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Recent advancements in neuroscientific research and miniaturized ear-

electroencephalography (EEG) technologies have led to the idea of employing

brain signals as additional input to hearing aid algorithms. The information

acquired through EEG could potentially be used to control the audio

signal processing of the hearing aid or to monitor communication-related

physiological factors. In previous work, we implemented a research platform

to develop methods that utilize EEG in combination with a hearing device. The

setup combines currently available mobile EEG hardware and the so-called

Portable Hearing Laboratory (PHL), which can fully replicate a complete

hearing aid. Audio and EEG data are synchronized using the Lab Streaming

Layer (LSL) framework. In this study, we evaluated the setup in three scenarios

focusing particularly on the alignment of audio and EEG data. In Scenario I,

we measured the latency between software event markers and actual audio

playback of the PHL. In Scenario II, we measured the latency between an

analog input signal and the sampled data stream of the EEG system. In

Scenario III, we measured the latency in the whole setup as it would be used

in a real EEG experiment. The results of Scenario I showed a jitter (standard

deviation of trial latencies) of below 0.1ms. The jitter in Scenarios II and

III was around 3ms in both cases. The results suggest that the increased

jitter compared to Scenario I can be attributed to the EEG system. Overall,

the findings show that the measurement setup can time-accurately present

acoustic stimuli while generating LSL data streams over multiple hours of

playback. Further, the setup can capture the audio and EEG LSL streams

with su�cient temporal accuracy to extract event-related potentials from

EEG signals. We conclude that our setup is suitable for studying closed-loop

EEG & audio applications for future hearing aids.
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1. Introduction

Current neuroscientific discoveries have led to the concept

of using brain signals as additional input to control audio

signal processing in hearing devices (Slaney et al., 2020). In

this process, correlates from the electroencephalography (EEG)

recording are used to make statements about the user’s mental

state, such as auditory attention (O’sullivan et al., 2015) or

listening effort (Bernarding et al., 2012; Haro et al., 2022). These

can potentially be used to adjust the signal processing in the

hearing device, for example, a beamformer that amplifies the

attended speaker while suppressing the ignored ones (Aroudi

and Doclo, 2019). This idea is commonly referred to as neuro-

steered hearing devices, cognitively controlled hearing aids, or

similar (O’Sullivan et al., 2017; Das et al., 2020; Geirnaert et al.,

2021). Current developments in miniaturization and improving

the wearability of (ear-centered) EEG suggest that the relevant

neural signals can still be detected when using fewer electrodes

and less spatial coverage compared to traditional cap EEG setups

(Kidmose et al., 2012; Debener et al., 2015; Mikkelsen et al.,

2015; Bleichner et al., 2016; Fiedler et al., 2017). This research is

relevant to realize closed-loop applications on wearable devices

with high wearing comfort.

To develop EEG-based hearing aid signal processing

methods, a portable platform is required that offers the

signal quality and timing accuracy required for closed-loop

applications with audio and EEG signals. In Dasenbrock et al.

(2021), we introduced a research platform, which combines

the mobile Smarting EEG system and the so-called Portable

Hearing Laboratory (PHL, Pavlovic et al., 2018). The PHL is

a portable research hearing device that can fully replicate a

hearing device. It uses the open-source open Master Hearing

Aid (openMHA, Kayser et al., 2022) software for real-time, low-

latency audio signal processing. The EEG data is received over

a wireless network connection. The Lab Streaming Layer (LSL,

Kothe et al., 2014) is used to synchronize audio and EEG data.

LSL is a framework that can synchronize data streams from

different devices by measuring their respective clock drift over

a network connection to map the locally generated time stamps

into one common timeline. First pilot timing and physiological

tests showed that this setup’s portable components could be

used to extract event-related potentials (ERPs) using an Oddball

paradigm (Dasenbrock et al., 2021).

The temporal synchronicity of audio and EEG data is crucial

for such a setup. Alignment inaccuracies of audio and EEG

data may lead to errors in the data analysis that may affect

the predictive power of the following listening state analysis.

Several sources of inaccuracy exist when aligning audio and EEG

data. For example, there may be variations in the playback of

the stimuli, i.e., differences between the software event markers

and the actual playback of the device. Further, inaccuracies

can occur when creating an LSL stream of continuous time-

series data, such as the EEG. Generally, factors such as the

operating system, drivers, and hardware performance will

typically introduce variations in delays; thus, a latency variation

(jitter) is always expected in real systems. Timing accuracy,

especially stability (between sessions), must also be considered

for online applications, which rely on a constant latency between

EEG and audio.

Time synchronization has long been a challenge in the

implementation of mobile EEG systems. When performing

EEG experiments, the amount of jitter needs to be sufficiently

small. The required temporal precision generally depends on

the method used. It is particularly relevant for investigating

time-averaged data. For instance, obtaining ERPs requires the

extraction of EEG trials by epoching the data using event

markers, which indicate a response-evoking feature of the

auditory stream. Accurate time synchronization is crucial since

it leads to an exact alignment when averaging over the single-

trial responses, leading to high and sharp ERP components,

i.e., specific peak amplitudes in the ERP (Williams et al., 2021).

