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Abstract

Climate variability coupled with anthropogenic pressures is the most critical driver in the

Himalayan region for forest ecosystem vulnerability. Dactylorhiza hatagirea (D.Don) Soo is

an important yet highly threatened medicinal orchid from the Himalayan region. Poor regen-

erative power and growing demand have resulted in the steep decline of its natural habitats

populations. The present study aims to identify the habitat suitability of D. hatagirea in the

Western Himalaya using the maximum entropy model (MaxEnt). The community climate

system model (CCSM ver. 4) based on representative concentration pathways (RCPs) was

used to determine suitable future areas. Sixteen least correlated (< 0.8) bioclimatic, topo-

graphical and geomorphic variables were used to construct the species climatic niche. The

dominant contributing variables were elevation (34.85%) followed by precipitation of the

coldest quarter (23.04%), soil type (8.77%), land use land cover (8.26%), mean annual tem-

perature (5.51%), and temperature seasonality (5.11%). Compared to the present distribu-

tion, habitat suitability under future projection, i.e., RCP 4.5 and RCP 8.5 (2050 and 2070),

was found to shift to higher elevation towards the northwest direction, while lower altitudes

will invariably be less suitable. Further, as compared to the current distribution, the climatic

niche space of the species is expected to expand in between11.41–22.13% in the near

future. High habitats suitability areas are mainly concentrated in the forest range like

Dharchula and Munsyari range, Pindar valley, Kedarnath Wildlife Sanctuary, West of Nanda

Devi Biosphere Reserve, and Uttarkashi forest division. The present study delineated the

fundamental niche baseline map of D. hatagirea in the Western Himalayas and highlighted

regions/areas where conservation and management strategies should be intensified in the

next 50 years. In addition, as the species is commercially exploited illegally, the information

gathered is essential for conservationists and planners who protect the species at the

regional levels.
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1. Introduction

Climate is an important ecological and abiotic factor affecting species potential geographic dis-

tribution and ecological niche space [1]. The minimal changes in species bioclimatic envelope

are thought to have considerable impacts on the plant-pollinator relationship, seed set, and

regeneration status. It is expected that species may no longer adapt to a set of environmental

conditions to facilitate further expansion [2]. Therefore, the species must either cope with the

prevailing ecological conditions or colonize to sustain or become extinct [3]. This has led to a

growing interest in developing and scaling up prioritization strategies for such species to

ensure the highest conservation gains [4].

The Himalayan regions are an assemblage of biodiversity hotspots [5]. However, the ongo-

ing disturbance exacerbated by climate change, habitat fragmentation, invasions by alien spe-

cies, grazing and trampling, overexploitation, and excessive consumption of natural resources

has altered the structural and functional integrity of the various Himalayan ecosystems [6].

Besides these, climate variability, land-use change, and rural migration are key contributors to

biodiversity loss in the region [7]. In the last few decades, the region saw cascading effects of

climate variability mainly due to increased greenhouse gases concentration. It is believed that

the rate of global warming in the Himalayas is much higher than the global average. For

instance, in the last 100 years, the global average temperature rise was 0.74˚C [8]. However, in

the Himalayas, a 1.5˚C temperature increase was documented in the final quarter (i.e., 1982–

2006) of the twentieth century [9], with warming potentially reaching 5˚C by the end of the

twenty-first century [9, 10]. This rise is alarming because Himalayan floras are alienated to spe-

cific elevation gradient/microhabitat conditions [3, 11]. The shift in the climatic envelope is

expected to bring significant change in the resident species habitat conditions, leading to

changes in species richness, population structure, and those unable to cope are likely to face

local extinction [1–3].

Furthermore, the recent upsurge in herbal or its derived products across the globe has led

to uncontrolled abusive practice; thus, the natural stock of these plants is under tremendous

pressure. In the case of the Indian Himalayan Region (IHR), a considerable number (1748 spe-

cies) of medicinal and aromatic plants (MAPs) are reported, with 31% of them being native,

whereas 15.5% are endemic and threatened [12]. The high potential instability and inherent

vulnerability make the region one of the most ecologically fragile bio-geographic zones [13].

Other challenges on the MAPs include low population size, habitat specificity, genetic bottle-

neck effect, narrow distributional ranges, and heavy livestock grazing [14]. The literature on

these threatened plants is fragmentary or limited to specific geographic pockets [15]. In the

above context, it is obligatory to make a conservation framework encircling species habitat res-

toration and promote cultivation, thus, reducing pressure on the wild populations.

