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Background. Early detection of severe dengue can improve patient care and survival. To date, no reliable single-gene biomarker 
exists. We hypothesized that robust multigene signatures exist.

Methods. We performed a prospective study on Cambodian dengue patients aged 4 to 22 years. Peripheral blood mononuclear 
cells (PBMCs) were obtained at hospital admission. We analyzed 42 transcriptomic profiles of patients with secondary dengue 
infected with dengue serotype 1. Our novel signature discovery approach controls the number of included genes and captures non-
linear relationships between transcript concentrations and severity. We evaluated the signature on secondary cases infected with 
different serotypes using 2 datasets: 22 PBMC samples from additional patients in our cohort and 32 whole blood samples from an 
independent cohort.

Results. We identified an 18-gene signature for detecting severe dengue in patients with secondary infection upon hospital 
admission with a sensitivity of 0.93 (95% confidence interval [CI], .82–.98), specificity of 0.67 (95% CI, .53–.80), and area under the 
receiver operating characteristic curve (AUC) of 0.86 (95% CI, .75–.97). At validation, the signature had empirical AUCs of 0.85 
(95% CI, .69–1.00) and 0.83 (95% CI, .68–.98) for the PBMCs and whole blood datasets, respectively.

Conclusions. The signature could detect severe dengue in secondary-infected patients upon hospital admission. Its genes offer 
new insights into the pathogenesis of severe dengue.
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Dengue is the most widespread mosquito-borne viral infection 
worldwide. Currently, 40%–50% of the world population lives 
in areas at risk for dengue virus (DENV) transmission [1]. If the 
majority of dengue cases are uncomplicated, it is estimated that 
each year 500 000 cases, mostly children, progress to severe den-
gue and require hospitalization. According to the World Health 
Organization (WHO), approximately 2.5% of those affected 
by severe dengue requiring hospitalization are still dying from 
complications [1]. The recent explosive spread of the related 
Zika virus might further increase this burden. Indeed, the com-
plications associated with severe dengue are more common after 
secondary infection than after primary infection [2], and recent 
studies both in vitro and in vivo have highlighted the potential 
of anti-Zika immunity to trigger dengue enhancement [3]. As 

recently highlighted by the WHO, robust and early detection of 
severe dengue, along with access to proper medical care, would 
not only decrease the fatality rate to 1% but also reduce health-
care costs and economic burden of the disease [1].

 Although diagnosis methods for dengue infection are well 
established, there are no prognostic tests to help the clinician 
evaluate the risk of infection progressing to severe dengue. 
A number of signatures that use clinical variables for detecting 
severe cases of dengue infection have been proposed for adults 
and/or children [4–9]. Nevertheless, none of the signatures 
we found in the literature have been replicated on indepen-
dent datasets. In addition to these studies, others have aimed 
to identify molecular biomarkers, based on either messenger 
RNA expression or on protein or cytokine levels. A  number 
of genome-wide expression profiling studies have also been 
performed in Nicaragua, Cambodia, Thailand, and Vietnam 
[10–14]. Every study uncovered differentially expressed genes 
associated with severe dengue. Many of these genes have func-
tions associated with innate immunity, vascular permeabil-
ity, coagulation, neutrophil-derived antimicrobial resistance, 
inflammation, and lipid metabolism. However, their capacity to 
detect severe cases among dengue patients was not evaluated 
[6–8, 10–13], or the studies excluded children [9].
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We hypothesized that a simple combination of a small 
number of gene expression markers may be robust enough to 
establish reproducible detection of severe cases among newly 
admitted dengue patients. With this in mind, we attempted to 
develop a signature discovery algorithm—one that allowed for 
not only linear but also more general monotonic relationships 
among features, meaning more complex, but still easily inter-
pretable, relationships among genes.

MATERIALS AND METHODS

Cohorts Studied

We conducted a prospective study in the Kampong Cham refer-
ral hospital in Cambodia during a 3-year period (2011–2013). 
Patients with suspected dengue infection were identified on the 
date of admission to participate in the study and were enrolled 
after obtaining agreement and written informed consent from 
the patient or from parents or guardians.