For wireless commercial mobile EEG systems, the problem of

event-locking the EEG data has long been challenging, as they

are often not designed for it. For instance, in early iterations

of the wireless Emotiv EEG system, it was found that the

built-in event-locking was unstable and did not produce high-

quality ERPs (Hairston et al., 2014; Ries et al., 2014). Nowadays,

mobile EEG hardware can also be used for ERP studies, as

indicated by recent studies of the Emotiv EEG system (Williams

et al., 2021). Further, fully mobile smartphone-based systems

have already been successfully coupled with mobile Smarting

EEG systems (mBrainTrain, Belgrade, Serbia), which could

be used for extracting ERPs outside the laboratory (Debener

et al., 2015; Blum et al., 2017; Hölle et al., 2022). Building

upon the smartphone-based approach, the setup employed

in this work focuses on hearing aid applications, leveraging

the real-time capabilities of the PHL. The setup presented by

our group in Dasenbrock et al. (2021) was extended by the

possibility of sending single software event markers, which

enabled us to perform a comprehensive timing analysis to

evaluate its suitability for research into closed-loop hearing

devices with EEG.

The timing precision of the setup was systematically

evaluated in several timing test scenarios, that address the

different components of the system. As the setup is composed

of two completely independent components, namely the PHL

and the Smarting EEG system, the timing precision of the

setup is assumed to be composed of the timing accuracy of

the PHL and the timing accuracy of the EEG system. The

accuracy of these two systems was examined separately in timing

test scenarios I and II. Timing test scenario I examines the

PHL’s ability to create a precise software marker that marks the

playback time of an acoustic stimulus, i.e., the event marker.

In this test, the event marker time is compared to the actual

audio playback of the PHL. Timing test scenario II examines

how precisely the EEG system samples and time stamps an
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incoming signal by comparing the sampled and time stamped

signal from the EEG system against a known reference. A third

test, i.e., timing test Scenario III, was conducted to measure the

whole system’s timing, as it would be present in a real EEG

measurement. In this final test, a reference signal generated by

the PHL is compared to the sampled and time stamped signal

of the EEG system. To investigate differences in the timing

accuracy between shorter and longer durations, all timing tests

were performed for 15 min and 3 h. No human subjects were

used in the tests, as their introduction would lead to additional

between-subject variability (Intriligator and Polich, 1995), as

well as measurement variability (Callaway and Halliday, 1973).

Thus, this study was kept purely technical, focusing on the effects

of the measurement devices.

2. Materials and methods

In the following two sections, the setup and its

technical features as well as the timing tests are described

in detail.

2.1. Setup

This section describes the technical aspects of the setup.

For this purpose, the two subsystems, i.e., the PHL and the

EEG system, are discussed in more detail. In addition, the

LSL framework is discussed in depth, followed by a general

system description. Figure 1 outlines how the setup is carried in

a measurement.

2.1.1. Portable hearing laboratory

The PHL is the central component of the setup. It is an

integrated hearing aid research platform combining portable

hardware and the openMHA. Due to its portability, the device is

particularly suitable for field studies to investigate more realistic

hearing scenarios outside the laboratory. A personal computer

or smartphone controls the PHL through a WiFi connection. It

consists of a main unit, including a battery, and supports several

ear-level transducers. The setup uses a binaural 4-microphone

behind-the-ear (BTE) hearing aid headset developed for the

PHL. As visualized in Figure 1, a strap connected to the back

of the device is used to carry the PHL around the neck, which

weights about 130 g with dimensions of 58 × 90 × 30mm. The

PHL runs a Linux operating system (OS)–MAHALIA (Obbard

and James, 2018), optimized for the device’s hardware and to run

openMHA. The PHL supports sampling rates in the range of 8

and 96 kHz. In this work, a sampling rate of 16 kHz was used.

Figure 2 highlights some key features of the PHL’s software and

hardware. An extended table with detailed technical information

on the PHL can be found in the Supplementary material.

FIGURE 1

Sketch of the hearing aid and EEG setup carried in a

measurement. A strap connected to the back of the device is

used to carry the Portable Hearing Laboratory (PHL) around the

neck. Acoustic stimuli are presented via the hearing aids

connected to the PHL. The around-the-ear EEG sensor cEEGrid

is used to measure the neural activity. The cEEGrid is connected

to the mobile wireless Smarting EEG amplifier. Both audio and

EEG data streams are captured on the PHL for further processing

and recording. Figure adapted from Dasenbrock et al. (2021).