The development of statistical modelling and geospatial technology in predicting suitable

habitat distribution has gained immense popularity. However, such information is at an initial

phase for the Himalayan MAPs [6]. The use of geospatial technology could add an advantage

as obtaining specific distribution maps for such species is difficult and often requires intensive

surveys [16]. The difficulty level becomes amplified in the Himalayan region where the work-

ing conditions are not conducive for the survey, i.e., inaccessible and difficult topography per-

plexed with hostile conditions. Therefore, estimating current plants distribution and

identifying important climatic refugia will help predict future distribution patterns and reveal

regions with high extinction rates. At present, the common method to study potentially species

distribution and environmentally suitable habitats is to use species distribution models

(SDMs) [17]. SDM has made it possible to analyze the environmental drivers of species
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distributions and project a species realized niche into a geographic area [18]. Of many SDM

algorithm methods, MaxEnt has proved decisive when modeling rare species with narrow

ranges [19]. MaxEnt modelling is a robust computational algorithm that works on the back-

drop of species presence points and rasterized environmental data. The probable ecological

niche can be reconstructed using species presence data points and environmental variables/

predictors [20]. Such model-based sampling would become an important benchmark for

endemics and threatened species and is a well-recognized cost-efficient method [21].

In the present study, an effort has been made to model the potential habitat distribution

and effect of future climate change on D. hatagirea, a critically endangered [22, 23] and

endemic species of the Himalayan region. The species is a tall, slender, ground-dwelling,

perennial herb with palmately lobed tuberoids that prefer to grow in a moist, mild, acidic

soil environment (Fig 1A and 1B). The species has been reported from India, Afghanistan,

Pakistan, Nepal, Tibet, and Bhutan [6]. In the IHR, the species is reported from Jammu and

Kashmir, Ladakh, Himachal Pradesh, Uttarakhand, Sikkim, and Arunachal Pradesh at an

altitudinal range of 2500 to 4500 m above sea level (asl). The estimated annual trade of the

species is around 10–50 metric tons [24], with an economic value of US $ 68.88–89.54 (1US

$ = Rs. 77.39) kg-1 of the dried tuber (Fig 1C). At present, the tuber of the species is destruc-

tively harvested and illegally traded; thus, it puts a stake on its future existence. Moreover,

the species require specific microhabitat conditions for growth and perturbation, thus limit-

ing the species widespread distribution. Therefore, to minimize the pressure on the wild

populations, efforts are ongoing to develop and upscale the existing multiplication strategies

for mass multiplication. Meanwhile, mapping and conserving the critical habitat is expected

to offer a possible solution to species conservation and management. The study attempts to

address the following scientific questions: (i) What is the present potential geographical

Fig 1. Image showing (a) compact floral structure of D. hatagirea, (b) well developed palmately lobed tuber, and (c)

tuber collected and processed as a marketed product.

https://doi.org/10.1371/journal.pone.0269673.g001
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distribution range of Dactylorhiza hatagirea in the Western Himalaya, India? (ii) What will

be the impacts of climate variability on the future distribution of D. hatagirea using four

Representative Concentration Pathways (RCPs)?, and (iii) Where are the high potential

distributional areas of D. hatagirea that could be protected or could be suggested for cultiva-

tion, reintroduction/ recovery plans?. Answering these questions will help identify suitable

habitats for the conservation of the species, which may help policy planers while developing

strategies for its conservation.

2. Materials and methods

2.1. Study area and ecological significance

The study was undertaken in Uttarakhand state (28˚430 to 31˚280 N Latitude and 77˚340 to

80˚030 E Longitude) of IHR (Fig 2). The state has a total recorded forest area (RFA) of 38,000

km2 (71.05% of its total geographical area 53,485 km2), out of which 26,547 km2 is reserved

Fig 2. Field collected D. hatagirea (blue dots) points mounted on the elevation map of Uttarakhand state. Maps in Fig 1 are generated with ArcGIS version 10.3

(ESRI, CA, USA).

https://doi.org/10.1371/journal.pone.0269673.g002
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forest, 9,885 km2 is protected forest, and 1,568 km2 is unclassed forests [25]. The state experi-

ence varied climates from warm dry to warm wet and with a latent cool, dry period. The state’s

temperature ranges from sub-zero to 43˚C [26], and average annual rainfall varies from 1093.8

mm to 1385.5 mm [27].

The present study area harbors alpine vegetation, which covers 8,524 km2. Of these, 4,376

km2 is surmounted by permanent snow cover (i.e., corresponding to ca.24.11% statealpine

geographical area) [28]. The alpine regions are well known for their high-value MAPs, includ-

ing D. hatagirea. The region is experiencing major environmental transformation repercus-

sions, and anthropogenic activities outnumber the natural eventualities, thus enforcing species

to various threat categories [15].

