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Glioma is the most common primary brain tumor with poor prognosis and high mortality.
The purpose of this study was to use the epigenetic signature to predict prognosis and
evaluate the degree of immune infiltration in gliomas. We integrated gene expression
profiles and DNA methylation data of lower-grade glioma and glioblastoma to explore
epigenetic differences and associated differences in biological function. Cox regression
and lasso analysis were used to develop an epigenetic signature based on eight DNA
methylation sites to predict prognosis of glioma patients. Kaplan–Meier analysis showed
that the overall survival time of high- and low-risk groups was significantly separated,
and ROC analysis verified that the model had great predictive ability. In addition, we
constructed a nomogram based on age, sex, 1p/19q status, glioma type, and risk
score. The epigenetic signature was obviously associated with tumor purity, immune
checkpoints, and tumor-immune infiltrating cells (CD8+ T cells, gamma delta T cells,
M0 macrophages, M1 macrophages, M2 macrophages, activated NK cells, monocytes,
and activated mast cells) and thus, it may find application as a guide for the evaluation
of immune infiltration or in treatment decisions in immunotherapy.

Keywords: glioma, epigenetic signature, prognosis, immune infiltration, multi-omics integration

INTRODUCTION

Gliomas are the most common primary tumors of the central nervous system, accounting for 60%
of craniocerebral tumors (Ostrom et al., 2019). According to the malignant features, the World
Health Organization (WHO) divides gliomas into four grades. With the continuous discovery
of new molecular markers, the accurate classification of gliomas has been promoted. Currently,
the WHO recommends that molecular markers such as co-deletion of chromosome arms 1p
and 19q (1p/19q co-deletion) and isocitrate dehydrogenase (IDH) mutation status be included
in the histopathological classification of gliomas (Louis et al., 2016). Surgery combined with
chemotherapy or radiotherapy is a common treatment strategy for gliomas, but the prognosis
varies greatly (van den Bent et al., 2013; van den Bent, 2014; Buckner et al., 2016). In particular,
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glioblastoma (GBM), or grade 4 glioma, is the most common and
fatal malignant brain tumor, with a short median survival of only
12 to 15 months (Hanif et al., 2017). Therefore, the development
of effective biomarkers for risk assessment may help to guide the
choice of future targeted treatment strategies.

The complex tumor microenvironment (TME) has a serious
influence on the gene expression in cancer tissue, affecting disease
progression and clinical outcome (Cooper et al., 2012; Yoshihara
et al., 2013). In the progression of gliomas, due to the destruction
of the blood-brain barrier, tumor cells secrete a large number
of chemokines that recruit immune cells from the peripheral
blood, and the proportion of microglia/macrophages in the
tumor cavity increases, which is associated with the malignant
degree of gliomas (Yi et al., 2011). Therefore, the evaluation
of immune infiltration of gliomas plays an important role in
monitoring the progression of gliomas, and tumor-infiltrating
immune cells have the potential to be used as drug targets to
improve the prognosis of glioma patients (Xiong et al., 2018).
Immunotherapy suppresses the rejection of tumor cells by the
host immune system by inducing, enhancing, or suppressing the
immune response, and thus uses the host immune system to
kill tumor cells. At present, immune checkpoint inhibitors, such
as anti-CTLA-4 monoclonal antibody (ipilimumab) and anti-
PD-1 monoclonal antibody (nivolumab), have achieved good
results in tumor therapy (O’Day et al., 2010; Rizvi et al., 2015).
However, research on immune checkpoint inhibitors in glioma
is still insufficient, and new drugs are currently being evaluated
in animal models and in clinical trials (Omuro et al., 2018;
Crommentuijn et al., 2020; Ladomersky et al., 2020).

DNA methylation plays an important role in maintaining
the structural stability of the genome and in regulating gene
expression. Epigenetic modification of DNA, including abnormal
DNA methylation, especially in the promoter region of genes
as such as CDKN2A, has been reported to be associated with
tumorigenesis and has great potential as a tumor biomarkers
(Malzkorn et al., 2011; Klutstein et al., 2016; Pan et al., 2018)
with numerous advantages. First, epigenetic information is more
stable than RNA and protein, and is not vulnerable to physical
and chemical damage (Issa, 2012). Second, abnormally altered
DNA methylation is an early event of carcinogenesis that predates
genetic defects and abnormal gene expression. Detection of DNA
methylation changes may provide a more timely and accurate
assessment of cancer progression (Fleischer et al., 2014; Timp
et al., 2014). Third, the development of drugs to reverse epigenetic
modification has great potential for cancer treatment (Zhu and
Yao, 2009). The large number of samples and data regarding
genome-wide methylation sites stored in The Cancer Genome
Atlas (TCGA) database provides a source for the identification
of identify biomarkers.