FIGURE 2

Photo of Portable Hearing Laboratory (PHL) and table with

selection of hardware and software features. The hardware

consists of a portable main unit and a binaural 4-microphone

behind-the-ear (BTE) hearing aid headset. Photo adapted from

Kayser et al. (2022).

openMHA is an open-source software platform for real-

time, low-latency hearing aid signal processing (Kayser et al.,

2022). The software is implemented in C++ and contains a
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wide range of audio processing algorithms. Its modular structure

allows adding new functionalities in the form of plugins. The

functions of a specific openMHA instance (such as algorithms,

inputs, outputs, and sampling rate) are defined by the user

using the openMHA configuration language consisting of line-

based human-readable text commands. The software runs on

several computer systems, including lab and portable setups,

particularly the PHL.1

2.1.2. EEG system

The EEG system used in the presented setup comprises three

parts, i.e., (1) electrode setup, (2) Smarting EEG amplifier, and

(3) LSL streaming interface. The setup aims to be used mainly

with cEEGrid electrodes (Debener et al., 2015; Bleichner and

Debener, 2017). The cEEGrid is a disposable electrode grid

with printed sensor arrays based on flex-print technology. Ten

circular electrodes are arranged in a c-shape to fit around the

ear and are attached using adhesive tape. The electrode setup

is connected to a small, wireless 24 channel SMARTING EEG

amplifier (mBrainTrain, Belgrade, Serbia), placed at the back

of the head. The amplifier receives the EEG signal, amplifies

it, and streams a Bluetooth signal which is received by the

Smarting Android application on the smartphone. The data

transfer and synchronization between the Smarting amplifier

and the smartphone is handled by a proprietary protocol

unknown to the authors. The smartphone and its Smarting

app act as the LSL streaming interface. It streams the signal

over the network using the LSL framework. In this work, the

SMARTING EEG amplifier (Serial number: 010016) is used in

combination with a Sony Xperia Z1 smartphone (model: C6903;

OS: Android 5.1.1) using a pre-installed Smarting Android

application (Version: 1.6.0). A sampling rate of 250Hz was used.

More information on the EEG system can be found in the

Supplementary material.

2.1.3. Lab streaming layer

When dealing with multiple components within one setup,

each device typically relies on its built-in high-resolution clock.

Even if the time difference 1tclocks between the clocks is known

at some time, 1tclocks usually changes over time due to clock

drift caused by clocks counting at slightly different rates. One

possible way of synchronizing data streams of multiple sources

is to use hardware synchronization, usually achieved using TTL

(transistor-transistor logic) signals, e.g., by regularly sending

out synchronization pulses to the attached devices (Reis et al.,

2014). However, this usually requires wiring up the different

devices. Repeated synchronization of data streams can also be

1 In this study, the openMHA 4.17.0 release version was used, which

is contained in the corresponding MAHALIA image 4.17.0.; MAHALIA

download: http://mahalia.openmha.org (accessed March 18, 2022).

achieved without the need for wires and connectors by using

(wireless) networks and a software agent running on each device.

For this purpose, the LSL was used. LSL is an open framework

that consists of a core library, interfaces for many common

programming languages, and several tools (Kothe et al., 2014;

Blum et al., 2021). It can be used to measure time differences

between connected devices in a network-based setup. Thus,

recording setups including LSL can consist of several pieces of

hardware and software. LSL tools include a recording program,

i.e., the LabRecorder, file importers, and apps to support many

EEG systems on the market. The website offers extensive

documentation on LSL’s functionalities and tools and provides a

list of the many different pieces of hardware which have adopted

the LSL standard.2 The built-in time synchronization capability

of LSL is designed for sub-millisecond accuracy on a network of

computers connected viaWiFi.

In LSL terminology, the combination of the raw data from

a device and its metadata, such as channel count or sampling

rate, is referred to as a stream. LSL streams can have a

regular sampling rate, such as continuous EEG, or an irregular

sampling rate, such as event markers, e.g., when marking an

acoustic event, such as the onset of a sound stimulus. The

time synchronization of LSL relies on two pieces of data being

collected in addition to the actual sample data: (1) timestamp,

(2) clock correction offset. For each LSL sample, a timestamp

is read from a local high-resolution clock of the device. The

clock correction offset is a measurement of themomentary offset

between the two involved clocks and is computed at periodic

intervals, by default, every 5 s. LSL is not limited to the use of

only two devices. If multiple devices are present in the setup,

the clock correction offset between the receiver and every sender

is measured.

LSL uses a protocol similar to the Network Time Protocol

to measure the clock correction offset. The simplest way to

map the time series data from different devices into a common

timeline is to add the most recent clock correction offset value

to each remotely collected timestamp. Other more sophisticated

methods exist that attempt to smooth the clock correction

values, such as an outlier-resistant (robust) linear fit through

a history of clock correction offsets to reduce the effects of

jitter in the clock correction offset measurement. Further, after

applying the clock correction offsets, there is a second source

of jitter, i.e., jitter in the time stamps. This jitter is not due

to synchronization but because time-sampling is usually not

done at regular intervals but on a slightly stochastic schedule

(determined by the hardware, driver, and operating system). If

the LSL stream has a regular sampling rate, this jitter can also

be reduced by applying smoothing algorithms. In this work,

2 More information on the LabRecorder, file importers, and apps can be

found in the LSL documentation https://labstreaminglayer.readthedocs.

io/index.html (accessed June 25, 2022).
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however, no smoothing of the clock correction offsets and time

stamps was applied.

In the setup presented in this work, the LSL framework

was used for the synchronization of EEG data and audio event

markers. A network link is established by the smartphone’s

connection (which runs the Smarting app) to the WiFi hotspot

provided by the PHL. The possibility of using LSL in the

presented setup is provided on the one hand by the Smarting

app’s functionality to generate LSL streams of the EEG data,

and on the other hand by openMHA’s interface to LSL.