2.2. Species point data

To predict species distribution, it is a prerequisite to have species presence points and environ-

mental variables [29]. The data search was primarily made from online portals such as Global

Biodiversity Information Facility [30], published literature, and herbarium consultation

Botanical Survey of India, Dehradun (BSID). Data on the species were very limited, whereas

herbarium records were not geo-referenced. Considering these limitations, an extensive field

survey was conducted during 2016–19, and presence points were recorded. A total of 30 occur-

rences of the species were recorded during field surveys. A portable multi-channel Global Posi-

tioning System (Garmin) receiver with 10–20 m positional accuracy was used to record the

species occurrence geo-coordinates. The coordinates were then converted to decimal degrees

and used to model the species potential habitats distribution in its native range.

2.3. Data source

The climate data were downloaded from World Climate Database [31]. WorldClim provides

current (baseline) and projected climate data for 2070 with a spatial resolution of 30 seconds

(ca. 1 km) in GeoTIFF format. These climatic data are derivatives of maximum, minimum,

and average values of monthly, quarterly, and annual temperatures and precipitation of the

last 30 years, i.e., 1970–2000. Likewise, environmental variables such as soil type, soil moisture,

and soil pH were downloaded from the International Soil Reference Information Centre [32],

while land use land cover (LULC) from http://www.esa-landcover-cci.org/ [33] (Table 1).

Besides these, non-climatic variables, i.e., altitude, aspect derived from NASA Shuttle Radar

Topographic Mission (SRTM, version 4.1) [34]. The reason behind using both the climatic

and non-climatic variables is to enhance the model’s predictive power as suggested for

endemic plants [5, 35]. Further, for future prediction studies, we used Community Climate

System Model (CCSM) ver. 4 (CCSM4) that is based on the Fifth Assessment Report (AR 5) of

the Intergovernmental Panel on Climate Change [36] and two contrasting Representative

Concentrations Pathways (RCP 4.5 and RCP8.5) for the years 2050 and 2070. Furthermore, we

assumed that the edaphic properties are expected to remain stable in the next several decades,

as soil properties should not change synchronously with sudden climate change; hence the

same raster layer was used in future projections.

2.3.1. Environmental layers and variable selection. The model’s output can be accurate,

biologically meaningful, and generalized if built with predictor variables that directly impact

species distribution. Strong collinearity between the variables in SDMs may cause model over-

fitting due to the high level of correlation among variables [37]. To avoid multi-collinearity

among the 19 bioclimatic variables, highly correlated variables (r� 0.80 Pearson correlation

coefficient) were eliminated from further models using ENM Tools. This reduction of predic-

tor variables resulted in the inclusion of nine bioclimatic variables and seven environmental
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variables for the prediction process (S1 Table). Further, using ArcGIS 10.3, all predictor vari-

ables layers were rasterized into the same bounds, cell sizes, and coordinate system as the layer

of occurrence localities. Finally, these layers were converted to ASCII format for further pro-

cessing in MaxEnt.

2.3.2. Model parameterization. MaxEnt algorithm (MaxEnt ver. 3.4.1) [38] for habitat

distribution modelling was employed [29]. MaxEnt algorithm was chosen over other available

machine learning tools owing to (i) presence of only data points of the species, (ii) works even

relatively with a small number of occurrence locations and high predictive performance, (iii)

can handle continuous and categorical environmental data simultaneously, (iv) analyze results

in terms of percent contribution of environmental data through model output, (v) examine

variables weight through jackknife method, and (vi) calibrate the model, run numerous repli-

cates along with cross-validation, and bootstrapping to test model robustness [18, 39, 40]. We

used 75% of the dataset for training and 25% dataset model testing in this study. For generating

model robustness, the number of iterations was set to 5000, with 30 replicated model runs.

The maximum background points10000 and ten percentile training presence with logistic

threshold rule were applied, whereas other parameters were set to default.

2.3.3. Model performance and potential niche change. To calibrate the model and vali-

date its robustness, threshold independent receiver-operating characteristic analysis (ROC)

and area under the receiver-operating characteristic curve (AUC) were tested for model preci-

sion. The AUC value varies between 0 to1. The values close to +1 indicate conformity between

observations and prediction, whereas zero or less values indicate a performance no better than

random [41]. Statistically, AUC values near 1 indicate very good model performance, whereas

AUC values close to 0 signify complete inaccurate prediction. Model performance based on

AUC values are categorized as, very good (0.95< AUC < 1.0), good (0.9 < AUC< 0.95), fair

(0.8< AUC< 0.9), and poor (AUC < 0.8) [42, 43]. In the past, several studies have suggested

that the AUC values mislead the performance of predictive distribution models and reflect rel-

ative model performance [44]. Therefore, to assess the predictive success of models, sensitivity,

specificity, overall accuracy, and True Skill Statistics (TSS) were calculated by a confusion

matrix. Threshold-dependent TSS is considered an additional accuracy measurement that is

Table 1. Environmental variables and their percent contributions for predicting the potential distribution of D. hatagirea.