On the same day, the patient or his/her parents were inter-
viewed and stated the day of fever onset. Patients were processed 
as follows: plasma was used for dengue confirmatory diagnos-
tics, including serology and molecular diagnostics, as described 
elsewhere [15], and blood clots and peripheral blood mononu-
clear cells (PBMCs) were kept for later analyses (see description 
below). Briefly, plasma was tested for dengue infection by NS1 
rapid diagnostic test at the hospital and sent, on the same day, 
to Institut Pasteur Cambodia for DENV reverse transcription 
polymerase chain reaction (RT-PCR) confirmation and DENV 
serotyping. The RT-PCR result was sent back to the hospi-
tal. A  second blood sample was taken at the day of discharge 
from the hospital and sent to Institut Pasteur Cambodia. Both 

samples were tested for immunoglobulin M by M antibody-cap-
tured enzyme-linked immunosorbent assay and total antibod-
ies by hemagglutination inhibition assay. Primary or secondary 
immune status of DENV infections was determined by hemag-
glutination inhibition assay according to WHO criteria [16] and 
was confirmed by comparing the hemagglutination inhibition 
assay titer between the 2 samples. We subsequently used only 
the transcriptome of the first blood sample collected at hospital 
admission for multigene signature discovery.

Although 438 patients were initially enrolled, only a fraction 
donated an amount of blood compatible with the biochemis-
try and serological tests, as well as the isolation of PBMCs for 
transcriptomic analysis. Out of these, only 1 case was a primary 
infection, and few were non–DENV-1-infected. To maximize 
the likelihood for obtaining a meaningful RNA signature, we 
further limited our training set to samples from secondary, 
DENV-1–infected patients. This training dataset consisted of 
42 patients (15 with severe dengue, 27 with nonsevere den-
gue). From the remaining patients, 22 samples (7 with severe 
dengue, 15 with nonsevere dengue, from secondary patients 
with different serotypes) contained sufficient amounts of RNA 
for quantitative real-time polymerase chain reaction (qRT-
PCR). These 22 samples were used as a validation dataset. The 
mean ages of these 2 datasets were 9.0 ± 3.8 years (7.7 ± 2.4 
y for severe patients; 9.8 ± 4.2 y for nonsevere patients) and 
8.8  ±  3.1  years (7.0  ±  1.5 y for severe patients; 9.7  ±  4.3 for 
nonsevere patients) (Table 1 and Supplementary Material 1).

For this PBMC cohort, disease severity was classified accord-
ing to the 2009 WHO criteria [16] using clinical and biolog-
ical data recorded at admission and throughout the entire 

Table 1. Two Cohorts and Training and Validation Subcohorts

Case characteristics

Clinical cohort Devignot et al[11] cohort

Entire clinical cohort

PBMC microarray 
subcohort

PBMC qRT-PCR 
subcohort Whole blood microarray subcohort

Training set Validation set Validation set

Suspected dengue cases 438 42 22 32

Age, y 8.8 ± 3.3 9.0 ± 3.8 8.8 ± 3.1 7.8 ± 2.5

Sex, % female 51 52 60 66

Mean day of blood sampling after 
onset of fever

3.3 ± 1.5 3.1 ± 1.9 3.6 ± 1.3 5.1 ± 1.0

Confirmed dengue 316 42 22 32

DENV-1 265 42 10 4

DENV-2 15 0 6 3

DENV-3 0 0 0 16

DENV-4 28 0 6 1

Unknown 8 0 0 8

Secondary infection 183 42 22 32

Classification according to WHO 2009 criteria

Nonsevere dengue, with or 
without warning signs

236 27 15 14

Severe dengue 80 15 7 18

Abbreviations: DENV, dengue virus; PBMC, peripheral blood mononuclear cells; qRT-PCR, quantitative real-time polymerase chain reaction; WHO, World Health Organization.
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hospitalization period. Additionally, an independent publicly 
available dataset was used for a second validation [11]. In that 
dataset, gene expression had been quantified globally using 
microarrays from Cambodian blood samples. Disease sever-
ity was classified according to the description in the section 
“Signature Discovery” below. Table 1 provides additional sum-
mary information across all datasets we used.

Ethics Statement

The study was approved by the Cambodian National Ethics 
Committee for Health Research (approval no.  087NECHR 
/2011 and no.  063NECHR/2012). Before enrollment, written 
consent signed by the participant or by a legal representative for 
participants aged <16 years was obtained.

RNA Preparation, Microarray Hybridization, and Quantitative Real-Time 

Polymerase Chain Reaction Validation

RNA was extracted from PBMCs stored in RNA protect cell 
reagent (Qiagen, Hilden, Germany) with a miRNeasy kit 
(Qiagen), and RNA quality was checked on a BioAnalyzer 2100 
(Agilent, Santa Clara, CA).

