is sufficiently abstract and can be used with different platforms
without making any major design changes.

In Dev-PSchema, each schema consists of the pre and post
states of the environment (i.e., the world) related to a high-
level action. The term high-level defines the actions without
underlying motor/joint movements.

The work presented in this paper draws inspiration from
Piaget’s schema mechanism. An initial implementation of this
mechanism is given in Drescher (1991), with a model based on
the sensorimotor stage, i.e., the first learning stage from the four
stages of cognitive development outlined by Piaget. Learning at
this stage is believed to be associated with motor actions that
are performed by the developing infant. Based on this idea,
the schema system simulates an agent which learns from its
sensory experiences that result from motor actions, and uses
the knowledge that was previously acquired to interact with the
environment. The mechanism has no concept of persistence of
objects while associating the sensory cues, i.e., touch, sound and
vision, with the performed actions in order to generate new
behaviors.

In Section 2 we present Dev-PSchema and the experiments
along with the results. In Section 3 we discuss the system’s
capability to express different behaviors due to variations in
the excitation parameters and to learn high-level actions by
developing schemas chains. Finally, in Section 4 we provide
a conclusion about our findings in the light of developmental
psychology.

2. DEV-PSCHEMA AND EXPERIMENTS

Dev-PSchema builds on PSchema, a previously developed system
by Sheldon (2013), and simulates an agent within an environment
capable of interacting with it. By considering simulated sensory
information as well as actions that the agent can perform, the
system is capable of learning action-effect correlations. These
are represented as schemas and constitute the knowledge the
agent gains by interacting with objects within the environment.
At the beginning, the system starts with a basic set of action
schemas, referred to as bootstrap schemas (details are found
in Kumar et al., 2016a,b), stating the actions that can be
performed without describing the preconditions associated with
them. Subsequently, the system is free to start applying the
schemas in the environment and, by interacting with objects, to
learn new ones while expressing playful behaviors. As such, the
system is considered a play generator that allows infant behaviors
and learns to emerge through playing.

As the agent interacts with the environment, new schemas are
added to record new experiences or unexpected outcomes from
actions, incorporating the preconditions from which the effect
was experienced. These new schemas contain a set of sensory
information, the behavior and its predictions in the environment.
We refer to the sensory information as preconditions, the
behavior as action and the sensory predictions or results as
postconditions. Thus, a schema is a tuple that consists of an
action and the sensory information from both before and after
the execution of the action, as preconditions and postconditions
respectively. Any unpredicted effect of actions, as described
by the schema used by the agent at any time, leads to the
generation of new experiences that are also captured as new
schemas. For instance, this happens when the postconditions of a
schema do not match the resulting phenomena of the schema’s
action. Note that Dev-PSchema operates in discrete time; the
system records observations before and after the execution
of an action. Counting actions that are performed from the
beginning of an experiment indicates the time-steps. During a
single time-step, the system records all available observations to
form the preconditions, executes an action and finally records
observations again to form the postconditions. A chain of
schemas is also executed within a single time-step.

Table 1 shows an example of a schema that was learnt after
grasping an object using an initial bootstrap schema. Here the
sensory information and the actions are defined as high-level
abstractions, rather than the sets of raw sensor data and motor
commands that they reflect.When in use, the system is connected

TABLE 1 | An example of the concrete “Grasp” schema.

Grasp Schema

Preconditions Action Postconditions

Color “Green” at x = 2, y = 2 Color “Green” at x = 2, y = 2

Shape “Sphere” at x = 2, y = 2 Grasp Shape “Sphere” at x = 2, y = 2

Touching object Holding object
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to a body1 via a low-level system that is responsible for the
generation and availability of perceptions and actions for the
schemas. In the case of real robotic hardware, the low-level
system translates the schema actions into appropriate motor
activities allowing the agent to interact with the environment.
Although schemas could be used to represent low level actions
and sensory information the focus here is on high level playful
behavior.

In order to generate play behaviors within an environment,
attention and novelty are important (Mather, 2013). Dev-
PSchema employs an excitation mechanism that provides action
selection by identifying those object-action pairs that are
most interesting to the agent considering their postconditions.
Selection of interesting object-action pairs depends upon the
agent’s preferences. Whereas such preferences are affected by
novelty and habituation (i.e., familiarity) of the environment. The
system provides exploratory play behaviors to interact with the
objects and learn outcomes related to different actions performed
on them. Note that the objects in the system are defined with
the visual perceptions containing underlying properties. On one
hand, the system is capable of exploring an object by performing
actions associated with it. On the other, the system has the ability
to switch between objects as necessary, ensuring the evaluation of
the transferability of any learned knowledge while encouraging
further explorations.

Furthermore, the system is able to create sequences of schemas
in order to achieve a distance state (i.e., set of postconditions) that
may not be feasible with a single schema (chains are discussed
later in Section 2.2). The agent will create new schemas and
chains of schemas from existing schemas wherever possible
following the execution of a schema or chain. The process
of creating new schemas following interaction resembles the
adoption process where a subject learns new knowledge building
upon an existing knowledge base as described by Piaget and Cook
(1952).

Below we describe the key components that allow the
generation of schemas and schema chains and therefore the
development of the learning. In particular the excitation
calculator (Section 2.1) and the chaining mechanism
(Section 2.2).

2.1. Excitation Calculator
Considering all objects in the environment, as they are perceived
via sensory information, the agent calculates the excitation of
each available schema in order to find the most interesting one
to be executed with respect to the current perceived environment
referred as world state. Calculating the excitation is based on
the similarity, novelty and habituation assigned to each schema,
the total excitation of a schema is a weighted combination of
these three factors. Varying the weights allows the generation
of different play behaviors (Oudeyer et al., 2007; Ugur et al.,
2007), that could correspond to different simulated infants or
to behaviors expressed within varying external environmental
conditions (e.g., playing in a familiar or unfamiliar setup).

1Either a simulator or a real robot.

In particular, similarity is designed to favor schemas related
to previous interactions with a given object, whereas novelty
increases the excitation value for new objects or objects that
have not been interacted. Subsequently, habituation decreases the
interest the agent has for an object that is frequently used for
interactions over time. Obviously, novelty and habituation are
in contradiction by which the agent switches its attention from
objects that have been explored to those that propound novel
interactions. Note that although the terminology used in this
work is based on that of developmental psychology, the meaning
is not an exact match. Therefore, a precise definition of all three
of such factors of excitation are given below.

2.1.1. Similarity
This factor is used to describe the degree of resemblance between
the object-specific perceptions that are captured at the end of
an action and those that constitute the postconditions in each
of the previously learned schemas. It is calculated by matching
individual properties of an object, such as color or shape.

Such that

Similarity =

∑C(ρ)
i=1 max

1≤j≤C(ζ )
[Sim(ρi, ζj)]

C(ρ)
(1)

where

Sim(ρi, ζj) =











1, ρi ∼= ζj

0.5, ρi ∼ ζj

0, ρi ≁ ζj

returning the similarity between the ith property of the object’s
perception ρ, that is ρi, and the jth property of the schema’s object
perception (ζj). C(ρ) is the count of the number of properties
in the perceived object and C(ζ ) is that of in a schema object
perception. If a property appears in both states but the values
are different, then Sim will return a partial match, i.e., 0.52. The
result, in short, is the ratio between the sum of all maximum
similarities calculated by Sim and the total number of properties
in the perceived object.