Type Code Variable name Unit % Contribution

Climatic Bio1 Annual mean temperature ˚C 5.51

Bio2 Mean diurnal range (mean of monthly max. and min. temp.) ˚C 0.07

Bio3 Isothermality [(Bio2/Bio7) x 100] - 0.98

Bio4 Temperature seasonality (standard deviation x 100) C of V 5.11

Bio7 Temperature annual range (Bio5-Bio6) ˚C 1.48

Bio8 Mean temperature of wettest quarter ˚C 0.08

Bio12 Annual precipitation mm 1.95

Bio18 Precipitation of warmest quarter mm 4.38

Bio19 Precipitation of coldest quarter mm 23.04

Geomorphologic DEM DEM ˚ 34.85

SLP SLOPE ˚ 3.06

ASPECT 0.98

Pedologic SOIL TYPE 8.77

SOIL MOISTURE mm 1.13

SOIL pH 0.36

Land use land cover LULC 8.26

https://doi.org/10.1371/journal.pone.0269673.t001
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not affected by prevalence as it does for the kappa coefficient and the size of the validation set

[45]. It deals with sensitivity and specificity, values ranging from − 1 to + 1, where + 1 indicates

perfect agreement, scores ranging from 0.6 to 0.9 specify fair to good model performance, and

0 represents a random fit [45]. For this, the output of the logistic layer derived from MaxEnt

results was reclassified into a binary prediction map (unsuitable and suitable) with a threshold

of 10 percentile training presence. All geographical plotting and suitable range-size estimation

were conducted in ArcGIS software (version 10.3).

To identify the potential area of distribution, the distributional indices based on threshold

interval classification (TIC) were categorized as highly suitable (TIC> 0.75), moderate suit-

able (0.50< TIC< 0.75), least suitable (0.25 < TIC< 0.50), and unsuitable areas

(TIC< 0.25). Changes in the potential niche of D. hatagirea between the current and future

climatic scenarios were computed by converting ASCII output projections into raster format

using ArcGIS 10.3. Simultaneously the number of cells (pixels) among the projected climatic

extent was calculated using zonal statistics in spatial analyst tools in ArcGIS 10.3. The differ-

ences in the mean number of cells among four classes of potential habitats were converted to

surface area (km2). Finally, MaxEnt predictive maps for the current and future scenarios were

related to elevation classes. This would help map habitats and contribute to species-specific

interventions/ reintroduction programs.

3. Results

3.1. Preliminary screening of model inputs variables

The credibility of any prediction model is dependent on input variables for species distribution

modelling. Given this, sixteen predictor variables out of twenty-six variables; with correlation

coefficients of� 0.8 were retained after preliminary screening and selected for further model-

ling (Table 1).

3.2. Model performance and variable contributions

The results obtained by an ecological model are judged for their performance based on com-

plex algorithm tests and model validation. The threshold-independent ROC showed that the

average AUC yielded satisfactory results of 0.96 (Fig 3), which falls under ‘very good’

(0.95< AUC< 1.0) model performance based on Thuiller et al. (2005) [42] classification. The

confusion matrices for the current prediction model calculated the model’s sensitivity and

specificity to be 0.79 and 0.95, respectively. With these matrices in place, the model perfor-

mance (i.e., TSS) was calculated (sensitivity + specificity—1). The TSS for the current model

was computed to be 0.74, which indicates that the model’s overall performance was good,

based on Allouche et al. (2006) [45] criteria.

The variable contributions analysis highlights; elevation had the most (34.85%) influen-

tial effect followed by precipitation of coldest quarter (Bio 19; 23.04%), soil type (8.77%),

LULC (8.26%), annual mean temperature (Bio 1; 5.51%), temperature seasonality (Bio 4;

5.11%), precipitation of warmest quarter (Bio 18; 4.38%) and Slope (3.06%) (Table 1). The

variables mentioned above cumulative contributions stood at ~93% to the modeled poten-

tial climatic niche of D. hatagirea. Similarly, Jackknife analysis indicates annual mean tem-

perature (Bio 1), elevation, mean temperature of the wettest quarter (Bio 8), and

precipitation of coldest quarter (Bio 19) as most important predictor variables (Fig 4).

These variables provide useful and distinctive information defining the D. hatagirea distri-

butions when used in isolation. Variables like soil type, LULC, temperature seasonality (Bio

4), and annual temperature range (Bio 7) showed considerable change and showed moder-

ate gain when used separately (Fig 4). Furthermore, the quantitative relationship between
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the logistic probability and input variables are depicted as response curves (Fig 5). A geo-

morphic variable, such as elevation, was one of the key variables that describe the present

and future spatial distributions of D. hatagirea. Response curves analysis reveals average

altitude ranged from 2800 m to 4500 m, precipitation of coldest quarter (Bio 19) ranged

from (150 mm to 380 mm), annual mean temperature (Bio 1) ranged in between (0 – 25˚C).