Generally, to use LSL, all clients in the network need to

support LSL. Open source Android application projects for

LSL streaming and recording enable the inclusion of additional

sensor streams (Blum et al., 2021).

2.1.4. System description

Figure 3A schematically illustrates which components of

the setup are responsible for the different signals and data

streams. A total of four measurement points, a-d, were included

in the drawing to illustrate between which points the timing

was measured. The measurement points will be relevant in

Section 2.2, which provides a detailed description of the timing

test scenarios.

The setup’s data flow is described in the scheme of a sender-

receiver architecture running on the PHL (left) and the EEG

system (right). The purpose of the sender instance (top left) is to

provide acoustic stimuli audio out to the subject via the hearing

aids. The corresponding physical voltage signal is measured

at measurement point a. The sender instance simultaneously

generates an audio event marker LSL stream containing event

markers that specify the beginning of a stimulus onset in the

audio signal. Point d denotes the position in the data flow at

which the audio event marker LSL stream is measured.

At measurement point b, the resulting EEG voltage signal

(e.g., captured with cEEGrid electrodes) is fed into the EEG

amplifier. The smartphone receives the EEG data from the

amplifier via a Bluetooth connection and creates an LSL stream

of the EEG data, referred to as EEG-LSL stream. The EEG LSL

stream is measured at point c.

The smartphone and the PHL share the same network. This

allows the LSL framework to collect all necessary information

to map both streams into a common timeline (see Section 2.1.3

for details). Both the audio event marker LSL stream and the

EEG LSL stream are captured by the receiver instance (bottom

left). Both sender and receiver instances were implemented as

two independent openMHA instances with different processing

configurations that run on the PHL.3

3 The openMHA configurations for both sender and receiver instances

are published and can be found on Github: https://github.com/

ste�endasenbrock/SynchronizationEarEEGAudioStreams

2.2. Timing tests

This section describes the different timing test scenarios

performed to investigate the timing properties of the setup

outlined in the previous section. It is important to note that the

timing tests were performed without humans and an electrode

setup, such as the cEEGrid. The signals fed into the EEG system

were routed directly into the EEG amplifier. The audio signals

from the PHL were also not played directly through the hearing

aids but redirected to an audio jack. In each scenario, the timing

was evaluated between two of the four measurement points a-d

(see Figure 3A). The timing tests of the different scenarios were

performed separately, i.e., two different measurement points

were measured simultaneously in each scenario.

We conducted tests in three different scenarios. The

different scenarios are discussed in more detail in the following

sections. An additional test described in Section 2.2.3.1 was

performed to compare the recording capabilities of the receiver

instance (Figure 3A, bottom left) with an established reference

recording software.

Stimuli

For all tests, a rectangular pulse was used as a test signal

to investigate the time synchronization properties of the setup,

as it produces sharp detectable responses. Sixty millisecond

pulses were repeated at 1Hz. All timing test scenarios were

performed for two different durations, i.e., 15min (short) and

3 h (long). For the short timing test 900 and the long timing test,

10,800 trial latencies were determined. A total of 21 timing tests

were performed.

2.2.1. Scenario I: Sender instance timing

In timing test Scenario I, the timing accuracy of the

sender instance (Figure 3A, top left) was evaluated. The sender

instance was programmed to play the test stimulus containing

the rectangular pulses. At the same time, it was configured

to generate an LSL event marker whenever a rising edge is

detected in the signal. More details on the implementation

of this mechanism are described in Supplementary Figure 2.

In Figure 3B (left), the procedure to test the sender instance’s

accuracy is sketched in a timing diagram. To specify the timing

of the sender instance, the latency 1tn was measured. In

this scenario, 1tn was defined as the time difference between

the timestamps of the audio event marker LSL stream at

measurement point d and the rising edges in the actual playback

signal audio out at measurement point a.

The LabStreamer (NeuroBehavioral Systems; Albany,

CA, USA) was used to measure 1tn. The LabStreamer is a

commercial device that can be considered an oscilloscope

optimized for network timing, designed explicitly for

analyzing timing precision when dealing with the LSL

framework. It provides a sampling rate of 10 kHz, which
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A

B

FIGURE 3

(A) System diagram of the measurement setup. The system diagram shows the signal flow and illustrates which components of the setup are

responsible for the di�erent signals and data streams and how they are related. Black lines refer to physical voltage signals; red lines refer to LSL

streams. The setup combines the Portable Hearing Laboratory (PHL, left) and the EEG system (right). The PHL’s function is described in the

scheme of a sender-receiver architecture. The sender instance’s (top left) role is to present acoustic stimuli audio out to the subject via the

hearing aids. The physical voltage signal is measured at measurement point a. During playback of the stimuli, the sender instance simultaneously

creates an audio event marker LSL stream that contains event markers indicating specific time points in the audio signal. The audio event marker

LSL stream is measured at point d. Subsequently, the resulting EEG voltage signal EEG in (measurement point b) is amplified using the mobile

EEG amplifier. The smartphone receives the EEG data via a Bluetooth connection and creates an LSL stream of the EEG data, i.e., EEG LSL stream