For microarray analysis of the training cohort, gene expression 
in PBMCs was analyzed using Affymetrix Human Transcriptome 
Array 2 (HTA2) GeneChips. The HTA2 chips were prepared, 
hybridized, and scanned according to the manufacturer’s instruc-
tions. For qRT-PCR of the PBMC validation cohort, 200  ng of 
RNA were reverse-transcribed with SuperScript VILO cDNA 
synthesis kit (Invitrogen, Life Technologies, Carlsbad, CA) using 
a combination of random hexamer and Oligo(dT)12–18 primers. 
TaqMan Gene Expression Assays (Life Technologies) were used 
for each candidate gene according to the manufacturer’s instruc-
tions. Relative expression was calculated with the 2-ΔΔCt method, 
using beta-glucuronidase as an endogenous control for normal-
ization and a calibrator sample as a comparator for every sample.

Machine Learning Methodology

Our signature was created using a machine learning approach based 
on monotonic regression on a training cohort (Supplementary 
Material 3–6). Briefly, new predictions made by the signature are 
based on 0/1 (nonsevere/severe) predictions (“votes”) derived 
from pairs of transcripts in the signature. Measured concentrations 
for any given transcript pair are turned into a binary vote using a 
2-dimensional monotonic function [17], a generalization of a linear 
function that monotonically increases or decreases with the concen-
tration of each transcript. The final consensus prediction is “severe” 
if the mean of all votes is above a suitably chosen threshold t, and 
“nonsevere” otherwise. The performance of individual transcript 
pairs on future patients is estimated using cross-validation.

Initially, a set of transcript pairs with optimal performance 
estimate is determined. Using a permutation test, those genes 
that do not confer a statistical performance advantage over the 
performance of their partner alone are eliminated. The result-
ing model represents a unique combination of lower- and 

higher-complexity features tailored toward the discovery of 
complex disease signatures. The monotonic model represents 
a generalization of linear models. Nevertheless, the result-
ing predictors can still be visually and intuitively understood. 
Controlling the number of transcripts in the signature allows 
different trade-offs between performance, robustness, and assay 
cost (Supplementary Material 9).

The signature is rescaled to different datasets by mapping 
transcripts to genes and quantile-normalizing the expression 
values (Supplementary Material 6). In cases where only 1 of 2 
transcript measurements is available, the missing variable is 
replaced by a duplicate of the variable that is available.

Signature Discovery

We applied the above machine learning approach to microarray 
transcriptomes of the PBMC training cohort, leading to an initial 
assessment of its performance via rigorous cross-validation. After 
applying quantile normalization (Supplementary Material 6),  
we evaluated this signature on 2 other datasets (Figure 1).

The first validation dataset consisted of 22 patients (7 with severe 
dengue, 15 with nonsevere dengue) from the PBMC validation 
cohort whose gene expression was measured using qRT-PCR.

The second validation dataset was an independent, publicly 
available, Cambodian whole blood dataset selected for its large size 
and high quality [11]. It consisted of whole blood transcriptome 
data from 48 dengue-infected patients. At the time of that study, 
phenotype was still established according to the 1997 WHO clas-
sification: DSS (dengue shock syndrome), DHF (dengue hemor-
rhagic fever), and DF (dengue fever) [18]. To make phenotype data 
comparable, we reclassified the disease severity as well as possible 
in terms of the 2009 WHO classification. We considered all 18 
DSS patients as severe dengue and all 14 DF patients as nonsevere, 
considering that DF patients that are reclassified as severe dengue 
in the 2009 WHO classification are rare. The DHF patients could 
not be classified without additional clinical information that was 
unavailable to us and were thus excluded.

Performance Evaluation

We summarized the empirical performance of our signature 
using receiver operating characteristic curves, which consist of 
the different combinations of empirical true- and false-positive 
rates that are obtained by varying the above threshold t between 
0 and 1. For evaluations of the performance of state-of-the-art 
machine learning methods, we used the implementations from 
the Python sklearn package [19].

RESULTS

Our automated machine learning approach for signature dis-
covery resulted in an 18-gene signature that allows the detec-
tion of severe dengue from a blood sample taken from dengue 
patients upon hospital arrival. We obtained area under the 
receiver operating characteristic curve (AUC) values of 0.86, 
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Figure 2. Evaluation of classification performance. A, Cross-validated training data, various methods. B, Validation data, our signature.
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0.83, and 0.85 for the training set and 2 validation datasets with 
widely different characteristics, respectively (Figure 2).