Likewise, precipitation of the warmest quarter (Bio 18) ranged in between (200 mm-1100

mm), soil pH (5–6), and slope angle ranged from (5˚ - 45˚). Thus, all the identified variables

estimate the important climatic attributes that potentially influence the distribution of D.

hatagirea in northwestern Himalaya, India.

Fig 3. Receiver operating characteristic curve with area under the curve (AUC) signifying model robustness.

https://doi.org/10.1371/journal.pone.0269673.g003

Fig 4. Results of jackknife test highlighting the relative importance of each variable when used in isolation.

https://doi.org/10.1371/journal.pone.0269673.g004
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3.3. Current predicted potential distribution of climatically suitable areas

Habitat suitability of D. hatagirea was determined based on threshold interval classification

(TIC). Of these, maximum of 96.18% (51637 sq. km) of the geographic region was predicted to

Fig 5. Response curves of six environmental predictors and their relationships with the probability of the target species suitability range.

https://doi.org/10.1371/journal.pone.0269673.g005

Table 2. Predicted habitat suitability area (km2) of D. hatagirea, in the present and future climate change scenarios (RCP 4.5–8.5; 2050 and 2070).

Present RCP 4.5 2050 RCP 8.5 2050 RCP 4.5 2070 RCP8.52070

Range Area (km2)

0.00–0.25 Not Suitable 51637 51478 51526 51513 51564

0.25–0.50 Low Suitable 1664 1777 1734 1729 1684

0.50–0.75 Moderately Suitable 255 279 281 285 292

0.75–1.00 Highly Suitable 131 153 146 160 147

Total 53687 53687 53687 53687 53687

https://doi.org/10.1371/journal.pone.0269673.t002
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be unsuitable (TIC < 0.25), followed by 3.09% (1664 sq. km) with least habitat suitability

(0.25< TIC < 0.50), and moderate suitability being 0.47% (255 sq. km). The potential habitat

with high suitability accounts for only 0.24% (131 sq. km) of the state’s total geographic area

(Table 2). The areas with high habitats suitability (TIC> 0.75) are mainly concentrated in the

forest range like Dharchula and Munsyari range, Pindar valley, Kedarnath Wildlife Sanctuary,

West of Nanda Devi Biosphere reserve, and Uttarkashi forest division (Fig 6). Likewise, mod-

erate habitat suitability was located in GovindVihar National Park, Uttarkashi forest division,

Kedarnath Wildlife Sanctuary, Nanda Devi Biosphere Reserve, and National Park, Pindar val-

ley and in the forest range of Dharchula and Munsyari range.

3.4. Future projection of climatically suitable areas of D. hatagirea
distribution

Future projection habitat suitability map under the CCSM4 model for RCP 4.5 and RCP 8.5

(2050 and 2070) is very similar to the current distribution (Table 2). The present study results

depict the geographic distribution of the species would expand under predicted levels of cli-

mate change (RCP 4.5 and RCP 8.5) compared with the current potential distribution (Figs 6

and 7). High habitat suitability under the RCP 4.5 scenario; predicts an increase of 0.4% (22.10

sq. km) for 2050 and 0.3% (15 sq. km) for 2070. Under the RCP 8.5 projection, an increase of

0.5% (29 sq. km) is expected in 2050 and 0.27% in 2070. Although, the potential high suitability

increases under both the scenarios (RCP 4.5 and 8.5) when compared with the current predic-

tion, the rate of increase for the year 2050 is comparatively higher, after which (towards 2070)

it showed a decreasing trend.

3.5. Shifts in habitat suitability under the climate change scenarios

The final output maps (current and future scenarios) were employed to find out habitats that will

remain stable, gains in habitat area, habitat loss, and unsuitable habitat as part of computing

change analysis (in sq. km) (Table 3) (S1 and S2 Figs). The change analysis highlights; only 1992

sq. km of stable habitat (maximum) under RCP 4.5 (2050) then under RCP 8.5 (2070) with a

minimum stable habitat of 1928 sq. km. Stable habitats showed a decreasing trend with the cli-

mate projection model. Likewise, under RCP 4.5 (2050), an area of 107 sq. km was recorded as a

gain in habitat, followed by 102 sq. km in 2050 (RCP 8.5) and 93 sq. km (RCP 8.5) in 2070. Habi-

tat gain indicates the region becomes more suitable for the species under future climatic condi-

tions. Besides these, habitat losses (contraction) were recorded. Of these, maximum (112 sq. km)

contraction was seen in 2070 (RCP 4.5), followed by 110 sq. km in 2050 (RCP 4.5) and 105 sq.

km in 2050 (RCP 8.5) (Table 3). The contraction in habitats was mainly recorded from the low

habitat suitability class. A detailed shift in degrees in a different class is tabulated in Table 4.

