organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of methyl 3,4-Oisopropylidene- β -D-fucopyranoside monohydrate

Hoong-Kun Fun,^a*‡ Samuel Robinson Jebas,^a§ Sankappa Rai,^b Prakash Shetty^c and Arun M Isloor^d

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bSyngene International Ltd, Biocon Park, Plot Nos. 2 & 3, Bommasandra 4th Phase, Jigani Link Rd, Bangalore 560 100, India, ^cDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India, and ^dDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India

Correspondence e-mail: hkfun@usm.my

Received 30 March 2009; accepted 3 April 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.026; wR factor = 0.073; data-to-parameter ratio = 21.4.

In the title compound, $C_{10}H_{18}O_5 \cdot H_2O$, the fucopyranoside ring adopts a chair conformation. The crystal packing is stabilized by intermolecular $O - H \cdots O$ and $C - H \cdots O$ hydrogen bonds together with intramolecular $O \cdots O$ [2.2936 (8) Å] and intermolecular $O \cdots O$ [2.7140 (8)–2.829 (3) Å] short contacts. The molecules are linked together to form an infinite chain along the *a* axis. This structure has been solved previously but with no R-values [Spiers (1931). *Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem.* **78**, 101].

Related literature

D-fucose (6-deoxy-D-galactose) is an effective gratuitous inducer of the galactose operon in *Escherichia coli*, see: Musso *et al.* (1963). 6-Deoxyhexose and its derivatives are important components of lipopolysaccharides, see: Bilge *et al.* (1996); Villeneuve *et al.* (2000); Wu & Mackenzie (1987); Caroff, Bundle & Perry (1984); Caroff, Bundle, Perry, Cherwono-grodzky & Dunch (1984). For a previous structure determination of the title compound, see: Spiers (1931). For bondlength data, see: Allen *et al.* (1987). For ring puckering analysis, see: Cremer & Pople (1975). For the stability of the temperature controller, see: Cosier & Glazer (1986).

V = 1168.90 (2) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.27 \times 0.27$ mm

64045 measured reflections

3449 independent reflections

3337 reflections with $I > 2\sigma(I)$

 $\mu = 0.11 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.032$

Z = 4

Experimental

Crystal data $C_{10}H_{18}O_5 H_2O$ $M_r = 236.26$ Orthorhombic, $P2_12_12_1$ a = 8.5824 (1) Å b = 9.2834 (1) Å c = 14.6711 (2) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.947, T_{max} = 0.971$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	H atoms treated by a mixture of
$wR(F^2) = 0.073$	independent and constrained
S = 1.13	refinement
3449 reflections	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ \AA}^{-3}$
161 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
4 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H1O4\cdots O1W^{i}$	0.821 (9)	1.909 (9)	2.7140 (8)	166.4 (16)
$O1W - H1W1 \cdots O4^{ii}$	0.834 (8)	1.921 (8)	2.7534 (8)	175.6 (14)
$O1W - H2W1 \cdots O5^{iii}$	0.838 (8)	2.113 (11)	2.8294 (8)	143.3 (15)
$C9-H9C\cdots O3^{iv}$	0.96	2.51	3.4306 (9)	162
Summatry and (i)			3 (:::)	

Symmetry codes: (i) x, y+1, z; (ii) $x+\frac{1}{2}, -y+\frac{3}{2}, -z$; (iii) x, y-1, z; (iv) $-x+\frac{1}{2}, -y+2, z+\frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities. SR thanks Dr Gautam Das, Syngene International Ltd, Bangalore, India, for allocation of research resources.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Thomson Reuters ResearcherID: A-5473-2009. Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2405).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bilge, S. S., Vary, J. C., Dowell, S. F. & Tarr, P. I. (1996). Infect. Immun. 64, 4795–4801.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caroff, M., Bundle, D. R. & Perry, M. B. (1984). Eur. J. Biochem. 139, 195-200.

- Caroff, M., Bundle, D. R., Perry, M. B., Cherwonogrodzky, J. W. & Dunch, J. R. (1984). *Infect. Immun.* **46**, 384–391.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Musso, R., Di Lauro, R., Rosenberg, M. & de Crombrugghe, B. (1963). J. Mol. Biol. 7, 164–182.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Spiers, Y. (1931). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 78, 101.
- Villeneuve, S., Souchon, H., Riottot, M. M., Mazie, J. C., Lei, P., Glaudemans, C. P., Kovac, P., Fournier, J. M. & Alzari, P. M. (2000). Proc. Natl. Acad. Sci. USA, pp. 8433–8438.
- Wu, A. M. & Mackenzie, N. E. (1987). Mol. Cell. Biochem. 75, 103-111.