The result is a number between 0 and 1, with 1 indicating
an exact match. Although each property is compared with all
properties found in all schemas, only the one with the maximum
similarity measure is considered.

2.1.2. Novelty
This is calculated by considering how frequently perceptions that
describe an object are confirmed as postcondition in schemas, in
connection to the running time-step:

Novelty = (1+ cos(4.75 ∗ τ1))/2 (2)

where

τ1 =
C(Os)

C(Oe)
(3)

2Where the parameters are numeric and the range is known, the euclidean distance

can be used to give a similarity measure between 0.5 and 1.0
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with C(Os) being the number of times the object perception O
appeared in schemas and C(Oe) being that O was captured in the
environment.

The novelty factor is designed to express a smooth curve for
values between 0 and 1 for τ1, as shown in Figure 1. The cosine
is scaled between 0 and 1, with the period reduced such that
at τ1 = 1.0 the value is 50%. Novelty of the perceived object
transitions from themaximum to theminimum and then back up
to the 50% over the values of τ1 from 0 → 1. Initially the novelty
of the newly perceived object will be the maximum. As the object
is played with more frequently or appears more in schemas its
novelty reduces. If the object is not playedwith for a longer period
of time, its novelty again increases.

2.1.3. Habituation
This factor depends on how recently schemas containing the
object perception are used in the environment. The agent is
expected to be more habituated, hence less interested, with a
situation that reoccurs after interacting with the environment.
This is inspired by developmental psychology, where infants
become habituated with objects or events after a period of
exploration or observation (Sigman, 1976; Hunter et al., 1983;
Kirkham et al., 2002; Colombo et al., 2004). Habituation at a given
time-step is given by

τ2 =

{

1
n

∑n
i=1

Tsi
Tc
, if n > 0

0.0
(4)

where n is the total number of those schemas that contain the
object perception and that have been executed at least twice,
Ts is the time step when a schema s was last executed and
Tc is the current time step. If schemas containing the object
perception have not been executed more than twice or the object
perception never appeared in the schema(s) then τ2 = 0 and
habituation for the perceived object remains 0. Since τ2 is used
to calculate the habituation over the period of time steps its
value increases as a schema(s) containing the object perception
was executed recently, as shown in Figure 2. On the contrary, τ2
decreases when the object perception does not occur for a period
of time steps or a schema(s) containing the object perception has

not been used for a long time. Thus the overall habituation is
computed by

Habituation = 1.0− e(−5τ2) (5)

Similar to novelty, the coefficient at the exponential is designed
to smooth the curve for the range 0–1. Habituation is expected to
increase as frequent interactions with the environment lead to the
same object perceptions being captured, which in turn allows the
agent to select actions that promote interactions with different
areas of the environment.

2.1.4. Total Excitation
The total excitation is calculated by combining similarity, novelty
and habituation, such that

φ = ω1 × Similarity + ω2 × (Novelty − Habituation) (6)

where the weights of ω1 and ω2 satisfy:

ω1 + ω2 = 1

This allows the agent to select an appropriate object to interact
with, by utilizing previous experiences associated to all objects in
the environment.

In particular, novelty and habituation are directly combined as
they are both related to experiences associated with the currently
perceived object, whereas the similarity considers all experienced
perceptions of the objects which the system has previously
interacted with. By varying the weights, we can simulate different
artificial infants with different preferences (e.g., novel vs. favorite
toy). Applying a higher weight to ω1 will make the agent more
likely to interact with similar objects. Whereas with higher values
of ω2, the agent will be more likely to interact with novel or less
familiar objects. This can also be seen as a preference toward
exploration or exploitation. The parameters ω1 and ω2 at 0.5 will
allow the robot to direct its attention toward a novel object, while
keeping all other parameters constant.

Alongside the object-related excitation, the agent calculates
the excitation of each schema in the system, in order to select

FIGURE 1 | Left: Value of τ1 for an object perception used in 1, 2, or 3 schemas continuously against the number of times it appeared in the environment. Right:

Novelty of an object perception over the range of value for τ1.
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FIGURE 2 | Left: Value of τ2 for an object perception in schemas used in execution steps [1 & 2], [1, 2 & 3], [1, 2, 3 & 4], and [1, 2, 3, 4 & 5] against the execution

steps. Right: Habituation of an object (perception) over the range of values for τ2.

an appropriate schema to be employed. Thus, this excitation
is related to the possible actions that could be performed for
each object, rather than the object perception alone. If the
perception(s) in the environment following an action matches
the post conditions of the schema, the execution is considered
to be successful. A success rate Sr is maintained to record the
proportion of time that the expected outcome of a given schema
has been achieved. This can also be considered as a reliability
measure for each schema, such that

λ = Sr × e
−1.1 Ts

Tc (7)

where Ts is the last time step on which a particular schema was
executed and Tc is the current time step. A coefficient to the
exponential power is used as a smoothing factor to obtain an
exponential response over the values of the ratio between schema
executions and current time. Ultimately, the final excitation for
each schema is calculated by considering each object that is
present in the environment, so that

Excitation = (ω3 ×

∑m
i=1 φi

m
)+ (ω4 × λ) (8)

with the weights satisfying:

ω3 + ω4 = 1

where m is the number of all the perceived objects, φi is the
excitation of the ith object and λ is the particular schema’s
excitation. Notice that due to Equation 7, a schema that is being
executed repeatedly results in a lower excitation value for λ,
which in turn contributes less to the final excitation. In a similar
vein, schemas that are never used becomemore excited than their
recently executed counterparts, enabling the agent to explore the
environment by performing different actions. The parameters
ω3 and ω4 at the value of 0.5 will allow the robot to switch its
behavior, keeping all other parameters constant.

Algorithm 1 describes the process of calculating the excitation
for a given environment state, referred to as world stateWS in the
system. It computes the excitation of schemas and schema chains

(to be introduced next) and returns the schema or chain with
the highest excitation, following the winner takes all principle.
In the case of equal excitation, schema chains will be preferred to
encourage the system to explore more complex behaviors.

Function Diff (line 32) returns an excitation based on the
change in the preconditions of schema si to the postconditions
of the next schema, si+1, in the chain, and Cr (line 36) is the
success rate of the chain. During the calculation of schema
excitations, the system generates schema chains as described
below in Section 2.2. Once finished, Algorithm 1 results to the
schema or chain with the highest excitation.

2.2. Schema Chains
As an agent gains more experiences and skills, certain skills can
be linked together to form higher level skills in a hierarchical
structure. For example, individual actions such as reach and grasp
can become linked by a single reach→grasp action. Through
playful exploration, more complex chains can be learned that
combine basic and form more sophisticated high level actions.

Chains are seen as sequences of schemas, which the agent
discovers by finding the links between the preconditions and
postconditions of the schemas in memory. Chaining helps in
achieving distant states of the environment that are not possible
when employing a single schema. For example picking up an
object from a reachable position needs two different actions to
be achieved; (i) reach for the object and (ii) grasp it. Figure 3
shows an example of a two schema chain obtained by linking the
preconditions and postcondition of two different schemas.

Algorithm 2 is responsible for the chain generation. As
previously mentioned, chains are created during the process
of calculating the excitation for schemas. Longer chains are
discouraged during the chaining process in order to reduce
computational costs and avoid overly complicated chains that are
more likely to be unsuccessful. Here, a limit of 5 schemas is set.