(measurement point c). The receiver instance captures both the audio event marker LSL stream and the EEG LSL stream. (B) Timing diagrams for

all three timing test scenarios. Timing diagrams relate two signals or streams in terms of time (x-axis). Square wave signals were used to test the

timing in the setup. The time di�erence between two related time points is defined as trial latencies 1tn, measured about every second. In

timing test Scenario I (left) 1tn was computed by comparing the rising edges in the voltage signal audio out (a) and the audio event marker LSL

stream (d). In timing test Scenario II (center) 1tn was computed by comparing the rising edges in the voltage signal EEG in (b) and the EEG LSL

stream (c). In timing test Scenario III (right) 1tn was computed by comparing the rising edges in the EEG LSL stream (c) and the audio event

marker LSL stream (d).

results in a measuring accuracy of 0.1ms. It features

different input and output channels such as audio, general

analog inputs and outputs, and the ability to receive and

generate LSL streams. It offers an oscilloscope panel to

trigger signals by LSL events and a latency histogram

panel. More detailed information on the LabStreamer

can be found in the Supplementary material and in the

respective documentation.4

4 Neurobehavioral Systems. LabStreamer https://www.neurobs.com/

menu_presentation/menu_hardware/labstreamer (accessed June 24,

2022).
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For the technical implementation, a network connection

was established between PHL and LabStreamer to use LSL. The

analog signal of the PHL was fed directly into the audio input

jack of the LabStreamer. More technical details can be found in

Supplementary Section 1.1 of the Supplementary material.

2.2.2. Scenario II: EEG system timing

Timing test Scenario II was done to investigate the timing

accuracy of the EEG system (Figure 3A, right) when it converts

an analog voltage signal into an LSL stream. Figure 3B (center)

visually describes the procedure to test the EEG system’s

accuracy in a timing diagram. In this scenario, the latency 1tn

was defined as the time difference between the rising edges in the

EEG LSL stream at measurement point b and the rising edges

contained in the analog EEG in test signal fed into the EEG

system at measurement point c.

As done in the first scenario, the LabStreamer was used

to measure 1tn. For the technical implementation, a network

connection was established between the EEG system and

LabStreamer to use LSL, as in timing test Scenario I. The

LabStreamer was used to feed the analog test signal into the

EEG system and to capture the EEG LSL stream. More technical

details about this procedure can be found in Supplementary

Section 1.2 of the Supplementary material.

2.2.3. Scenario III: In-the-loop timing

In Scenarios I and II, the timing accuracy of the sender

instance and EEG system were tested separately. In timing test

Scenario III, described in this section, the timing accuracy of the

whole setup was measured. For this, the audio event marker LSL

stream of the sender instance was related to the EEG LSL stream

of the EEG system. Figure 3B (right) outlines the procedure

to test the whole setup’s accuracy in a timing diagram. The

latency 1tn was defined here as the time difference between

the timestamps of the sender instance’s audio event marker LSL

stream at measurement point d and the rising edges in the EEG

LSL stream at measurement point c.

Timing test Scenario III was technically realized by feeding

the audio out signal of the PHL’s sender instance directly into the

EEG system as EEG in signal (see Figure 3). This approach was

adapted from Blum et al. (2017). Further details can be found

in Supplementary Section 1.3 of the Supplementary material. In

contrast to Scenarios I and II, the LabStreamer was not used

here. Both audio event marker LSL stream and EEG LSL stream

were recorded using the receiver instance on the PHL.

The calculation of1tn was done in a post-analysis. The EEG

signal was interpolated sample-wise to correspond to the audio

signal’s sampling rate to determine the rising edge position. This

model assumption is justified by the properties of the test signal,

which features vertical edges. The EEG signal was epoched from

−100 to 150ms and baseline corrected from −100 to −50ms

with reference to the timestamps in the audio event marker

LSL stream. As done in Blum et al. (2017), the latency 1tn for

each rectangular pulse was determined by calculating the time

difference between the event marker time and the time when the

EEG signal amplitude exceeded the half-maximum of the trial

averaged response.

Metrics

The lag describes the arithmetic mean within a timing test

session, i.e.,

lag =
1

N

N
∑

n=1

1tn, (1)

and the jitter the standard deviation of the latency within a

timing test session, i.e.,

jitter =

√

√

√

√

1

N − 1

N
∑

n=1

| 1tn − lag |2. (2)

An across-session range 1R was calculated to quantify the

spread of lag and jitter between timing tests of the same

condition. 1R was defined here as the difference between the

maximum and the minimum value of lag and jitter across all

timing tests of the same condition.

2.2.3.1. Comparison with reference data recording

Two additional 3 h in-the-loop recordings were conducted

to compare the data received by the receiver instance with the

data received by the standard recording program LabRecorder.5

For this, LabRecorder and the receiver instance were used

simultaneously on the PHL. The raw LSL data consisting of time

series, time stamps, and clock corrections collected from the

receiver instance and LabRecorder were compared to check if

the receiver instance correctly recorded the data.

3. Results

In the following, the results of the previously described

timing test scenarios are reported separately. Table 1 gives an

overview of the obtained lag, jitter, and the across-session range

1R of the lag and jitter for each condition.