Acta Cryst. (2009). E65, o1002-o1003 [doi:10.1107/S1600536809012689]

Redetermination of methyl 3,4-O-isopropylidene- β -D-fucopyranoside monohydrate

H.-K. Fun, S. R. Jebas, S. Rai, P. Shetty and A. M. Isloor

Comment

Buttin has demonstrated that D-fucose (6-deoxy-D-galactose) is an effective gratuitous inducer of the galactose operon in *Escherichia coli* (Musso *et al.*, 1963). 6-Deoxyhexose and its derivatives are important components of lipopolysaccharides in, amongst others, *Vibrio cholerae* O1 (Bilge *et al.*, 1996), *Brucella* spc., *Citrobacter freundii* F90 (Villeneuve *et al.*, 2000), *Salmonella enterica* O30, and *Escherichia coli* O157 (Wu & Mackenzie, 1987). Further investigation revealed that D-fucose derivatives are important component of a repeating pentasaccharide unit in O-chains of the LPS of *Yersinia enterocolitica* (Caroff, Bundle & Perry, 1984) and *Brucella abortus* (Caroff, Bundle, Perry, Cherwonogrodzky & Dunch, 1984). These findings established a molecular basis for extensive serological cross-reactivity between the various antigenic LPSs. These observations prompted us to synthesize the title compound, (I). Herein we report the synthesis and the redetermination of the crystal structure of the title compound.

The title compund has been determined previously (Spiers. 1931), but no *R*-values were given. The asymmetric unit of (I) (Fig.1) comprises of one molecule of methyl 3,4-*O*-isopropylidene - β -*D*-fucopyranoside and a water molecule. The isopropylidene-fucopyranoside ring is non-planar with the maximum deviation from planarity of 0.6532 (6) Å for the atom C5. The fucopyranoside ring adopts the chair conformation with the puckering parameters Q = 0.5344 (6), θ = 20.15 (7)° and φ = 22.3 (2)° (Cremer & Pople, 1975). The bond lengths (Allen *et al.*, 1987) and bond angles show normal values.

The crystal packing is stabilized by O—H···O and C—H···O hydrogen bonds to form infinite one dimensional chain along the [100] direction (Fig. 2). Short contacts of O···O = 2.2936 (8) Å; O···Oⁱ = 2.7140 (8) Å; O···Oⁱⁱ = 2.7535 (8) Å & O···Oⁱⁱⁱ = 2.8293 (8) Å [symmetry codes: (i) x, 1 + y, z; (ii) -1/2 + x, 3/2 - y, -z & (iii) x, 1 + y, z] are observed.

Experimental

The title compound was obtained by stirring a solution of 1,2,3,4 di-*O*-isopropylidene - α -*D*-fucopyranoside (0.5 g, 2.1 mmol) in dry methanol (5 ml). To this was added 3*M* solution of HCl in methanol (5 ml) at 0°C under nitrogen atmosphere. Further the reaction mixture was stirred at ambient temperature for 12 h. The reaction mixture was neutralized with solid sodium bicarbonate (1 g), concentrated, and residue was purified by flash column chromatography using 5% methanol in chloroform as eluent to get compound as foam-like solid which was taken in dry dimethylformamide (5 ml) and to this was added PTSA (Para Toluene Sulphonic Acid) (0.015 g, 2.0 mmol) and 2,2-dimethoxypropane (1.13 g,10 mmol). The mixture was further stirred at ambient temperature for 12 more hours. TLC (30% EtOAc/hexane,Rf-0.5) shows complete conversion of the starting materials. Reaction mixture was neutralized with triethylamine (2 ml) and concentrated under vacuum, residue was purified by column chromatography using 25% ethylacetate in pet ether to get a colourless liquid and the title compound as a white solid, which was recrystalized using hot acetone (yield 0.40 g, 85%; m.p. 328–330 K).