In Algorithm 2, the schemas Ss contains preconditions which
are a subset of the current environment,WS. The algorithm adds
all the possible chains, for a given state of the environment, into
the memory and returns the most reliable chain among them.
Reliability of a chain is calculated by taking the average of success
probabilities of all the schemas present in the memory.
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Algorithm 1 Excitation Calculation

1: function GETMOSTEXCITED(State WS)
2: Excitations = empty list
3: Chains = empty list
4: MaxSim = 0
5: MaxEx = 0
6: MostExcitedSchema = None
7: for each schema S inMemory do
8: Chain = findPath(WS, S.post) // See Alg. 2
9: Add Chain to Chains
10: for each object s1 inWS do
11: for each object s2 in S.post do
12: if Similarity(s1, s2) > MaxSim then

13: MaxSim = Similarity(s1, s2)
14: end if

15: end for

16: φ = ω1 × MaxSim + ω2 × [Novelty(s1) −
Habituation(s1)]

17: Add φ to Excitations
18: end for

19: overallEx=ω3 × Avg(Excitations) + ω4 × λ // For λ

see Eq. 7
20: ifMaxEx < overallEx then
21: MaxEx = overallEx
22: MostExcitedSchema = S
23: end if

24: end for

25: // Calculate chain excitations:
26: MaxChainExcitation = 0
27: MostExcitedChain = None
28: for each chain C in Chains do
29: ChainExcitations = empty list
30: for i = 0 to length(C)− 1 do
31: given schemas si and si+1 in chain C
32: ChainEx =Diff(si, si+1)
33: Add ChainEx to ChainExcitations // In the code

this is used for sorting
34: end for

35: ChainEx = sum(ChainExcitations)/(2 ×

length(C))
36: ChainEx = ChainEx × Cr

37: ifMaxChainExcitation < ChainEx then
38: MaxChainExcitation = ChainEx
39: MostExcitedChain = C
40: end if

41: end for

42: ifMaxChainExcitation < maxEx then
43: returnMostExcitedSchema
44: else

45: returnMostExcitedChain
46: end if

47: end function

Schemas in a chain are executed in a sequential order. A chain
is considered successful if the resulting WS due to the preceding

Algorithm 2 Schema chain calculation algorithm

1: function FINDPATH(StateWS, State Target)
2: Ss = schemas with similar preconditions asWS
3: Chains = empty list of pairs
4: for each schema S in Ss do
5: currentChain=[S]
6: chainProb = 0.0
7: chainProb + = prob(S) // For schema probability

see Sheldon (2013)
8: Start = S
9: while Start.post ≇ Target do
10: for each schema S′ inMemory do
11: if Start.post ∼= S′.pre then
12: Append S′ to currentChain
13: chainProb+ = prob(S′)
14: if S′.post ∼= Target then
15: prob = chainProb/length(currentChain)
16: Add [currentChain, prob] to Chains
17: Add currentChain toMemory
18: break // Go to line 4 for next S
19: else

20: Start=S′

21: end if

22: end if

23: end for

24: if length(currentChain) ≥ 5 then
25: break // Restrict chain length
26: end if

27: end while

28: end for

29: return chain with highest prob from Chains
30: end function

schema’s action matches its postconditions. A chain execution
is performed either as chain reflexes or motor programs as
described below.

2.2.1. Chain Reflex
Initially chains are executed in the chain reflex mode. The world
state (sensory information from the environment) is considered
at the end of every executed schema in the chain. If it does not
match the expected postconditions of the executed schema then
the schema chain is considered unsuccessful. The term “match”
means all the observations in the postconditions are obtained as
an outcome. An unsuccessful chain is then opted out from the
next step’s schema selection.

2.2.2. Motor Program
If a chain is successfully executed multiple times, then it is
considered reliable and therefore becomes automatic, in a sense
that it behaves as a singular continuous higher-level action called
a motor program. As such, the chain is used to achieve a certain
condition that results from a hierarchy of actions.

At least four successful repetitions and a probability of success
higher than 80% render a chain sufficiently repeatable to be
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considered as a motor program. Motor programs are executed
sequentially without the need of intermediate verification of the
world state. That is, only the last action’s resulting postconditions
are used for the evaluation of the motor program. Consequently,
if the validation (4 successes and 80% success rate) fails, themotor
program’s success probability is negatively affected turning it to a
standard chain.

Algorithm 3 describes the execution process of an exciting
schema or a chain. Note that executing a chain is considered as
taking a single time step. For further details on this mechanism
of Dev-PSchema, please see Kumar et al. (2016a,b).

Algorithm 3 Schema/Chain execution algorithm

1: function EXECUTEEXCITED(StateWS)
2: Excited = getMostExcited(WS)
3: if Excited is a schema then
4: execute(Excited)
5: else

6: Chain C=Excited
7: reliability = C.successes/C.activations
8: Increment C.activations
9: for each schema S in C do

10: execute(S)
11: if C.successes < 5 or reliability < 0.8 then
12: update(WS)
13: if S.post ≇ WS then
14: return unsuccessful
15: end if

16: end if

17: end for

18: end if

19: end function

1: procedure EXECUTE(schema S)
2: execute(action S.action)
3: Increment S.activations
4: end procedure

During the execution of a motor program, although the
external state of the environment may not be directly monitored
by the high-level agent, the internal proprioceptive system is
active.When interfaced with a low level system that is monitoring
all the sensors, the chain can still be interrupted if something
unexpected was perceived.

The concept of schema chains is inspired from developmental
psychology, where the ability for planning, hence action
sequences, is investigated (Willatts and Rosie, 1989; McCarty
et al., 1999; Rosenbaum et al., 2007). McCarty et al. (1999)
investigated planning in 9, 14, and 19 month old infants. A spoon
full of food was placed in various orientations in front of the
infant. It was observed that 9 and 14 month old infants reached
and grasped the spoon with their preferred hands. Due to difficult
orientations of the spoon, 9 month old infants were found to
grasp the spoon from the opposite side of the spoon, i.e., the
food rather the handle side, before a corrective grasp change

was required. The 14 month old infants always made corrections
to make sure that the food reaches the mouth, whereas the 19
month old infants were found to switch to their non-preferred
hand when the orientation of the spoon was difficult. The authors
identified a series of planned strategies employed by the infants
each with the goal of eating the food that can be considered as
chains of action schemas.

The concept of a motor program is also inspired from
developmental psychology, such as the work by Lashley (1951)
investigating the hierarchical organization of behavioral plans.
He believed that the concept of a motor program was being
ignored over the concept of chain reflexes. The theory of chain
reflexes proposes the serial order of behaviors with sensory
feedback, which contributes to the excitation for each of the
sequential building blocks of the chain. However, the motor
program theory proposes the serial order of the actions in
the behavior where the sensory feedback of the intermediate
actions are ignored. Lashley (1951) believed that more time was
spent at the beginning of the sequence with a shorter time in
between the behavioral elements where errors in the behaviors
support the theory of motor programs. The longer time spent
at the beginning provides the planning of the entire sequence
leading to shorter gaps between the behavioral elements, which
are not sufficient to receive feedback and plan the next step.
More recently, his work has been reviewed by Rosenbaum et al.
(2007). Although the review suggests that going directly to
motor programs and ignoring all sensory feedback is discounted,
key-frames are identified in behaviors between where motor
adaptation can be performed. The authors also observe that the
execution time of actions between key-frames is significantly
reduced following 4 to 6 repetitions. The behaviors displayed
between these key-frames could be considered as short chains
being executed as our motor programs, supporting the need to
limit the length of any chains generated.