Examples of empirical sensitivity-specificity combinations 
are shown in Table 2. The difference in the threshold required 
for PBMCs and whole blood may be attributable to the differ-
ence in composition between these 2 sample types. Twelve of 
the 18 genes in the signature are immune-related (Table  3). 
Certain genes have already been associated with severe dengue.

To determine whether the inclusion of a larger number of 
genes or the restriction to a linear state-of-the-art variable selec-
tion model would have increased classification accuracy, we 
estimated the performance of several well-known classification 
methods (Figure 2A). Even though all pairs of confidence inter-
vals overlap, the AUC estimate of our method was among the 
highest. This was also the case for the public whole blood dataset 
(Supplementary Material 10). For the PBMC qRT-PCR dataset, 
we only measured transcripts from our signature and therefore 
could not compare results with the performance of other meth-
ods on this dataset, except logistic regression with a lasso penalty 
(“logistic lasso”). Contrary to our method, logistic lasso gener-
ated a classifier whose performance was not better than random 
on the PBMC qRT-PCR dataset (Supplementary Material 11).

Figure  3 provides a visualization of the models associated 
with the transcript pairs of the signature. The panels show the 
points corresponding to transcripts from the PBMC training 
cohort. Different monotonic functions capture different types 
of gene–gene interactions. For example, for the second pair of 
transcripts (JUNB and ARG1), patients have a severe pheno-
type when JUNB expression is high or ARG1 expression is low. 
For the OX40L/CD40LG pair, OX40L and CD40LG both are 
underexpressed in the severe patients. For the EGR3/MGAM 
pair, the lower the EGR3 expression and the higher the MGAM 
expression, the more likely the patient is to be predicted severe.

DISCUSSION

We have identified and independently validated an RNA sig-
nature for the detection of severe cases among young, second-
ary-dengue patients from blood samples taken upon arrival at 
the hospital. Previous attempts have addressed the complexity 

of dengue infection by measuring multiple molecules. Nhi et al 
identified 19 plasma proteins exhibiting significantly different 
relative concentrations (P <  .05) on 16 patients (6 with severe 
dengue, 10 with nonsevere dengue) [20]. Among them, a com-
bination of antithrombin III and angiotensin had strong power 
to detect the 6 severe dengue patients (AUC = 0.87). Pang et al 
developed a signature combining transcript, protein, and clini-
cal markers, mostly linked to innate immunity and coagulation, 
that was able to detect patients with warning signs and need-
ing to be hospitalized with sensitivity of 96% and specificity 
of 54.6% on a validation cohort that was chosen to match the 
learning cohort [9]. However, none of the signatures have been 
replicated on an independent, publicly available cohort.

Our objective was to identify an RNA signature to detect 
severe dengue cases from blood samples taken upon patient 
admission to hospital. We used data from a prospective study in 
Cambodia, in which young patients with suspected dengue gave 
blood samples upon hospital admission. Severe dengue cases 
were identified according to the WHO 2009 criteria using data 
at admission and during hospital stay. Because in our cohort 
only 1 severe patient appeared to have primary dengue and 
most had DENV-1 serotype, we limited our analysis to the 42 
high-quality samples from secondary DENV-1–infected cases. 
We then globally quantified gene expression profiles of PBMCs 
using transcriptome microarrays.

Our novel signature discovery approach models linear and 
nonlinear monotonic interactions between transcript levels 
with controlled complexity and preserves interpretability and 
applicability for small input datasets. To our knowledge, the 
resulting RNA signature comprising 18 genes represents the 
first signature to detect severe cases in dengue patients with 
a demonstrated high performance across several validation 
datasets.

The consistency of the empirical performance estimates of 
our RNA signature may indicate a high degree of robustness 
across a number of sample characteristics. First, blood sam-
ple type: training and first validation datasets were generated 
from PBMCs, but the second validation dataset originates 
from whole blood. Second, DENV serotype: the signature was 
derived from DENV-1 samples, but the validation datasets were 
a mixture of different serotypes. Third, measurement technol-
ogies: both array-based and qRT-PCR technologies were used 
to measure mRNA concentrations. Further heterogeneity arose 
from the fact that, even though dengue is considered a pedi-
atric disease in Cambodia, the age of patients varied. In addi-
tion, our data are from a single time sample from the day of 
hospital admission (ie, at variable times after fever onset). The 
above sources of heterogeneity point to possibilities to obtain 
refined, and potentially higher-performing, signatures with 
tighter performance estimates in studies with larger and more 
homogeneous cohorts, in particular for different age groups. 
Finally, one important source of heterogeneity that we did not 