Refinement

H atoms were positioned geometrically [C-H = 0.96-0.98 Å] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(\text{methyl C})$. A rotating–group model was used for the methyl groups. The O-bound hydrogen atoms were located in a difference Fourier map and allowed to refine freely. Restraints were applied to fix the distance of O4—H = 0.82 (2) Å, O1W—H = 0.84 (2) Å and H1W1—H2W1 = 1.37 (4) Å. 2694 Friedel pairs were merged before final refinement as there is no large anomalous dispersion to determine the absolute configuration.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2. The crystal packing of the title compound, viewed approximately along the c axis, showing an extended molecular chain along the a axis. Dashed lines indicate the hydrogen bondings.

(I)

 Crystal data
 F

 $C_{10}H_{18}O_5 \cdot H_2O$ F

 $M_r = 236.26$ F

 Orthorhombic, $P2_12_12_1$ N

 Hall symbol: P 2ac 2ab
 C

 a = 8.5824 (1) Å
 H

 b = 9.2834 (1) Å
 H

 c = 14.6711 (2) Å
 T

 V = 1168.90 (2) Å³
 F

 Z = 4 O

 $F_{000} = 512$ $D_x = 1.343 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9413 reflections $\theta = 2.8-41.6^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.50 \times 0.27 \times 0.27 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	3449 independent reflections
Radiation source: fine-focus sealed tube	3337 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 100 K	$\theta_{\text{max}} = 37.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -14 \rightarrow 14$
$T_{\min} = 0.947, \ T_{\max} = 0.971$	$k = -15 \rightarrow 15$
64045 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.0439P)^2 + 0.0731P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{\text{max}} = 0.001$
3449 reflections	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
161 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct methods	

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat [Cosier, J. & Glazer, A. M. (1986). *J. Appl. Cryst.* **19**, 105–107] operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.43844 (6)	0.76639 (5)	0.05482 (3)	0.01206 (8)

O2	0.46299 (6)	0.72835 (6)	-0.14722 (3)	0.01333 (9)
O3	0.37807 (7)	0.95475 (6)	-0.18528 (3)	0.01399 (9)
O4	0.34767 (7)	1.13634 (6)	-0.01512 (4)	0.01634 (10)
O5	0.48979 (6)	0.97492 (6)	0.13084 (3)	0.01364 (9)
C1	0.38958 (8)	0.91139 (7)	0.06752 (4)	0.01172 (10)
H1A	0.2818	0.9145	0.0895	0.014*
C2	0.33053 (8)	0.68941 (7)	-0.00168 (4)	0.01206 (10)
H2A	0.2268	0.6964	0.0259	0.014*
C3	0.32312 (8)	0.75401 (7)	-0.09665 (4)	0.01172 (10)
H3A	0.2342	0.7132	-0.1296	0.014*
C4	0.46232 (8)	0.83123 (7)	-0.21980 (4)	0.01328 (10)
C5	0.31314 (7)	0.91860 (7)	-0.09849 (4)	0.01160 (10)
H5A	0.2038	0.9487	-0.0961	0.014*
C6	0.40456 (8)	0.99275 (7)	-0.02236 (4)	0.01164 (10)
H6A	0.5148	0.9961	-0.0396	0.014*
C7	0.37798 (10)	0.77431 (9)	-0.30350 (5)	0.01941 (13)
H7A	0.2738	0.7469	-0.2871	0.029*
H7B	0.4326	0.6920	-0.3269	0.029*
H7C	0.3742	0.8481	-0.3493	0.029*
C8	0.62911 (9)	0.87289 (9)	-0.24007 (5)	0.01995 (13)
H8A	0.6795	0.9026	-0.1848	0.030*
H8B	0.6305	0.9508	-0.2831	0.030*
H8C	0.6833	0.7917	-0.2653	0.030*
C9	0.46504 (9)	0.92419 (8)	0.22239 (4)	0.01716 (12)
H9A	0.5330	0.9749	0.2633	0.026*
H9B	0.4870	0.8229	0.2253	0.026*
Н9С	0.3587	0.9409	0.2396	0.026*
C10	0.37923 (9)	0.53235 (7)	-0.00202 (5)	0.01627 (11)
H10A	0.3747	0.4950	0.0589	0.024*
H10B	0.4838	0.5243	-0.0247	0.024*
H10C	0.3101	0.4784	-0.0405	0.024*
O1W	0.57299 (7)	0.26179 (6)	0.08757 (4)	0.01852 (10)
H1O4	0.4072 (16)	1.1865 (15)	0.0151 (9)	0.032 (4)*
H1W1	0.6579 (13)	0.2881 (14)	0.0656 (9)	0.030 (4)*
H2W1	0.5836 (19)	0.1840 (12)	0.1158 (10)	0.041 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.01237 (19)	0.01127 (17)	0.01255 (18)	0.00025 (15)	-0.00175 (15)	0.00011 (15)
O2	0.01453 (19)	0.01320 (18)	0.01227 (18)	0.00295 (16)	0.00272 (15)	0.00221 (15)
O3	0.0180 (2)	0.01283 (19)	0.01116 (18)	0.00330 (17)	0.00186 (16)	0.00176 (15)
O4	0.0190 (2)	0.01123 (18)	0.0188 (2)	0.00316 (17)	-0.00409 (18)	-0.00123 (17)
O5	0.0155 (2)	0.0152 (2)	0.01031 (18)	-0.00255 (16)	-0.00114 (15)	-0.00001 (15)
C1	0.0116 (2)	0.0122 (2)	0.0114 (2)	0.00024 (19)	-0.00052 (18)	-0.00035 (18)
C2	0.0118 (2)	0.0122 (2)	0.0122 (2)	-0.00124 (18)	-0.00016 (19)	0.00084 (18)
C3	0.0112 (2)	0.0126 (2)	0.0114 (2)	-0.00007 (18)	-0.00006 (18)	0.00028 (19)
C4	0.0146 (2)	0.0138 (2)	0.0114 (2)	0.0020 (2)	0.00107 (19)	0.00140 (19)