2.3. Experiments and Results
We present two different experiments that demonstrate the
capabilities of the proposed schema system. In the first
experiment, we show the impact of varying the four weights
used in the excitation calculation during play. As previously
mentioned, this is equivalent to simulating different behaviors
by different individuals in infancy. In the second experiment,
we examine the capacity of the system with respect to playful
exploration and the application of chaining, is performed both
in a simulator and with a real iCub humanoid robot (Metta et al.,
2008).

In the simulator, the environment consists of a 5 × 5 grid of
regions, where an end effector that represents a hand and several
objects are situated. Both objects and the end effector occupy
one indexed region in the environment, but objects can form a
stack where multiple objects occupy the same region/position.
The positions of the regions in the environment are labeled
with horizontal and vertical coordinates x and y respectively. An
example of the simulated environment is shown in Figure 4.

Dev-PSchema receives sensory information as observations
representing relevant sensor data e.g., visual observation
represents color and shape. An object is represented by an

Frontiers in Neurorobotics | www.frontiersin.org 8 June 2018 | Volume 12 | Article 33

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Kumar et al. Developing Schemas and Chains Through Play

FIGURE 3 | An example of chaining. Two schemas are combined to create a “2-Schema chain”.

FIGURE 4 | Left: Simulator environment containing end-effector, and object.

Right: Description of perceived sensory information of the environment.

observation containing relevant sensory information from a
single world position in the case of the simulator and single
gaze position in iCub. There are three different sensor cues
simulated; visual, touch and proprioception. The visual sensor
provides object perceptions that include the color, shape and the
coordinates of the objects in the environment as the properties
of the perception. These properties are used in similarity
calculations of perceived object for excitation. The touch sensor
provides indication of contact between the hand and the objects
and, coupled with the proprioception is used to determine

whether an object is being held. The proprioceptive sensor
provides the coordinates of the hand on the grid and a value
of 0 or 1 that represents the state of the hand’s grip, where 0
represents the open hand and 1 represents the fully closed hand.
The simulator returns all the perceptions of the objects present in
the environment, alongside proprioceptive and touch perception,
if touch perception exists.

The end effector can perform several different actions in
the environment resulting in different perceptions. Both the
actions and sensory perceptions are specified at a higher level to
maintain the focus on playful interaction rather than the low level
sensorimotor control. Actions used in this work are defined as
follows:

• Reach x y: A reach action with parameters x and y that define
the indexed position in the environment to which the hand
is expected to reach. If the hand is holding an object, it is
expected that the object will be moved to the x, y position
by the system. If the hand is empty and moves to an x, y
position where an object exists, the hand will receive a touch
related perception. The touch perception varies according to
the object being perceived.

• Grasp: This action initiates a grasp on an object. It is expected
to close the hand and to result in grasping and holding
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an object at the current hand’s position. If there is no
object present the hand will fully close. In both cases, the
corresponding touch related perceptions are expected to be
captured.

• Release: This action is the reverse of a grasp. It triggers the
hand to fully open and, if the hand already holds an object,
to drop it on the surface of the grid. A dropped object is
expected to be found at the same position of the hand, offering
corresponding touch perceptions.

Although simplified, this set of actions are sufficient to
demonstrate the playful capabilities of the agent similar to an
infant’s play. They provide an initial set of predefined actions
here to bootstrap the process. In a developmental system these
actions could be learnt through a combination of reflexive and
exploratory behaviors.

2.4. Experiment 1 (A): Novel vs. Familiar
Preference
This experiment is inspired by the study of “Young childrens
preference for unique owned objects” by Gelman and Davidson
(2016). The study investigates the infants’ preference to be
attracted by a well known object (a favorite toy) rather than a
new identical object or a novel, non-identical object. In the study,
most of the time infants tend to select their own objects when they
are given a choice of two. Interestingly, the infants are found to
select the identical or novel object when they are asked to select
an object for the experimenter.

To replicate the behavior of infants in the experiment only
the reach schema, hence action, is used. The agent’s preference
is expected to be demonstrated by utilizing several reach related
schemas that are gradually learned by interacting with the objects
on the grid.

At first a single object, a red cube is presented to the agent.
The environment and the perceived world state are shown
in Figure 4. With the single reach schema in memory, the
agent is most excited to interact with the object by reaching
toward it. Once reaching is performed successfully, we reset
the environment and return the hand to its initial position.
The experiment is divided into two stages: Stage one is for
familiarization, that is the agent reaches for the same object for
at least three times. Stage two is for test condition, where both
the familiar and a novel object are presented to the agent. This
stage is further divided into four parts for each of the novel
object introduced. For each object combination, the weightings
for similarity, novelty and habituation, ω1 and ω2, are varied to
show the change in preference. Note that ω3 and ω4 remain 0.6
and 0.4, respectively, in all the variations of this experiment. A
slight weighting bias is given to the value of ω3 over ω4 to keep
excitation dependence on the similarity and habituation/novelty
rather than schema statistics.

2.5. Experiment 1 (B): Action Preferences
By varying the excitation parameters described in Section 2.1,
several different behaviors emerge from interacting with the
environment. In particular, here we vary the weights ω3 and
ω4, keeping ω1 and ω2 constant (0.5 each). We examine the

agents preference to either favor recently executed actions or
switch to different actions during a series of executions. For
this experiment, we use the same agent and the environment
described in Section 2.4. However, the agent will have
only two different actions here, “Press” and “Squish”, which
produce the same outcome in the environment. Having the
same outcome/postconditions for both actions gives the same
similarity and novelty/habituation. Hence excitation of both
schemas will only depend upon the schema statics.

We only use one object in the environment for this experiment
to control the variation in object excitation, and place the
end-effector at the same position as the object to remove the
reach action from this experiment. Each action, squish or press,
responds with a new observation, press, in the environment. By
producing the same outcome for each action this will provide the
same value for the similarity and novelty/habituation pair, so the
two action will be comparable using schema excitation only. We
let the agent play with the object using the actions and record
which action is selected at each execution.

2.6. Results of Experiment: 1 (A)
Following the familiarization stage, along with the original object
(i.e., the red cube) we introduce four different objects one by one.
Each of the new objects contains at least one common property
to the red cube, such as color or shape3. A blue cube, a red ball, a
red cube and a blue ball are used, with the latter being the object
with no common properties to the object the system is familiar
with. We expect that the agent will prefer to reach for the novel
object when it is introduced. However, by changing the parameter
values, we expect the agent will reach for the familiar object
rather than the novel one. The initial weight for similarityω1, and
novelty and habituation ω2 are both set to 0.5, then the weight ω1

is increased in steps of 0.1, whilst maintaining ω1 + ω2=1 until
the observed behavior flips toward the familiar object. Below is
a discussion of the observed behavior of the agent, following the
initial experience and perceiving the novel object over different
values of the excitation parameter.

2.6.1. Novel Object With no Change in the

Parameters (Same Color & Shape)
When an identical object4, to the red cube is placed in the
environment, the agent draws its attention to it, as similarity
and novelty/habituation are equally weighted. With just 10%
increase in the similarity weight (ω1 = 0.6), the agent’s preference
switches to reaching toward the familiar object. Figure 5 shows
the excitations of the two reaching decisions, one toward the
familiar object and one toward the novel (identical) one, after
having only experienced reaching to the familiar object during
stage one.