4. Discussion

The susceptibility to climate change is now reflected in spatial distribution and forest ecosystem

vulnerability across the globe [46]. Climate change is projected to be a ‘dominant stressor’

under different climate projection models in the latter half of the 21st century [47]. As there is

no denial of the reality of climate change, attention is now being actively paid to formulate

some mitigation measures to maintain the stability of an ecosystem. Species distribution models

in this direction have contributed immensely by providing reliable information about the

potentially suitable habitats of sensitive/ vulnerable species or communities that need priority

attention. The present study investigates the habitat suitability of D. hatagirea under a changing

climate scenario using a species distribution model. The study provides a detailed map of the

current and future species distribution in light of climate changes (Figs 6 and 7). Dactylorhiza
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hatagirea distribution was mostly explained by topographical variables rather than bioclimatic

variables (Table 1). Among the topographical factors, elevation (34.85%) was the most domi-

nant contributing factor, followed by soil type (8.77%) and LULC (8.26%), while among the bio-

climatic variables, precipitation of coldest quarter (Bio 19; 23.04%), annual mean temperature

(Bio 1; 5.51%), and temperature seasonality (Bio 4; 5.11%) were most prevalent. These physio-

graphic factors, along with topographical features (i.e., elevation, land use characteristics, slope

angle, and aspect), and bioclimatic parameters, are reported to have pronounced effects on the

pattern of species distribution and community structure in the alpine meadows [35, 48]. Such

factors play a key role in the alpine biodiversity where the species are skewed more towards par-

ticular habitats (i.e., moist and marshy habitat) than open grasslands or rugged terrains [14, 49].

Previous findings are in line with this study, wherein altitude and bioclimatic variables

(temperature and precipitation) were reported to play a major role in the distribution and pop-

ulation structure of D. hatagirea [50–53]. Among these, Thakur et al. (2021) [52] reported

Fig 6. Potential geographic distributions of current and under RCP 4.5 (2050 and 2070) of D. hatagirea in the Uttarakhand state. Maps in Fig 6 are generated with

ArcGIS version 10.3 (ESRI, CA, USA).

https://doi.org/10.1371/journal.pone.0269673.g006
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precipitation of the coldest quarter (Bio 19) as the most significant bioclimatic variable that

influences D. hatagirea distribution as obtained in this study. The ecological relevance of Bio

19 in the target species distribution was accredited to its marshy habitat, for which

Fig 7. n-depth view of predicted future habitat for D. hatagirea under RCP 8.5 (2050 & 2070). I Maps in Fig 6 are generated with ArcGIS version 10.3 (ESRI, CA,

USA).

https://doi.org/10.1371/journal.pone.0269673.g007

Table 3. Habitat transformation (km2) as predicted by comparison with present distribution using RCP 4.5–8.5

(2050 and 2070).

RCP 4.5 2050 RCP 4.5 2070 RCP 8.5 2050 RCP 8.5 2070

Gain 107 102 98 93

Loss 110 105 112 103

Stable 1992 1966 1951 1928

Unsuitable 51478 51514 51526 51564

Total area 53687 53687 53687 53687

https://doi.org/10.1371/journal.pone.0269673.t003
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precipitation (in the form of snow) during the winter season could have a direct role in

recharging groundwater and maintaining desired soil moisture [52, 54]. Blinova (2008) [55]

and Sletvold et al. (2010) [56] have shown that temperature (of the growing season) and pre-

cipitation are responsible for the persistence of Dactylorhiza populations. Further, a study by

Shrestha et al. (2021) [53] from Nepal postulated a different stance where annual mean tem-

perature (Bio1), precipitation seasonality (Bio15), and annual precipitation (Bio12) are the

most significant variables in the target species distribution, while, precipitation in the coldest

quarter (Bio19), precipitation in the driest quarter (Bio17), and the environmental layer were

of intermediate significance. Similar to our findings, Rana et al. (2020) [3], using ensemble spe-

cies distribution modelling (eSDM), reported elevation (30.97%) as the major dominant con-

tributing variable, while amongst the bioclimatic variables, the mean temperature of the

wettest quarter (Bio 8; 24.69%) and annual precipitation (Bio12; 21.11%) were the key contrib-

uting variables. Given the understanding from the above and several other studies on terres-

trial orchids, other than biotic elements, temperature (of the growing season) and

precipitation strongly modulate or affect their distribution. Thus, any significant climate

change can be envisaged to have a magnified impact on these species overall distribution and

growth performance. An observational study in the laboratory conditions noted maintaining

the live germplasm of the species at controlled temperature chambers, i.e., 20˚C, 30˚C and in

glasshouse condition (>35˚C), revealed better growth performance and flower development at

20˚C only. In comparison, growth ceased after the initial leaf development stage and later per-

ished in temperature above 35˚C, suggesting species narrow temperature tolerance regime for

growth and perpetuation. Similar findings are reported elsewhere, where an excessive rise in

temperatures was reported to affect the vegetative growth flower bud differentiation negatively

and preclude regeneration of Paeonia delavayi [57], Camellia sinensis [37], Dalbergia cultrata
[58], Rosa arabica [59], Hippophae salicifolia [60], Fritillaria cirrhosa [61], Rhododendron
niveum [62], and Ilex khasiana [43].