C5	0.0111 (2)	0.0127 (2)	0.0110 (2)	0.00160 (18)	-0.00033 (18)	0.00072 (18)
C6	0.0119 (2)	0.0111 (2)	0.0119 (2)	0.00140 (17)	-0.00036 (18)	0.00060 (18)
C7	0.0262 (3)	0.0196 (3)	0.0124 (2)	0.0016 (3)	-0.0019 (2)	-0.0015 (2)
C8	0.0159 (3)	0.0246 (3)	0.0193 (3)	0.0013 (2)	0.0040 (2)	0.0059 (3)
С9	0.0185 (3)	0.0222 (3)	0.0107 (2)	-0.0003 (2)	0.0004 (2)	0.0003 (2)
C10	0.0199 (3)	0.0121 (2)	0.0169 (3)	-0.0007 (2)	-0.0002 (2)	0.0010 (2)
O1W	0.0186 (2)	0.0147 (2)	0.0223 (2)	-0.00180 (18)	-0.00014 (19)	0.00053 (19)
Geometric param	neters (Å, °)					
O1—C1		1.4222 (8)	C4—(C7	1.520	2 (10)
O1—C2		1.4336 (8)	C5—(C6	1.528	7 (9)
O2—C4		1.4304 (8)	C5—1	H5A	0.980	0
O2—C3		1.4311 (8)	C6—1	H6A	0.980	0
O3—C5		1.4299 (8)	C7—1	H7A	0.960	0
O3—C4		1.4472 (8)	C7—1	H7B	0.960	0
O4—C6		1.4236 (8)	C7—1	H7C	0.960	0
O4—H1O4		0.821 (9)	C8—1	H8A	0.960	0
O5—C1		1.3966 (8)	C8—1	H8B	0.960	0
О5—С9		1.4389 (8)	C8—1	H8C	0.960	0
C1—C6		1.5251 (9)	C9—]	H9A	0.9600	
C1—H1A		0.9800	C9—1	H9B	0.960	0
C2—C10		1.5168 (10)	C9—1	Н9С	0.9600	
C2—C3		1.5183 (9)	C10-	-H10A	0.960	0
C2—H2A		0.9800	C10—H10B		0.9600	
C3—C5		1.5306 (9)	C10—H10C		0.9600	
С3—НЗА		0.9800	O1W-	—H1W1	0.834	(8)
C4—C8		1.5123 (10)	O1W-	—H2W1	0.838	(8)
C1—O1—C2		110.92 (5)	C6—(С5—Н5А	109.7	
C4—O2—C3		105.75 (5)	C3—0	С5—Н5А	109.7	
C5—O3—C4		108.68 (5)	O4—C6—C1		111.74 (5)	
C6—O4—H1O4		111.0 (12)	O4—	C6—C5	107.46 (5)	
С1—О5—С9		113.06 (5)	C1—0	С6—С5	111.43 (5)	
O5-C1-O1		107.78 (5)	O4—	С6—Н6А	108.7	
O5—C1—C6		108.30 (5)	C1—0	С6—Н6А	108.7	
O1—C1—C6		109.30 (5)	C5—0	С6—Н6А	108.7	
O5—C1—H1A		110.5	C4—(С7—Н7А	109.5	
O1—C1—H1A		110.5	C4—(С7—Н7В	109.5	
C6—C1—H1A		110.5	H7A-	—С7—Н7В	109.5	
O1—C2—C10		107.64 (5)	C4—(С7—Н7С	109.5	
O1—C2—C3		111.14 (5)	H7A-	—С7—Н7С	109.5	
C10—C2—C3		112.84 (6)	H7B–	—С7—Н7С	109.5	
O1—C2—H2A		108.4	C4—(С8—Н8А	109.5	
С10—С2—Н2А		108.4	C4—(С8—Н8В	109.5	
С3—С2—Н2А		108.4	H8A-		109.5	
O2—C3—C2		112.02 (5)	C4—0	С8—Н8С	109.5	
O2—C3—C5		101.77 (5)	H8A-	C8H8C	109.5	
C2—C3—C5		114.38 (5)	H8B-	C8H8C	109.5	
O2—C3—H3A		109.5	05—	С9—Н9А	109.5	