For each weighting, the executed action is the one with
the highest excitation. The first three executions in the figure
represent the familiarization stage of the experiment. The dotted
lines represent the reach for the familiar object and continuous
lines represent the reach for the novel object. Note that the

3 Here the different types of properties are weighted equally.
4All the properties with the same value, except at different position.
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FIGURE 5 | Reach actions for Familiar vs. Novel (identical in color and shape) object. Enclosed Figure shows the excitations at the 4th execution.

novel object is only introduced following the completion of the
familiarization stage. The enclosed figure shows that for the novel
object at equal weightings (red star) the excitation of the “reach
for novel” object is higher, whereas with a similarity weighting
of 0.6 (blue circle), the excitations are almost the same, giving
a marginally higher value for “reach for familiar object.” At this
point, the agent prefers to reach for the familiar object rather than
the novel one5, unlike it did previously when weights were 50%
for both ω1 and ω2. Thus, increase in the weight for similarity
(ω1) enabled the agent to prefer the familiar object rather than
novel.

2.6.2. Novel Object With Change in Single Parameter
By varying just ω1 from 0.5 to 0.7, it is observed that the agent
interacts with the novel object, i.e., the blue cube or the red
ball after being familiarized with the red cube. Changing ω1 to
0.8 and ω2 to 0.2, the agent’s behavior switches from interacting
with the novel object to interacting with the familiar one after
being familiarized. Here interacting, it means reaching toward
the object.

Thus the additional variation in the object properties results
in the agent interacting with the novel object instead of the
familiar one, until a higher weighting toward the similarity
parameter is applied to draw the agent’s attention toward the
familiar object. At this level (similarity weight ω1 = 0.8), the low
weight to the novelty/habituation parameters (ω2 = 0.2) counters
the excitation generated from the different properties. Figure 6
shows the excitation of the “reach novel vs. familiar object”
schemas for the different values of the excitation parameters.

Changing the similarity weight value allows several
individuals to be simulated. For weights in the range 0.5 − 0.7
for ω1, the agent is found to interact with the novel object,

5Winner takes all, therefore size of gap is not important.

however each of those has different excitations for reaching
toward the novel object and reaching toward the familiar object
actions. When the similarity weight is set to 0.8 or above,
the agent is more likely to interact with the familiar object
rather than the novel one. As anticipated, both the object and
schema excitation weights (i.e., ω3 and ω4) cause the agent
to habituate with the same object and action in case that the
agent is allowed to interact with the world for a longer period of
time.

2.6.3. Novel Object With Change in Both Properties

(Color & Shape)
When an object with different color and shape properties to
those previously experienced is introduced, the agent requires
a greater weighting on similarity values in order to draw its
attention to the familiar object. A completely novel object
being introduced generated a high level of excitation triggering
interaction with it. The simulation results show that the
agent reaches for the novel object with similarity weight
set to 0.5, 0.6, 0.7, and 0.8 respectively. When set to 0.9,
the behavior of the agent finally switches to interest in the
familiar object instead of the novel one. Figure 7 shows the
excitations for schemas for reaching toward the familiar and
novel objects.

From Figures 5–7, it is evident that the agent’s preference
in the environment changes with the variation in the excitation
weights ω1 and ω2. A weighting bias toward ω1 will increase
preference toward familiar objects. However, as the difference
between the familiar and novel object increases, so do the
weighting toward ω1.

2.7. Results of Experiment: 1 (B)
In this experiment, the agent has the option to perform two
different actions on the object. Both actions are controlled
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FIGURE 6 | Reach actions for Familiar vs. Novel (change in either color or shape) object. Enclosed Figure shows the excitations at the 4th execution.

FIGURE 7 | Reach actions for Familiar vs. Novel object (changed in both color and shape). Enclosed Figure shows the excitations at the 4th execution.

to provide the same outcomes in order to ensure they both
provide the same object excitation based on similarity,
novelty and habituation. Thus, the excited schema (or
excited action) depends on the schema excitation as described
in Equation 7 and its weight (ω4). The agent’s observed
behaviors for different values of the ω3 and ω4 are shown in
Figure 8.

In particular, this figure shows the most excited schema, hence
the action, for each execution at different paired values of ω3 and
ω4, for 10 executions. From the results, it is evident that the agent
shows different behaviors as the weights vary. As the weight shifts
toward ω4, the agent becomes increasingly inclined to frequently
switching between actions, rather than to explore the effects of
the previous action further.
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FIGURE 8 | Excited schema action for different values of ω3 and ω4. Lines off-set for visibility.

2.8. Experiment 2: Playful Discovery of
Action Sequences-Chaining
In the second experiment, we demonstrate the capability of
playful behavior for exploring an environment, discovering
action outcomes then creating schemas chain to form higher
level behaviors in a hierarchical manner. For the first part of
this experiment we will use the same environment with different
objects and all the actions as described in the beginning of
Section 2. The experiment is then repeated on an iCub humanoid
robot (Metta et al., 2008) to show the application of Dev-
PSchema in a real world scenario.

This experiment contains two stages. In the first stage, we
introduced an object (red cube in simulator) and a hole in the
environment and let the agent play with it. The hole in the
environment is perceived as an object with color and shape,
however it cannot be interacted with through grasping. The agent
will not get any touch perception when it reaches toward it and
when attempting to grasp, the hand will close fully to a fist. When
an object with the similar shape as the hole is released in the
hole, it disappears from the environment. Figure 9 shows the
environment for this stage of the experiment and perceived state
by the agent.

During the aforementioned first stage, the agent is allowed to
freely play with the objects in the environment. The stage ends
when the agent drops the object in the hole. Note that the aim
to drop the object in the hole is decided by us (experimenter),
but not specified to the agent. The agent is neither programmed
with this aim, nor contains any schema to perform this specific
action. At the start, the agent only contains the raw actions
(Reach, Grasp, Release), without any understanding of the effects
that the actions will have on either object in the environment.
We expect that during a period of playful exploratory behavior

FIGURE 9 | Left: Simulator environment containing end-effector, hole and an

object. Right: description of the sensory information of the environment.

using high-level motor babbling, the agent will be able to
achieve the aim of the experiment i.e., creating sequences of
actions.

In the second stage of the experiment, the environment
is reset to evaluate the ability of the agent to exploit the
knowledge gained during stage 1 and to apply chains of higher
level actions. We anticipate that the agent will be able to
create a chain of four actions (reach for cube, grasp, reach
for hole, release) to pick and drop an object in the hole in
a single execution rather than the exploratory play it did in
the first stage. Note that the agent is still able to generate and
reuse chains as during the first stage of the experiment. The
parameter weights used in this experiment for the simulator
are 0.5, 0.5, 0.6, and 0.4 for ω1, ω2, ω3 and ω4 respectively.
We made a slight change in the weights of the ω3 and ω4, as
compared to the weights used in Experiment 1, to encourage
the agent to become habituated with schema actions quickly
during play and therefore to try different schemas, hence different
actions.
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2.8.1. Humanoid Robot and Environment
The above experiment was also conducted using the iCub
humanoid robot (Metta et al., 2008), where a low-level system
is responsible for (i) providing high-level action commands, and
(ii) preparing and maintaining visual, proprioceptive and tactile
perceptions. The only changes made to Dev-PSchema were to
the weights and slightly increasing the tolerance of similarity
to account for variations from the robot sensors. The expected
sensory information is undefined, enabling the system to respond
to new and previously unknown states or actions that may
become available from the low level system. This shows the ability
of Dev-PSchema to be applied to different and more complex
settings.