3.1. Scenario I: Sender instance timing

Figure 4I shows the latency between the LSL timestamps of

the audio event marker LSL stream and the rising edges in the

actual playback signal of the PHL. The Lag was around 32.7ms

for both short and long durations and differed up to 0.14ms

5 LSL. LabRecorder. https://github.com/labstreaminglayer/App-

LabRecorder (accessed February 3, 2022).
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TABLE 1 Measurement results in terms of lag, jitter, and across-session range 1R for all three timing test scenarios.

Duration Meas. Lag Jitter

Number in ms in ms

I II III I II III

15 min

1 32.69 −1.56 29.75 0.07 3.06 1.22

2 32.76 −53.07 24.92 0.09 3.91 1.5

3 32.81 −10.5 37.98 0.07 3.02 1.49

4 32.68 −1.98 29.8 0.09 2.05 1.41

5 32.67 −21.67 15.36 0.07 1.84 1.24

1R 0.14 51.51 22.62 0.02 2.07 0.28

3 h
1 32.64 −13.2 25.19 0.09 3.82 3.33

2 32.65 −7.89 24.61 0.09 2.84 2.99

1R 0.01 5.31 0.58 0 0.98 0.34

1R refers to the difference between the maximum and the minimum value of lag and jitter across all timing tests within one scenario and duration. The columns labeled with Roman

numerals belong to the respective timing test Scenarios I–III (see Sections 2.2.1–2.2.3). Five measurements were performed in the 15min condition (top); two measurements were

performed in the 3 h condition (bottom).

FIGURE 4

Latency-recording time curves for all timing test scenarios. The di�erent plots show the course of the measured latency (y-axis) in milliseconds

over recording time (x-axis) in minutes (left) or hours (right). Five measurement runs were performed in the 15min condition (left column); two

measurement runs were performed in the 3h condition (right column), denoted by di�erent colors. The upper row shows the results for timing

test Scenario I: sender instance timing (see Section 2.2.1); the middle row shows the results for timing test Scenario II: EEG system timing (see

Section 2.2.2), and the bottom row shows the results for timing test Scenario III: In-the-loop timing (Section 2.2.3).
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from session to session. Jitters were below 0.1ms. It can be

observed that the latency stayed constant over time for both

15min and 3 h playback time, i.e., no temporal latency drift

was observed.

3.2. Scenario II: EEG system timing

Figure 4II presents the latency plotted over recording time

between rising edges in the EEG LSL stream and the rising edges

contained in the analog test signal fed into an EEG system.

Contrary to Scenario I the lag did not stay constant, but changed

from session to session, indicated by a 1R of up to 52ms for

the 15min recording condition. Jitters were, however, relatively

constant between sessions, ranging from 1.84 to 3.91ms and 2.84

to 3.82 ms for the short and long timing test duration. A negative

lag was observed in this scenario, which is further discussed

in Section 4. Further, a positive, non-monotonic drift can be

seen in both cases (short and long timing test duration), i.e., an

increasing latency over time. For the 15min timing test, after

substantial fluctuations in the initial 200 s, the latency increases

with an approximately linear trend. However, this linear trend

no longer persists in the 3 h timing tests, and the latency flattens

over time.

3.3. Scenario III: In-the-loop timing

Figure 4III shows the latency obtained from the in-the-loop

system, i.e., the latency between the timestamps of the sender

instance’s audio event marker LSL stream and the rising edges

in the EEG LSL stream. Similar to Scenario II lags differed from

measurement to measurement with a 1R of up to 22ms. Jitters

stayed relatively constant within each recording condition,

ranging from 1.24 to 1.5 ms and from 2.99 to 3.33 ms for the

15min and 3 h timing tests, respectively. The latency-recording

time plots feature a similar trend as observed in Scenario II, as

the recordings show a linear latency drift for the 15min timing

tests, which flattens out over time, visible in the 3 h timing tests.

3.3.1. Comparison with reference data
recording

The comparison of receiver instance and LabRecorder data

yielded two main results: (1) The raw LSL time series and the

locally (in the EEG system and PHL’s sender instance) created

LSL time stamps were identical for both recording methods.

(2) Comparing the LSL clock correction offset values obtained

with openMHA and LabRecorder, differences occurred between

the two recording methods. However, the long term average

amounted to below 0.1ms for both 3 h measurements, sporadic

outliers up to 150ms occurred for single samples. Figure 5

shows a histogram describing the relative occurrences of clock

FIGURE 5

Histogram of one of the two 3h recordings showing the

di�erences between clock correction o�set values obtained

using openMHA’s receiver instance and LabRecorder. Outlier

values outside of ± 10ms were included in the outer 10ms bins.

differences. For illustration purposes outlier values outside of

± 10ms were included in the outer 10ms bins.

The slight differences in the obtained clock correction values

are negligible on average and can be explained by different points

in time at which openMHA and LabRecorder request the clock

correction values from the LSL framework. More prominent

outliers of the clock correction can usually be eliminated by an

outlier resilient fit method of the most recent clock corrections6

instead of adding the most recent clock offset value to the time

stamp as done in this study for reasons of simplicity.