Table 2. Empirically Observed Combinations of Sensitivity and Specificity 
Across Datasets 

Sensitivity  
(95% CI)

Specificity  
(95% CI) Thresholda

PBMC microarray training 
dataset

0.93 (.82–.98) 0.67 (.53–.80) 0.40

PBMC qRT-PCR
validation dataset

0.86 (.67–.96) 0.67 (.48–.84) 0.40

Whole blood microarray
validation dataset

0.83 (.67–.93) 0.79 (.63–.90) 0.91

Abbreviations: CI, confidence interval; PBMC, peripheral blood mononuclear cells; qRT-
PCR, quantitative real-time polymerase chain reaction. 
aThresholds were selected to balance specificity and sensitivity.
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Table 3. Constitutive Gene Pairs of the RNA Signature 

Gene Gene Name Description

Over/
under

(+/−) expressed in 
severe dengue

Known link with 
severe dengue in 

literature

E2F7 E2F transcription factor 7 Transcription factor implicated in angiogenesis, polyploidization of 
specialized cells and DNA damage response. Acts as a negative 
regulator of keratinocyte differentiation

+ …

ENKUR Enduring, TRPC channel interacting 
protein

Calcum-mediated signaling − …

ARG1 Arginase 1 Controls arginine metabolism in neutrophils, hence controlling NO 
production (iNOS pathway) moderator of T cell function.

+ [13]

JUNB JunB proto-oncogene, AP-1 TF 
subunit

Transcription factor involved in regulating gene activity following the 
primary growth factor response. Expressed in neutrophils. Part 
of the iNOS pathway

− …

E2F7 E2F transcription factor 7 Transcription factor implicated in angiogenesis, polyploidization of 
specialized cells, and DNA damage response. Acts as a negative 
regulator of keratinocyte differentiation

+ …

MPO Myeloperoxydase Produced mainly by neutrophils. This enzyme produces hypohalous 
acids central to the microbicidal activity of neutrophils.

+ [11, 13]

LRP1 Low-density lipoprotein receptor-re-
lated protein 1

Endocytic receptor involved in endocytosis and in phagocytosis of 
apoptotic cells. Involved in the plasma clearance of chylomicron 
remnants and activated LRPAP1 (alpha 2-macroglobulin)

− …

PGD Phosphogluconate dehydrogenase Enzyme involved in the pentose phosphate pathway, hence pro-
ducing more NADPH. NADPH is a cofactor used in anabolic 
reactions, such as lipid and nucleic acid synthesis, which require 
NADPH as a reducing agent.

+ …

EGR3 Early growth response 3 This gene encodes a transcriptional regulator that belongs to the 
EGR family of C2H2-type zinc-finger proteins. It is an immedi-
ate-early growth response gene that is induced by mitogenic 
stimulation. The protein encoded by this gene participates in 
the transcriptional regulation of genes in controlling biological 
rhythm. It may also play a role in a wide variety of processes in-
cluding endothelial cell growth.

− …

MGAM Maltase-glucoamylase This gene encodes maltase-glucoamylase, which plays a role in the 
final steps of digestion of starch.

+ …

HP Haptoglobin Binds free plasma hemoglobin, antimicrobial activity + [11, 13, 14]

MYB Myeloblastosis proto-oncogene, 
transcription factor

Transcriptional activator, implicated in B-cell lymphoma + …

IGKC Immunoglobulin kappa constant Codes for the constant region of antibody light chains.
Antibodies are produced and secreted by plasma cells and con-

tribute to the elimination of the pathogen.

+ …

PPBP Pro-platelet basic protein Platelet-derived growth factor of the CXC family. It is a potent che-
moattractant and activator of neutrophils and has antimicrobial 
properties.

− …

CD40LG CD40 ligand This gene is expressed on the surface of T cells. It regulates B-cell 
function by engaging CD40 on the B-cell surface. A defect in this 
gene results in an inability to undergo immunoglobulin class switch 
and is associated with hyper immunoglobulin M syndrome.

− …

OX40L OX40 ligand The protein functions in T-cell antigen-presenting cell interaction and 
mediates adhesion of activated T cells to endothelial cells.

− …

SDPR Serum deprivation response Participates in the formation of caveolae. − [20]

TCF7 Transcription factor 7 (T-cell specific, 
HMG-box)

This gene is expressed predominantly in T cells and plays a critical 
role in the development of natural killer cells and innate lymphoid 
cells. The encoded protein forms a complex with beta-catenin 
and activates transcription through a Wnt/ 
beta-catenin signaling pathway.