In terms of actions, the reach, grasp and release commands
are available after they are learnt using developmental approaches
as documented in previous research efforts by Law et al.
(2014b), Shaw et al. (2015), and Lewkowicz et al. (2016).
Reaching is learnt by employing an approach that is inspired
from hand regard in children during infancy (Rochat, 1992).
This learning approach consists of random arm movements that
trigger eye saccades on the visually stimulating hands. Once
fixated, mappings are learned between the reaching space and
the visual space, i.e., the gaze space of the robot (Giagkos et al.,
2017b). Further information regarding learning the reaching
space is found in Earland et al. (2014). The result of learning
associations between reaching and gaze spaces is twofold. First,
the robot is capable of performing reaches to a given set of
coordinates within its reach space. Second, by knowing the exact
hand position in the reach space, the robot is able to know
where the hands are located in its gaze space by following the
associations previously learned. Thus, the robot is able to perform
eye and head movements in order to visually visit its hands, if
necessary.

For grasping, the robot currently employs a mechanism
inspired by the reflexive grasping in infancy (Giagkos et al.,
2017a). When a touch sensation occurs on any tactile sensitive
area of the hand, motor commands are sent to all digit joints
to form a power grip. Joints that have reached a maximum
are excluded from further motor activity. Digit joints are
excluded when tactile sensation is constantly received from the
associated fingertip, indicating that an obstacle is firmly grasped.
Equivalently, a release command opens the fingers iteratively, as
long as their joints have not reached their minimum values.

All perceptions are prepared by monitoring and grouping
information that is received from the robot’s sensory cues. At
the beginning of the experiment, the robot is given time to
visually explore its intermediate space by performing saccades
to stimulating targets. In this experiment, green and red patches
on the retina visually attract the robot’s attention. Coordinates of
the fixation target are calculated by considering the kinematics
model of the robot with respect to the head configuration of the
fixation. The gaze coordinates act as the equivalent of the world
coordinates in the simulator. Subsequently, all color information
that is found within the foveal area of the retina (i.e., the circular
area depicted in Figure 11), as grouped as part of the same visual
perception. This is because at this stage, visual targets that are
found in the fovea are considered being part of the same object

in the world. Along with the HSV color model values (i.e., Hue,
Saturation and Value), the area is also calculated, being followed
by the fixation target’s depth. HSV is preferred over other color
models such as RGB due to its robustness toward external
lighting changes, with Hue varying relatively less in real-world
environments. In brief, raw images from the DragonFly2 cameras
of the robot are processed to identify stimulating targets of
interest. Color detection is achieved by comparing the perceived
HSV values against the range that defines each detectable color.
Subsequently, the centroid of each target, the mean HSV and
also the area’s size in pixels are reported. This approach allows
the system to identify potentially stimulating areas in the scene
and utilize their attributes to characterize them. The low-level
feature extraction mechanism employed in this experiment is
discussed in Giagkos et al. (2017b). Although the gaze space is
two-dimensional, an estimation of the depth of the fixation is
measured to enrich the information about the visual perception
in the three dimensional space. Depth is calculated after the eyes
converge or diverge to perform both eye fixation.

As with the visual perceptions, tactile information is analyzed
by the low-level system, in order to prepare tactile perceptions
for Dev-PSchema. A tactile perception consists of the touching
hand identification and the areas that received tactile information
on it (i.e., the 5 fingertips and the palm). Finally, proprioception
perceptions are sent for each hand of the robot, consisting of the
position of the hand in the gaze space and the value related to the
current hand grip. The latter reflects the hand’s open and close
configuration in percentage with 0% defined as fully open and
100% as fully closed.

Unlike the simulator, where the world state is provided
by the software, visual changes in the real-world cannot be
fully captured unless the robot visually revisits the areas of
interest. Previously generated visual perceptions may no longer
be available due to several real-life phenomena. For instance
an object is perceived differently while it is partially or fully
hidden from the eye cameras while the arms move within the
reach space, or when the object has moved while an action is
performed. Not all the visual perceptions are found in the retina
at all times. This means that substantial head movement may be
required in order to update their information, or the robot needs
a way to update the world state perceptions after each action. To
tackle this practical issue, the low-level system keeps a short term
memory of the gaze targets with which it previously engaged,
and iterates through them at the end of every action. Having
such access to up-to-date world state perceptions and actions, the
associated Dev-PSchema mechanisms can efficiently operate.

The experimental set-up that is used for this experiment is
illustrated in Figure 10. A red soft toy is placed on a wooden
board that contains a hole, big enough to ensure a successful
drop. The hole is marked with a green color tape to be visible
to the robot. Visual perceptions of both targets are sent to Dev-
PSchema containing their coordinates in the gaze space. In order
to match the simulator’s experiment, one robotic arm is utilized,
limiting the amount of proprioceptive and tactile perceptions to
the right hand only. Figure 11 shows how targets are perceived
by the eye-cameras from the environment. Using the iterative
mechanism mentioned above, the visual perceptions of both the
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FIGURE 10 | Experimental set up for the iCub and perceived sensory information.

FIGURE 11 | Perceived color patches by the iCub form the left and the right eye.

red and green targets are updated to constitute a fresh world
state for Dev-PSchema’s postcondition matching and excitation
computations.

In this experiment we used 0.5 for all the parameter weights
( ω1, ω2, ω3 , and ω4 ). Equal weights (0.5) for the similarity
and novelty/habituation pair will encourage the agent to interact
with the less habituated and more novel object, having the same
similarity. For ω3 and ω4, this encourages the agent to switch
objects and schemas, hence actions, frequently. Values from iCub
perceptions were all normalized to the range of [0, 100], with 10%
tolerance to account for noise from the raw sensors.

2.9. Results of Experiment: 2 (Simulator)
During the first stage of the experiment, the agent playfully
explored the two objects and actions available in the
environment. As new experiences were gained, new schemas
describing these were formed. These new schemas had high
novelty and therefore, where often selected as the next action,
resulting in a playful behavior that repeats interesting actions,
thereby also confirming their effects. Initially the agent focused
its attention on the cube, learning the effects of reaching,
grasping and releasing it. These actions were then combined into
various chains that were tested, before the attention switched to
the hole. At this point it was still holding the object, which it
discovered to have moved with its hand. Attempts to grasp the

hole made no difference, allowing the release action to become
most excited again, and finally dropping the object in the hole.
Figure 12 shows the excitations of different schemas and chains
created during the playful behavior.

Before each action execution, the agent calculates the
excitation of all the actions with the action (schema) of the
highest excitation executed. Figure 12 shows the winning action
at each execution in the experiment. During the play, it also
created and executed chains of schemas. The continuous lines
Figure 12 shows the excitations of the schemas and dotted lines
represent chain excitations. Initially there are no chains available
for the agent. Once the agent performs the grasp action, it
created the “Reach and Grasp chain” and executed this at the
8th execution. Similarly, once the agent released the object, it
discovered the “Reach, Grasp, and Release” chain. The chain was
then executed twice as it had the highest excitation at the 9th and
10th execution.