4. Discussion

In this section we compare and discuss the results of the

different timing test scenarios. As mentioned in Section 2.1.3

on the LSL framework, no smoothing of clock corrections and

time stamps was applied. Hence, the results discussed here can

be considered rather conservative and could still be positively

influenced by applying jitter-reducing methods.

4.1. Scenario I: Sender instance timing

Timing test Scenario I showed a jitter close to the time

resolution specified for the LabStreamer of 0.1ms.7 The results

show that the PHL can accurately synchronize its audio playback

with the information sent over the network using LSL. It should

be noted that the lag of the PHL sender instance depends on

6 As, e.g., done in the standard MATLAB importer for .xdf files

load_xdf.m: https://github.com/xdf-modules/xdf-Matlab (accessed

January 14, 2022).

7 Neurobehavioral Systems. LabStreamer https://www.neurobs.com/

menu_presentation/menu_hardware/labstreamer (accessed March 3,

2022).
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the sampling rate-fragment size combination. A larger block size

with the same sampling rate leads to a higher lag, while the jitter

is expected to remain unchanged.

4.2. Scenarios II and III: EEG system
timing vs. in-the-loop timing

In Scenarios II and III, a jitter of around 3ms was measured.

The increase in jitter compared to Scenario I can most likely

be attributed to the EEG system, as it was not used in the

first scenario. Variations of the lag from measurement to

measurement occurred in both Scenarios II and III involving

the EEG system. Even if not further investigated here, these

findings align with previous findings when using the Smarting

EEG system, which indicates that timing can vary with device,

session, and software versions (Debener et al., 2015; Blum et al.,

2017). Similar EEG hardware was used in Blum et al. (2017)

and Hölle et al. (2022). These studies do not report any drift

behavior. One potential reason for this is that in these studies,

the EEG LSL stream was recorded on the same smartphone,

which created the EEG LSL stream. In this study, however, the

EEG LSL stream was recorded by an external device, i.e., the

PHL. If the EEG LSL stream is recorded on the smartphone,

no additional clock correction between PHL and EEG system is

required when aligning audio and EEG.

We observed negative latencies in Scenario II. The rising

edges in the EEG LSL stream were detected before the

rising edges contained in the analog test signal. One possible

explanation for this behavior is that LSL features the possibility

to shift the locally created LSL time stamps by an arbitrary

amount, e.g., to compensate for a known latency. If one

assumes that the timestamps are generated on the smartphone, a

possible explanation for the negative lags is an overcorrection

of the timestamps to compensate for the latency caused by

the Bluetooth connection. However, the proprietary protocol

used for synchronization between Smarting amplifier and

smartphone is not accessible, such that the procedure used to

convert the data sent via Bluetooth into an LSL stream remains

unknown. Hence, a more detailed investigation could not be

carried out.

Scenarios II and III show very similar latency behavior over

time. The two scenarios differ in the fact that Scenario II uses the

reference audio signal from the LabStreamer, and Scenario III

uses the reference audio signal from the PHL. In both cases,

this audio signal is fed into the EEG system. The similar

latency-time trend, i.e., a positive, non-monotonic drift, between

Scenario II and III indicates that the EEG is causing this latency

drift behavior.

The jitter obtained in Scenario II is higher than in

Scenario III, presumably attributed to the higher latency

fluctuations in the first approx. 200 s of the measurements. As

these fluctuations did not occur in Scenarios I and III, they

could be traced back to the LabStreamer’s function to receive

the LSL stream from the EEG system, which may differ from the

PHL. One possibility might be that the LabStreamer could have

applied online smoothing methods to the clock correction offset

values and time stamps received from the EEG system. To record

the latencies as purely as possible, the LabStreamers’s settings

option “Linearize Timestamps” was disabled. This option can

be used to reduce the timestamps’ jitter by assuming a regular

sampling rate of incoming LSL streams (see Section 2.1.3).

However, it is unclear if the LabStreamer still applies online

smoothing methods to the clock correction offset values. Thus,

the initial fluctuations of the latency could be a result of applying

online smoothing using a very limited history of clock correction

offset values. The exact cause for the fluctuations remains

unclear; a more detailed investigation would be interesting but

lies outside the scope of the current study.

4.3. Comparison with reference data
recording

The comparison of the data acquired by the openMHA

software with the LabRecorder has shown that data acquisition

can accurately be made via both ways, i.e., recording with

the LabRecorder as well as real-time capturing with the

openMHA framework.

4.4. Suitability and comparison to
state-of-the-art systems

In order to compare the temporal precision of the presented

system to existing state-of-the-art technology, it is important

to note that there is no standard at which point a mobile EEG

system is considered sufficiently precise. Nevertheless, there

are some indications that can be used for the evaluation of

the system’s performance. For instance, Williams et al. (2021)

established a jitter threshold, i.e., the point at which jitter made

an event-marking method unreliable using an ERP data set

recorded using a research-grade EEG system. Their data set

contained P100, N100, and P200 peaks. They determined a jitter

threshold of 45ms for the temporally wider P200 peak and a

jitter threshold of 16ms for the temporally sharper N1 peak.