С2—С3—НЗА	109.5	О5—С9—Н9В	109.5
С5—С3—НЗА	109.5	Н9А—С9—Н9В	109.5
O2—C4—O3	105.70 (5)	О5—С9—Н9С	109.5
O2—C4—C8	108.26 (6)	Н9А—С9—Н9С	109.5
O3—C4—C8	109.83 (6)	Н9В—С9—Н9С	109.5
O2—C4—C7	111.79 (6)	C2-C10-H10A	109.5
O3—C4—C7	108.67 (6)	C2-C10-H10B	109.5
C8—C4—C7	112.38 (6)	H10A—C10—H10B	109.5
O3—C5—C6	110.18 (5)	C2-C10-H10C	109.5
O3—C5—C3	103.19 (5)	H10A—C10—H10C	109.5
C6—C5—C3	114.08 (5)	H10B-C10-H10C	109.5
O3—C5—H5A	109.7	H1W1—O1W—H2W1	110.4 (12)
C9—O5—C1—O1	-72.50 (7)	C5—O3—C4—C8	-123.77 (6)
C9—O5—C1—C6	169.36 (6)	C5—O3—C4—C7	112.93 (6)
C2-01-C1-05	173.54 (5)	C4—O3—C5—C6	106.03 (6)
C2—O1—C1—C6	-68.96 (6)	C4—O3—C5—C3	-16.15 (7)
C1—O1—C2—C10	-172.91 (5)	O2—C3—C5—O3	33.37 (6)
C1—O1—C2—C3	63.06 (7)	C2—C3—C5—O3	154.36 (5)
C4—O2—C3—C2	-161.33 (5)	O2—C3—C5—C6	-86.15 (6)
C4—O2—C3—C5	-38.71 (6)	C2—C3—C5—C6	34.84 (8)
O1—C2—C3—O2	70.09 (7)	O5—C1—C6—O4	-66.61 (7)
C10-C2-C3-O2	-50.94 (7)	O1—C1—C6—O4	176.22 (5)
O1—C2—C3—C5	-45.05 (8)	O5—C1—C6—C5	173.15 (5)
C10—C2—C3—C5	-166.08 (6)	O1—C1—C6—C5	55.99 (7)
C3—O2—C4—O3	29.57 (7)	O3—C5—C6—O4	82.09 (6)
C3—O2—C4—C8	147.20 (6)	C3—C5—C6—O4	-162.42 (5)
C3—O2—C4—C7	-88.49 (7)	O3—C5—C6—C1	-155.19 (5)
C5—O3—C4—O2	-7.19(7)	C3—C5—C6—C1	-39.69 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O4—H1O4···O1W ⁱ	0.821 (9)	1.909 (9)	2.7140 (8)	166.4 (16)
O1W—H1W1···O4 ⁱⁱ	0.834 (8)	1.921 (8)	2.7534 (8)	175.6 (14)
O1W—H2W1···O5 ⁱⁱⁱ	0.838 (8)	2.113 (11)	2.8294 (8)	143.3 (15)
C9—H9C···O3 ^{iv}	0.96	2.51	3.4306 (9)	162

Symmetry codes: (i) x, y+1, z; (ii) x+1/2, -y+3/2, -z; (iii) x, y-1, z; (iv) -x+1/2, -y+2, z+1/2.