Once the agent reached the first stage aim, we reset the
environment, for the second stage of the experiment, by placing
the object back at the same position as shown in Figure 9, and the
hand back to its starting position. At this point the agent already
had experience of dropping the object in the hole, so this stage
evaluates the agent’s ability to reuse that knowledge. The agent
created the 4-schema chain “Reach, Grasp Cube, reach Hole and
Release” following stage 1. It calculated the excitations of all the
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FIGURE 12 | Schema and Chain excitations (Simulator). The most excited schema/chain at each execution is specified across the bottom. Actions with asterisk(*) are

the positions at which new schemas emerged and with asterisk(**) are the positions where generalized schema created. The chains contain emerged schemas only.

Each solid lines shows excitation of the corresponding schema, whereas dashed line shows that of a chain.

schemas and the chains and this 4-schema chain (dropping cube
in the hole) was found to be the most excited. This is due to it
being a new chain and also making the highest difference within
the environment. Execution 19 (Reset on X-axis) in Figure 12

shows the excitations of all the schemas and chains for the given
environment.

Figure 12 also shows that at the final execution, the excitations
for all the schemas were less than the 4-schema chain. However,
two other 3-schema chains i.e., “Reach, Grasp Cube & Reach
Hole” and “Reach, Grasp Cube, and Release at Hole” have
the same excitation as the 4-schema chain. The agent, in this
condition, picks the longest chain (4-schema chain) to execute.
During the chain execution, the agent checks the sensory
feedback to confirm if it is getting the expected postconditions
at the end of the action in the 4-actions (schemas) chain. Thus,
the chain is executed in the “Chain Reflex” mode here.

2.10. Results of Experiment: 2 (iCub)
The experiment starts with the robotic arm at what we refer to as
the home position. Having the arm raised next to the head and
thus outside the robot’s visual field, it is ensured that the initial
acquired visual perceptions reflect a world state of inactivity. At
the beginning, both targets are equally exciting for the robot
therefore it initially selects to reach toward the hole target. Grasp
happens to be the next exciting action to be performed, and due
to the perception changes at both visual and proprioceptive levels,
new schemas are generated. These new experiences are repeated
and followed by a release action, an order which leads to the
creation of a schema chain in the system; “Grasp→Release.” The
related excitations are depicted against the Y-axis of Figure 13,

whereas the X-axis shows the order of schema (i.e., action)
execution.

After a number of executions where related to the hole target,
habituation occurred and therefore the robot reached toward
the ball (10th execution). After a successful grasp action, the
world state was updated with the red ball to be ultimately
perceived differently due to the grasping hand partially covering
it. Subsequently, the sudden change to the visual perceptions
offered a lot of new stimulation, fostering the creation of new
schemas. As a result, grasping again became the most exciting
action to perform, while holding the object. This repeating
behavior is akin to squeezing an object, which in turn results
in to several changes in visual and proprioceptive perceptions.
However, after a number of grasp actions, the system habituated
and a release was selected for the 17th execution.

Once released, the object dropped on the wooden board again
giving different visual perceptions. A new post-release schema
reflecting the new world state was learned for iCub to repeat, and
after a few executions, it ultimately utilized the “Grasp→Release”
chain to interact with the object. The robot then moved its arm to
the hole coordinates while holding the ball at the 25th execution,
followed by a release command being issued at the 28th execution
which caused a successful drop of the ball into the hole.

For the second stage of the experiment the robot is expected
to utilize the previously learned schemas and schema chains to
express the similar playing behavior. Thus, without specifying a
particular goal the aim is to evaluate the ability of the system
to link past experiences and actions from its repertoire with
the environment and to succeed in dropping the ball into the
hole. The robot’s performance differs in this stage from the
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FIGURE 13 | Schema and Chain excitations for the iCub. The most excited schema/chain at each execution is specified across the bottom. Actions with asterisk(*)

are the positions at which new schemas emerged and with asterisk(**) are the positions where generalized schema created. The chains contain emerged schemas

only. Each solid lines shows excitation of the corresponding schema, whereas dashed line shows that of a chain.

simulator. The amount of noise in the real world is found to
play an important role in delaying the process of appropriate
schema selection for execution. The significant variation between
schemas makes it difficult for the robot to directly link between
them. However, it is anticipated that with generalization over
the variation in perceptions, the generation of a full chain
for dropping the ball in the hole would be possible given
sufficient time for exploration. Although the number of schemas
will gradually increase over time with more exploration, the
process of generalization will limit the number of schemas in
total (Law et al., 2014a; Kumar et al., 2016a). Thus, given the
noise in the perception of the real environment, we anticipate
that an affordable number of executions will be needed to
achieve the desired chain. Nevertheless, subsets of the desired
full chain are generated and repeated by the system, such as the
“Grasp→Reach” and “Grasp→Release” chains.

3. DISCUSSIONS

Dev-PSchema is expected to provide an interesting and appealing
approach for developmental robotics. To demonstrate the
abilities of the system we performed two sets of experiments.

3.1. Discussion of Experiment 1
In the first experiment (1A), the agent is shown to express
different behaviors for the novel object, while the weights of the
similarity and excitation parameters change. A summary of the
points at which the changes occur is given in Table 2.

Excitation and attention are seen as important factors for
individual behaviors in developmental psychology. Although

TABLE 2 | Summary of the weightings at which the observed behavior changed

preference from familiar to novel.

Matching properties Behavior change

Sim / Nov (ω1 / ω2)

Two 0.6 / 0.4

One 0.8 / 0.2

Zero 0.9 / 0.1

vision is the least developed sense at birth, humans have evolved
to rely heavily on this sense (Slater and Bremner, 1989). Colombo
(2001) considered alertness, object features, spatial orientation
and endogenous control as the basic factors that affect visual
attention in the environment. In this work, we are concerned
with the last three factors of visual attention. Object features and
relevant spatial orientation are inseparable. That is, the question
“what” is related to the question “where” in the visual field.
When the eyes fixate a target, moving it from the peripheral to
the foveal vision, the direction of attention shifts in order to
maintain the attention locked on the target and thus to engage
with it. The endogenous control factor in visual attention is
responsible for holding the attention and engaging. The novelty-
familiarization pair is used in developmental psychology to
investigate visual attention in humans. To investigate visual
attention in this experiment, the simulated infant is initially
familiarized (habituated) with a visual stimuli or event and is then
presented with novel and familiar objects side by side (Wilcox,
1999; Sann and Streri, 2007; Schmuckler et al., 2007; Gelman and
Davidson, 2016).
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A habituation paradigm is widely used in developmental
psychology experiments to test infants’ ability to identify
or recognize objects (Wilcox, 1999; Sann and Streri, 2007;
Schmuckler et al., 2007), or events (Rosander and von Hofsten,
2004; Kellman and Spelke, 1983) based on visual cues. These
examples show that infants tend to look longer toward novel
objects or novel and unexpected events than toward those which
are familiar or predicted. However, infants have been observed to
have favorite objects for interaction and play (Furby and Wilke,
1982; Jonsson et al., 1993). Also, it has been observed that young
children prefer their favorite toy over new toys, irrespective of
identical form (Gelman and Davidson, 2016). In the experiments
by Gelman and Davidson (2016), young children were asked to
select a toy from a choice of their own or a new toy (identical
and non-identical). They preferred their own toy when they were
asked to choose for themselves and preferred the novel object
when they were asked to select for the experimenter.

Sigman (1976) investigated the exploratory behavior of the
pre-term and full-term infants at the same conceptional age.
Both birth groups were familiarized with an object, a small ball.
Following the familiarization period, the infants were provided
with the same object along with other novel objects, each for 1
min. It was observed that both groups explored the novel objects
more than the familiar objects. However, the pre-term infants
explored the familiar object for longer than the full-term infants.