− …

ASAP2 ArfGAP with SH3 domain, ankyrin 
repeat and PH domain 2

The protein is localized in the Golgi apparatus and at the plasma 
membrane. The protein forms a stable complex with PYK2 in vivo.

− …

Genes are grouped into pairs and singletons.

Abbreviations: iNOS, inducible nitric oxide synthase; NADPH, reduced form of nicotinamide adenine dinucleotide phosphate; NO, nitric oxide. 



1696 • JID 2018:217 (1 June) • Nikolayeva et al

address is immune status. All patients in our training and vali-
dation sets had secondary infection, and the question about the 
performance of the signature in the presence of primary severe 
dengue samples, more typical of regions in which dengue trans-
mission is low, remains to be addressed.

Genes used in robust, high-performing signatures may also 
represent robust pointers into the biology of severe dengue. The 
genes OX40L and CD40L that comprise the first gene pair of our 
signature are both underexpressed in severe cases (Figure  3). 
OX40L and CD40L are membrane proteins expressed by den-
dritic cells and by activated T cells, respectively, that are essential 
to mount an efficient adaptive immune response. OX40L binds 
to its co-receptor OX40 and allows T cells to survive after clonal 
expansion. Stimulation of B cells by T cells through CD40L is 
necessary for class switching and somatic hypermutation, and 
hence both genes are required to produce potent neutralizing 
antibodies [21]. In the context of dengue infection, OX40L has 
been shown to be downregulated in human monocyte-derived 
dendritic cells after in vitro infection, supporting a role of the 
costimulatory molecule in dengue infection [22]. In addition, 
we have observed a differential regulation of the expression 
of the OX40 signaling pathway in asymptomatic dengue cases 
compared with clinical cases [23].

The role of CD40L expression during dengue infection is 
less clear; on the one hand, CD40L has been described as an 
enhancer of viral particle production by infected dendritic 
cells by providing survival signals [24], but, on the other hand, 
CD40L is upregulated in dengue-specific CD4+ T cells and is 

important for protection against the virus through an anti-
body-independent pathway [25].

The second gene pair of our signature, ARG1 and JUNB, 
controls inflammation. Both genes are expressed in neutrophils 
and are known to regulate the production of reactive nitrogen 
species. ARG1 degrades the substrate of inducible nitric oxide 
synthase (iNOS) [26]. JUNB transcriptionally regulates the 
expression of iNOS [27]. Hence, these genes together control the 
inflammatory status of the main blood component. Moreover, it 
has been found that JUNB is a key transcriptional modulator of 
macrophage expression. It activates the expression of ARG1 in 
the presence of interleukin 4 [28]. The role of ARG1 in flavivirus 
infection has been extensively described; in the case of dengue, 
the production of reactive nitrogen species (RNS) is required 
to inhibit viral replication during the early phases of infection. 
However, an overproduction of RNS in the late phases of the 
disease leads to the inhibition of coagulation, leading to den-
gue-typical bleeding. ARG1 is therefore required to reduce the 
amount of RNS and bleeding during dengue infection [29].

Although the RNA signature presented here may help diag-
nose severity across different cohorts, different technological 
platforms, and blood sample types, the practical application 
assumes a correct normalization between severe and nonsevere 
subgroups and a possibly adjusted decision threshold, both of 
which can be established using a new set of patients with known 
severe/nonsevere status. Once this has been established, the 
application of our RNA signature to new patients requires only 
a quantitative measurement of the expression level of 18 specific 
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Figure 3. Visual representation of the RNA signature.
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genes from a blood sample. Using multiplex qRT-PCR tech-
nology, this can be done in a few hours for the 18 transcripts, 
and future studies may focus on technologies with even faster 
processing times [30]. Such a protocol could be used in the 
clinic, sequentially or in parallel with a diagnostic test, allow-
ing efficient monitoring of individuals with high risk for severe 
disease. Furthermore, because the concentrations of most pro-
teins may be linearly related to RNA concentrations [31], a pro-
tein-level implementation is conceivable. The signature could 
be especially useful in nonendemic regions where physicians 
often do not have extensive experience in dengue diagnosis 
and management. In future studies, its potential as a prognostic 
signature for an even earlier detection of the risk of evolution 
toward severe dengue may also be evaluated on samples at an 
earlier stage of the disease.
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