They concluded that larger auditory ERP peaks are more robust

to jitter, while smaller peaks are more easily mitigated. While the

authors point out that these values should not be regarded as

absolute thresholds, they can be used as guidelines to narrow

down the order of magnitude of temporal requirements for

mobile EEG systems. The jitter of the system presented here is

well below the jitter thresholds determined in Williams et al.

(2021). Further, when comparing the results to existing studies
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that report timing test data, e.g., Debener et al. (2015), Blum

et al. (2017), Mirkovic et al. (2019), Williams et al. (2021), Hölle

et al. (2022), the system shows a similar or better accuracy. It can

therefore be assumed that the system is suitable to be used for

the measurement of temporally sharper peaks, such as the N1.

Additionally, in another study, the portable components used

for this setup have already been used to record physiological data

that enabled the extraction of ERPs, including N100 and P300

peaks, using an Oddball paradigm (Dasenbrock et al., 2021).

4.5. Limitations and challenges

It was shown that the jitter of the setup is sufficiently small

and thus suitable for online applications. However, the across-

session variation of the lag could have a negative influence when

averaging over sessions and subjects. The respective impact of

the across-session variation of the lag depends on which EEG

feature is examined. Temporally wide features that can be spread

over several 100ms, such as the P300 amplitude, can still be

decoded between sessions. This can be done using decoders

based on 50ms or 100ms time bins (Debener et al., 2015;

Dasenbrock et al., 2021). Nevertheless, an EEG system with

higher lag predictability would facilitate its usability for future

applications of the setup.

This study did not examine the extent to which the

computational load of PHL might have an impact on the setup’s

timing accuracy. Factors such as sophisticated signal processing

and the addition of more sensors could increase the PHL’s CPU

or network load. Thus, future studies using the PHL should

always investigate the timing for their particular setup. Quick

timing tests may be derived from the methods introduced here.

Due to the necessity of a PHL device, the presented

setup may be harder to reproduce when compared to

fully smartphone-based approaches. However, considering the

PHL’s specialized hearing aid hardware and openMHA signal

processing software, less effort will be required to implement

new EEG-based hearing aid algorithms. Regarding their form

factor, both PHL and cEEGrid are not entirely suitable for

everyday use. In a research context, however, the presented

setup provides a useful platform to explore the potential of

neuro-steered hearing devices.

4.6. Relevance for future applications

Studies such as Zink et al. (2017) or Aroudi et al. (2021)

require synchronizing the incoming EEG stream with the

audio stream online, as they are received over LSL, e.g., to

compare the estimated envelope calculated from the EEG

with the envelope of the audio. This requires on-the-fly time

synchronization of incoming LSL streams, which is possible

with the presented setup, as all information for synchronization

is available in the block-based real-time processing in the

openMHA software. Further, other approaches exist that

incorporate information other than microphone signals into

hearing aid processing, based on, e.g., electrooculography

(EOG) and head movement sensors to estimate the user’s gaze

direction (Favre-Felix et al., 2018; Grimm et al., 2018). Since

the presented setup uses the well-established LSL framework,

other sensors could be integrated in the same manner as

employed in this study. This would also allow the setup to

be extended to include other sensors besides EEG to expand

the setup into a multi-modal research platform (Blum et al.,

2021).

5. Summary and conclusions

This study performed a comprehensive timing analysis

of the research platform introduced in Dasenbrock et al.

(2021), focusing on the alignment of audio and EEG data.

The setup combines the mobile Smarting EEG system with

a portable research hearing device, the Portable Hearing

Laboratory (PHL). To perform the timing analysis, we further

developed the setup to enable sending single software event

markers during the onset of an acoustic stimulus. The

temporal precision of the PHL when presenting acoustic

stimuli and the EEG system when providing synchronized

EEG data was measured using a reference device, i.e.,

the LabStreamer. Further, after the accuracy of the PHL’s

stimulus presentation and the EEG system were determined

separately, the entire system was examined “in-the-loop” to

quantify how the setup’s timing accuracy would be in an

actual EEG measurement. The data received and recorded

with the presented setup were compared to the widely used

standard recording program LabRecorder. All timing tests were

performed for a short (15min) and long (3 h) measurement

duration. Based on the data collected in this study, we concluded

the following:

• The PHL can time-accurately present acoustic stimuli and

generate LSL streams over multiple hours of playback.

• The timing accuracy of the EEG system on its own can have

a major influence on the overall system’s timing. Checking

the timing behavior of the EEG system by comparing its

LSL stream against a trusted reference is a crucial step when

integrating such a system. While the EEG system used in

this work is sufficiently accurate within a measurement

session, there are noticeable lag variations across sessions.

The current setup should be enhanced with an EEG system

featuring a higher temporal across-session lag stability to

improve its practicability.

• The PHL is capable of presenting acoustic stimuli while

simultaneously capturing the audio and EEG LSL streams

with sufficient temporal accuracy over multiple hours of
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playback and recording in an in-the-loop system. The

temporal accuracy is sufficient to extract event-related

potentials from the EEG.

• Featuring a high temporal precision and real-time signal

processing capabilities, the presented setup is suitable

as a platform to investigate closed-loop EEG & audio

applications for future hearing aids.
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