Ruff (1986) examined behaviors of 7-and 12-month infants
with a set of objects over a period of time. Six different objects
were presented in front of each infant, each for a period of
1 min. Different activities such as examining, mouthing and
banging, were recorded during the trails. It was observed that the
examining of each object decreased over the period of time. In
addition, examining occurred before the other activities when a
new object was presented. Furthermore, the 7-month old infants
spent more time on examining and mouthing than the 12-month
old infants.

From these examples it is evident that children show different
behaviors for novel and familiar objects depending upon their
experiences. This effect was reproduced within Experiment 1
by changing weights of the excitation parameters. The results
showed the capability of the system to demonstrate different
behaviors when interacting with a novel vs. familiar object. When
the features match, the habituation effect from the first object
can be considered as transferring to the new object, resulting
in low novelty-excitation. Therefore, only a small change in
favor of the similarity triggers a change in observed behavior.
However, as the novel object becomes increasingly different,
the novelty/habituation value of it becomes increasingly higher,
requiring a greater weighting on similarity to cause the change in
behavior.

This behavior of the artificial agent can be compared with the
infants’ behaviors. Steele and Pederson (1977) investigated the
effect on visual fixation and manipulation with toys across 10
continuous trials in 26 weeks old infants. They were presented the
same toy for the 1st to 7th and 10th “trails” and a novel object was
introduced in the 8th and 9th “trails”. Fixation and manipulation
times were found to decrease at each trial. However, fixation
time was increased at the 8th trail when a novel object was
introduced, different in either color, shape, texture or shape and

texture. Similarly manipulation time was increased when the
novel object contained different shape and texture. However, the
manipulation time was found to continuously decrease when the
novel object only differed in color.

While given of the parameters were controlled, particularly in
Experiment 1b, within the pairs of weights, a higher weighting
on ω1 will drive the agent to spend longer exploring the same
object, and a higher weighting on ω4 will encourage the agent
to try different actions. By adjusting each of the weights, different
behaviors can be simulated. This could be considered asmodeling
different infants preferences, or different external conditions
under which the agent is acting. Currently the weights are fixed at
the start of an individual experiment, but in the future allowing
the agent to vary these, could generate a shift from exploratory
play behavior to more exploitative or focused behavior.

3.2. Discussion of Experiment 2
In the second experiment, both agents (simulator and iCub) have
shown the capability of playfully exploring their environment
to discover object-action behaviors and construct hierarchical
actions through the use of schema chains. In the first stage,
both agents demonstrated the exploratory play behaviors in
their respective environment. The second stage highlights the
exploitation capability of the agents, by demonstrating direct
re-use of their behaviors, learned during the exploratory play.
The chains in the experiment shows the high level behaviors
containing several steps in between to achieve a more distant
state, i.e., postconditions of the last schema in the chain.

The simulated individuals in our experiments, have shown
the capability of generating action sequences to achieve further
states in the environment. The action sequences are obtained
through exploratory play behavior. This behavior is followed by
the exploiting behavior in stage 2, where either of the agents re-
used the learnt behaviors to attain the state in the environment
which was obtained previously with individual actions selected
on the basing of excitation at each time step to reach the
experimenters aim of dropping ball in the hole. The twomodes of
the chain executions, in the execution mechanism of the agents,
are modeled on the “Chain reflex” and “Motor program” theories
discussed as previously.

4. CONCLUSION AND FUTURE WORK

In this work we have presented a schema-based play generator for
artificial agents inspired by Piaget, termed Dev-PSchema. With
experiments in both a simulated environment and with the iCub
robot, we have demonstrated the ability of the system to create
schemas of sensorimotor experiences from playful interaction
with the environment. In particular, the proposedmodel captures
concepts related to similarity, novelty and habituation, as a result
of the agent interacting with objects, leading to the expression of
different exploratory behaviors.

The first experiment has demonstrated the variations in the
behaviors of the agent by changing the weights of parameters
(ω1, ω2, ω3, and ω4). Experiment 1(A) illustrates the variation
in behaviors of the agent by changing the weights of the
similarity and novelty/habituation pair (ω1 and ω2), while
keeping the object and schema excitation weights constant
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(ω3 and ω4). Similarly, experiment 1(B) demonstrates the
variations in behaviors of the agent by changing the weights of the
object and schema excitation (ω3 and ω4), keeping similarity and
novelty/habituationweight pair (ω1 andω2) constant. This aspect
of the system enables us to simulate different individuals with
individual behaviors rather than a single simulated agent with
average behavior. It also enables the agent to switch behaviors
from exploratory to more focused behavior and vice versa.

With the experimental results reported above, we have
demonstrated the capability of the proposed learning system,
Dev-PSchema, to simulate different individuals. By varying the
weights of the excitation parameters, the agent has shown
different preferences within the experimental environment.
For instance, regarding the second experiment, the agent’s
preferences were based on its experiences in the environment,
while fixing other model parameters. We have focused on the
excitation mechanism and its parameters to demonstrate its
importance in the agent’s behaviors. The agents’ behaviors show
attention, interest and their preferences in the environments.

The second experiment, presented in Section 2.8, has
demonstrated the play behavior of the agent in the environment
and examined the potential effects of the actions on different
objects. The agent was able to create a new schema while grasping
the ball in the simulator, and multiple different grasp schemas
were learned by the iCub due to changes in perception and the
environment. For both the simulator and the iCub, the agents
did not create any new schemas for grasping the hole as this
does not make any change in the environment. This behavior
shows that the agent is capable of learning the effects of its actions
on different objects. Thus the agent learns the behaviors with
objects through exploration. Furthermore, the agent reuses learnt
schemas during the exploitation stage. This stage reflects the
sensorimotor stage of Piaget’s theory (Piaget and Cook, 1952),
where infants are described as re-using or repeating their learnt
behaviors involving their bodies on the interesting objects.

The second experiment also demonstrated the capability of the
system to be integrated with different platforms, transferred from
the simulator to the iCub robot in a laboratory environment,
without making any changes to the system. In both experiments
we demonstrated that the agent shows playful and exploratory
behaviors.While Dev-PSchema also enables the agent to simulate
different individuals with different preferences, within the
current system, weights of the excitation parameters remain

constant during a run and all properties are weighted equally in
the object excitation.

In the future, extensions to the system will be carried out to
allow the agent to dynamically adjust the weights and to learn
the importance of different properties of the object, such as shape
vs. color (Kumar et al., 2016a), in order to adjust the property
weights accordingly. In addition, we plan to further develop the
generalisaton mechanism to address the noise associated with
real-world environments.
We also intend to develop the capability of the system to create
and use chains with generalized schemas, so that the chains can
be utilized with novel objects and in different situations. We will
develop the system to exploit the chains as a high level action in
different chains creating chains of chains. The chaining system
will be improved further to provide an optimal action/schema
sequence to achieve a user-defined target state. This will help
to evaluate learning by testing the systems ability, in an effort
to find solutions for user-defined problems using schemas learnt
through play behaviors. In extension, we further plan to develop
the system to learn from demonstrations and interactions with
the other agents (human or robot). Alongside this, the system
will be developed to generalize the properties of the objects and
learn their limitations. For example, with the generalized reach
schemas, the agent could be expected to learn the limits of the
reach space in the environment.
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