Multi-omics integration analysis interrogates previously
isolated data relative to degree of DNA methylation and
RNA expression, which may provide new insights into the
pathogenesis and treatment of gliomas (Ceccarelli et al., 2016;
Binder et al., 2019). We explored epigenetic differences between
lower-grade glioma (LGG) and glioblastomas (GBM) based on
integrated expression profile data and DNA methylation data
in the promoter region. Using a series of statistical methods,

we constructed a novel epigenetic signature based on eight
DNA methylation sites. Furthermore, we evaluated the ability
of the signature to predict survival outcomes and its association
with immune infiltration in gliomas. Finally, to apply the
epigenetic signature to clinical practice, we integrated a series of
independent prognostic factors to construct a nomogram.

MATERIALS AND METHODS

Datasets Extracted From TCGA and GEO
Databases
The DNA methylation data, gene expression data, and
corresponding clinical information of glioma patients (including
LGG and GBM samples) were obtained from the TCGA
database1. In addition, we downloaded the LGG dataset
(GSE104293) and the GBM dataset (GSE48462) from the
GEO database2. DNA methylation data were generated using
the Infinium Human Methylation 450 BeadChip covering
485,577 DNA methylation sites. For each CpG site, the β value
represented the DNA methylation level from 0 (no methylation)
to 1 (100% methylation). CpGs in the promoter regions located 2
kb upstream to 0.5 kb downstream from transcription start sites
(TSS) covering 145,907 DNA methylation sites were selected for
the present study.

Identification of Genes, and DNA
Methylation Sites, and the Epigenetic
Genes Involved in Glioma Progression
Using fold change >2 or <0.5 and a false discovery rate (FDR)
<0.01 as the threshold, gliomas samples were analyzed to identify
differentially expressed genes between LGG samples and GBM
samples using the edgeR package3. Based on the thresholds
β value >0.2 and FDR <0.01, different DNA methylation
sites were identified using the Limma package4 (Ritchie et al.,
2015). The correlation between differentially upregulated genes
and the degree of reduced methylation on sites on promotors
of downregulated genes, and conversely, the downregulate
differentially expressed genes and the degree of methylation
of promotors sites was analyzed according to the standard
of correlation <−0.3 and FDR <0.01. Finally, we identified
epigenetic genes associated with glioma progression including
epigenetically-induced genes (low promoter methylation with
high gene expression) and epigenetically-suppressed genes (high
promoter methylation with low gene expression).

Functional Enrichment Analysis of
Epigenetic Genes
To explore the biological implications of epigenetic genes in
glioma progression, functional enrichment analyses including
gene ontology (GO) hierarchy and Kyoto Encyclopedia of

1https://portal.gdc.cancer.gov/
2https://www.ncbi.nlm.nih.gov/geo/
3http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
4http://www.bioconductor.org/packages/release/bioc/html/limma.html
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Gene and Genomes (KEGG) pathways were performed using
the Database for Annotation, Visualization, and Integrated
Discovery5 using P < 0.05 as a significance threshold.

Construction of a Prognosis Risk
Signature Based on DNA Methylation
Sites of Epigenetically-Regulated Genes
Glioma samples were randomly assigned to training and
validation data sets using the caret package6. A training data
set was used to develop a risk model, and a validation data set
and a LGG dataset (GSE104293) and GBM dataset (GSE48462)
were used to verify the model. Univariate‘ cox regression was
used to screen for DNA methylation sites that had a significant
effect on prognosis, and the filter condition was set at P < 0.05.
Lasso regression can reduce the complexity of the model by
adjusting the parameters of the model to avoid over-fitting
by the glmnet package7 (Simon et al., 2011). The degree of
complexity adjustment of LASSO regression was controlled by
the parameter λ–the greater the λ, the greater the punishment
for the linear model with more variables—to obtain a model
with fewer variables. Finally, we used multivariate Cox regression
analysis to screen for independent prognostic factors, which
could be used to develop a risk prognostic model. A risk score
formula was defined by the sum of the products of the β value of
each DNA methylation site and the correlation coefficient. Based
on the median value of risk, patients are divided into two groups:
high- and low-risk groups. Finally, we evaluated the prediction
performance of the signature in the internal and external
validation datasets (LGG: GSE104293 and GBM: GSE48462).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was preformed to analyze
differences between high- and low-risk groups using the “c2
cp keg v7.0 symbols collection” as the reference gene set
(Subramanian et al., 2005). A FDR <0.05 after performing 1,000
permutations was considered to significantly enriched.