In addition to the above, soil type, moisture ratio, and soil pH [49] are the other vital deci-

sive variables that posture or play a role in shaping the distribution of D. hatagirea (Table 3).

In a study by Thakur et al. (2021) [52] revealed that the populations of D. hatagirea flourished

in soils rich in organic matter (i.e., loamy sand to sandy loam) and had adequate soil moisture

Table 4. Change detection of suitability class by comparison with present distribution as computed in Km2 under RCP 4.5 and RCP 8.5.

RCP 4.5 2050 RCP 4.5 2070 RCP 8.5 2050 RCP 8.5 2070

Suitability class Shift in the area (km2)

Unsuitable 51478.4 51526 51513.8 51563.9

Unsuitable to low suitable 1099 1086 1079 1065.5

Moderate suitable 142 137 135 136

Low suitable 362 359 360 352.5

New low suitable 106.8 98.1 102 92.5

Contraction 109.7 112 105.3 102.5

Low to unsuitable 75.8 65.5 60.5 57.5

Low to moderate suitable 137 126 131 128

Moderate to low suitable 23.5 13.4 21.5 13.4

Moderate to highly suitable 52.9 54 56.4 50.1

Unsuitable to moderate suitable 0 18 19 27.5

Low to highly suitable 59.2 62 59.6 63.4

Unsuitable to highly suitable 41 30 44 33.5

Total area 53687 53687 53687 53687

https://doi.org/10.1371/journal.pone.0269673.t004
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(~ 63.23%). Also, Shrestha et al. (2021) [53] emphasized geological substrate and soil proper-

ties to be the key factors determining the distribution of the species. Similar observation was

recorded during our ecological assessment surveys wherein the target species has luxuriant

growth in moist sites along the hill slopes, dodged within narrow streams, and on open undu-

lating meadows with high soil moisture [49]. Much of these habitats had slope steepness angles

ranging from gentle (14˚) to moderate slope (41˚) angle, while north/ north-east aspects were

most prevalent [49]. These variables were identified as factors of importance in our study, con-

sidering their role in posturing the vegetation reserve in the alpine habitats. Therefore, their

role cannot be ignored in the Himalayas context, where the influence of the microclimatic con-

ditions edaphic factors largely prevail [63].

In recent years, rapid climate changes in the Himalayas have resulted in distributional

changes for a wide range of taxa [64]. The aftermath of these events has seriously impacted the

geographical distribution of species, with reports of some species migrating to higher elevations

[1, 57, 65–68]. The alpine species in the Himalayas are habitat-specific and have a narrow distri-

butional range; therefore, they are more vulnerable to extinction. The disproportionate effects

on these species migrating to high latitude or elevation are attributed to climate change [65].

Our prediction showed that the shift in suitable habitat distribution to high elevations would

gradually become more significant using the climate projection model. Model predicted climati-

cally suitable habitat would expand under the RCP 4.5 and RCP 8.5 climate scenario toward

north/ northeast direction and would become invariably less suitable at the lower altitudes (Figs

6 and 7). Further, we speculate that the north/ northeastward shift observed in our study could

also be attributed to; North-facing aspects in the mountains are associated with higher soil

nutrient content, higher biomass, coverage, height, species diversity than south-facing slopes

[49, 69, 70]. Climate warming and shifting of species towards north/ northeast in the Himalayas

is reported [3, 35, 71, 72]. In Nepal, Shrestha et al. (2021) [53] projected that the target species

would be elevated to 5000 m in the future, a substantial change when compared with the present

distribution at 4000 m. A similar prediction for the species has been made elsewhere [3, 50].

Likewise, the change analysis, i.e., stable area, habitat loss, and habitat gain area, was carried

out for RCP 4.5 and RCP 8.5 (Table 3). The area under stable habitat under RCP 4.5 (2050)

was invariably higher RCP 8.5 (2050 and 2070); suggesting changes in climatic parameters and

land use characteristics over higher emission rate would negatively impact the suitability of the

habitat. Other than these, model prediction advocates climatic changes will also bring new

areas (habitat gain) under habitat suitability class, with the highest gain observed under lower

emission rate, i.e., RCP 4.5 than RCP 8.5. The study prospects the RCP4.5 scenario to be more

favorable for D. hatagirea than RCP 8.5 in the northwestern part of IHR, thus providing an

expansion scope. Meanwhile, warming of lower elevation or areas where the species is cur-

rently found explains the climatic niche loss in the future. The result obtained by overlaying

the projected layer in the current and future climatic scenarios supports the projection made

by Rana et al. (2021) [3] in the Nepal Himalaya using ensemble modelling (eSDM) approaches.