ESTIMATE Algorithm
The ESTIMATE algorithm was applied to analyze the expression
characteristics of specific genes in immune cells and stromal
cells, and to calculate immune and stromal scores to evaluate
the degree of invasion of non-tumor cells and tumor purity,
and to compare differences between high- and low-risk groups
(Bindea et al., 2013).

CIBERSORT Algorithm
CIBERSORT, a deconvolution algorithm, evaluates the gene
composition of each immune cell by calculating the expression
level of each gene in each immune cell. In other words,
the adjusted expression profiles of complex tissues were used
to predict the proportion of 22 tumor immune infiltrating
cell (TIICs) types (Newman et al., 2015). The r package of

5https://david.ncifcrf.gov/
6https://CRAN.R-project.org/package=caret
7https://CRAN.R-project.org/package=glmnet

CIBERSORT was used to calculate each the proportion of TIIC
types in each sample, and non-conforming samples were filtered
out when the P-value was <0.05. Using the filtered data, the types
of TIIL cells were compared in the high- and low-risk groups.

Construction and Assessment of the
Nomogram
To apply the model to the clinic, we integrated a series of
indicators to construct a nomogram. We used univariate Cox
regression to analyze a series of indicators (age, sex, IDH
mutation status, ATRX mutation status, 1p/19q co-deletion
status, promoter methylation status of MGMT, radiation therapy
history, and glioma subtype) to screen for prognostic factors
associated with the overall survival (OS) of patients with glioma,
and then multivariate Cox regression was performed to screen
for independent prognostic factors. Finally, a nomogram was
constructed to predict the 1-, 3-, and 5-year OS rates of
glioma patients using the rms package8. We constructed receiver
operating characteristic (ROC) curves to assess the 1-, 3-, and
5-year prediction performance of the nomogram.

Immunohistochemistry
Glioma paraffin-embedded tissues were collected from the
Affiliated Cancer Hospital of Guangzhou Medical University
(LGG, n = 16; high-grade gliomas, n = 17). Immunohistochemical
staining of the target proteins was performed on paraffin-
embedded tissues using an anti-SPON2 antibody (Proteintech,
#20513-1-AP), anti-IFI44 antibody (Proteintech, #7233-1-
AP), anti-CD68 antibody (Abcam, #ab125212), anti-CD206
antibody (CST, #91992S). Then, the slices were stained with
diaminobenzidine (DAB) and counterstained with hematoxylin.
The scoring of tumor cells was as follows: negative (0), yellowish
(1–4), light brown (5–8), and dark brown (9–12). The differences
in expression of four genes in low-grade and high-grade gliomas
were compared by unpaired Student’s t-test, and their association
was evaluated by Pearson’s correlation analysis. This study was
approved by the Ethics Committee of the Affiliated Cancer
Hospital of Guangzhou Medical University. Informed consent
was obtained from each patient.

Statistical Analysis
All statistical analyses were carried out using R software. The
Chi-square test was used to analyze the association between
the epigenetic signature and common clinical features. The
prediction accuracy of the signature was verified by Kaplan–
Meier (K-M) analysis and ROC curve analysis. P < 0.05 was
considered statistically significant. The area under the curve
(AUC) value was used as the evaluation standard of accuracy.

RESULTS

Data Collection and Difference Analysis
A total of 689 glioma samples, consisting of 534 LGG and 155
GBM samples, with information on 485,577 DNA methylation

8https://CRAN.R-project.org/package=rms
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FIGURE 1 | Workflow of study design. Abbreviations: TCGA, The Cancer Genome Atlas; EI, epigenetically-induced genes; ES, epigenetically suppressed genes.

sites was obtained from TCGA. Because DNA methylation
in promoter regions significantly affects gene expression, we
analyzed the TSS200 and TSS1500 sites located in transcription
start sites, and as a result, 145,907 methylation sites were
filtered for subsequent study. As shown in the workflow diagram
(Figure 1), compared with the LGG samples, 20,220 differential
DNA methylation sites were screened from GBM samples (7087
upregulated DNA methylation sites and 13,134 downregulated
DNA methylation sites). In addition, we analyzed differentially
expressed genes in glioma patients, including 529 LGG samples
and 173 GBM samples. A total of 4,134 different expression genes
were obtained between LGG samples and GBM samples based
on above screening criteria (2,222 upregulated genes and 1,912
downregulated genes).

Identification of Epigenetic Genes Using
Correlation Analysis
The degree of gene expression is regulated by DNA methylation.
Hypermethylation inhibits the expression of downstream genes,
while hypomethylation promotes the expression of downstream
genes. Overall, 592 samples with both expression profile and
methylation data were selected for follow-up correlation analysis.