Shreshta et al. (2021) [53] proposed a contrasting viewpoint with HadGEM2-ES, CCSM4, and

BCC-CSM1-1 simulation model in a different study. Of the three models, BCC-CSM1-1 and

CCSM4 simulations anticipated the species to lose 61–85% and 71–98% of its niches by 2070,

whereas, with HadGEM2-ES, the species will lose all preferred niches by 2070 in RCP4.5 and

RCP8.5 scenarios. In such conditions, parallel studies on community structure, biotic interac-

tions, plant-pollinator or plant-mycorrhizal fungi interactions, population status, and habitat

characteristics are also necessary. Hence, an integrated model with both the elements (biotic

and abiotic) and their cumulative effects needs further investigation. This is notable because

they play an important role in the persistence of D. hatagirea populations [52].
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Along with climate change, irrational harvesting practices of MAPs as a result of increased

market demand for herbal medicine and lack of knowledge/ awareness on sustainable harvest-

ing led to serious habitat degradations in the Himalayan region [49]. Similarly, changes in

LULC, anthropogenic interference (i.e., habitat degradation and fragmentation, unscientific

collection, pre-mature tuber overharvesting, grazing), interspecies competition (i.e., mainly

habitat engulfed by Persicaria wallichii), and poor seed germination has seriously impacted the

relative distribution of D. hatagirea in the study area [49]. The present study provides an over-

view of habitat suitability and likely changes with projected climate scenarios in conjunction

with changes in the species geomorphologic profile. In this context, the information provided

in the present study could be beneficial in various conservation initiatives at the local and

regional levels in West Himalaya. The study conducted has some limitations as the model

developed to forecast the fundamental niche of the species rather than the realized niche. The

species realized niche might not be the same as predicted in our model prediction results.

Another limitation is that this study modeled the habitat suitability of D. hatagirea at different

time scales (2050 & 2070) based on abiotic factors but did not consider biotic factors such as

plant-mycorrhizal association or plant-pollinator interaction. As a result, potentially suitable

area of the species might be overestimated, as biotic interaction, especially mycorrhizal associa-

tion, play a crucial role in plant establishment in the family Orchidaceae [53, 73].

5. Conclusion

Dactylorhiza hatagirea, an endemic high-value Himalayan medicinal species, is under great

stress and needs urgent attention. The perturbance of climate change has added extra pressure

on the species allied with high degrees of anthropogenic stress. Therefore, the present study

provided a clear overview of the habitat suitability for D. hatagirea and predicted the potential

impacts of future climate on their distribution in Western Himalaya. The species potential dis-

tributions are explained mainly by elevation, precipitation of the coldest quarter, soil moisture,

LULC, and mean annual temperature. The study reveals that D. hatagirea has approximately

about 131 sq. km as its fundamental niche with high (>0.75) habitat suitability, which corrob-

orates to about 0.24% of the total geographic area of the state. Under future projections RCP

4.5 and RCP 8.5, species distribution is projected to be very similar to the current distribution,

except shifting species in a northward direction to higher elevation is expected. Furthermore,

most predicted potential habitats fall within areas with anthropogenic encroachment leading

to habitat degradation, unscientific and destructive harvesting practices, grazing, etc. Consid-

ering these, it is anticipated that the species may lose much of the habitat due to anthropogenic

activities, while climate change impact will invariably be more at comparatively lower altitudes.

Thus, it is imperative to undertake appropriate conservation steps and interventions like rein-

troduction/ augmentation programs. Besides these, the dependent communities awareness

and sensitization curriculum holds utmost importance towards sustainable utilization. The

model generated suitability maps can be of significant help to various policy prescribing

National agencies, i.e., National Medicinal Plant Board (NMPB), Ministry of Environment

Forest and Climate Change (MOEF &CC), Department of Science & Technology (DST). At

the State level, the State Government has control over Forest Department and NGOs, thus

ensuring and safeguarding the overall health of our forests and meadows.
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S1 Fig. Habitat transformations with respect to present distribution into different classes

as depicted under RCP 4.5 (2050 and 2070). Maps in S1 Fig are generated with ArcGIS ver-

sion 10.3 (ESRI, CA, USA).

(TIF)

S2 Fig. A comparative studies on habitat transformations between present distribution

and under RCP 8.5 (2050 and 2070). Maps in S2 Fig are generated with ArcGIS version 10.3

(ESRI, CA, USA).

(TIF)
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