First, we considered the intersection of highly methylation
genes and downregulated genes, and the intersection of
low methylation genes and upregulated genes. Next, using
the standard of correlation <−0.3 and FDR < 0.01, a
group of 407 epigenetic genes was identified, including 319
epigenetically-induced genes (low promoter methylation with
high gene expression) and 88 epigenetically-suppressed genes
(high promoter methylation with low gene expression).

GO and Pathway Enrichment Analysis of
Epigenetic Genes
To further explore the function of the screened epigenetic
genes, the online software DAVID was used for GO analysis
of epigenetic genes. GO analysis results classified epigenetic
genes functions into three functional groups: biological processes,
cellular components, and molecular function. We focused on
the biological processes of epigenetically-regulated genes. The
results showed that epigenetically-induced genes were enriched
in ‘positive regulation of I-kappaB kinase/NF-kappaB signaling’,
‘regulation of apoptotic process’, ‘innate immune response’,
and ‘inflammatory response’ (Figure 2A), while epigenetically
suppressed genes were enriched in ‘peripheral nervous system
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FIGURE 2 | GO and pathway enrichment analysis of epigenetic genes. (A) biological process of epigenetically induced genes. (B) Biological processes of
epigenetically suppressed genes. (C) KEGG pathway analysis of epigenetic genes.

development’, ‘central nervous system development’, and ‘positive
regulation of neuron apoptotic process’ (Figure 2B). KEGG
pathway analysis defined the most significantly enriched
pathways of the epigenetically-regulated genes, were found to be
enriched in ‘TNF signaling pathway’, ‘Proteoglycans in cancer,’
and ‘Pathways in cancer’ (Figure 2C).

Establishment of the Epigenetic
Signature and Validation
In total, 679 glioma samples with clinical follow-up information
were randomly distributed to a training data set (n = 340) and
a validation data set (n = 339). Clinical information including
age, sex, IDH and ATRX mutation status, 1p/19q status, and
treatment conditions are summarized in Supplementary Table 1.
Statistical methods were used to build a risk prognosis signature
in the training set. DNA methylation sites were identified by
univariate Cox analysis, and a total of 629 methylation sites were
obtained (FDR <0.01). Next, the selected DNA methylation sites
were analyzed by LASSO analysis, and 18 key DNA methylation
sites were found (Supplementary Figures 1A,B). Finally, eight
DNA methylation sites were screened by multivariate Cox
regression, stepwise regression, and screening, which can be used
to construct an optimal prognosis signature. Information relative
to the eight methylation sites is shown in Table 1 and Figure 3A.

The genes corresponding to the eight DNA methylation sites
were spondin 2 (SPON2), non-SMC condensin I complex subunit
G (NCAPG), interferon induced protein 44 (IFI44), S100 calcium
binding protein A2 (S100A2), collagen type XXII alpha 1 chain

(COL22A1), CD200 receptor 1 (CD200R1), interferon gamma
receptor 2 (IFNGR2), and derlin 3 (DERL3). The degree of
DNA methylation of eight methylation sites and corresponding
gene expression in high- and low-risk groups are shown in
Figures 3B-I. Risk score =−1.39897577× β value of cg01784327
– 2.456105464 × β value of cg02810967 – 1.334605549 × β

value of cg07107453 – 1.525164679 × β value of cg13997435
−1.174403511 × β value of cg16407323 – 2.348936398 × β

value of cg17638468 −1.200080898 × β value of cg24865779 −
1.071625831× β value of cg25940946. The eight identified CpGs
were all positive prognostic factors for gliomas. The distributions
of the risk score, survival status, and β values of DNA methylation
sites of glioma patients in the training data set and validation
data set are shown in Figures 4A,B. K-M analysis showed that
there was a significant correlation between the risk score and OS
(p < 0.001), the AUC was 0.918 (Figure 4C).

In the validation data set, the survival time of high-
risk gliomas patient was significantly reduced, with an AUC
of 0.874 (Figure 4D). The percentage of high- and low-
risk gliomas in different subtypes from TCGA database is
shown in Supplementary Table 2 (GBM: Classical, G-CIMP,
Mesenchymal, Neural, Proneural; LGG: IDH status, ATRX status,
1p/19q status). In the LGG (GSE104293) and GBM (GSE48462)
datasets, the OS of the high-risk group was worse, and the AUC
values were 0.948 and 0.851, respectively (Figures 4E,F). In
addition, we also analyzed the predictive ability of our epigenetic
signature across different statuses of IDH mutation, 1p/19q co-
deletion, and ATRX and MGMT methylation states. K-M analysis
and ROC curve results showed that the survival rates of high-risk
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TABLE 1 | The 8 prognosis-associated DNA methylation sites to construct the epigenetic signature.

Markers Ref Gene Location UCSC RefGene Group Coefficients HR HR.95L HR.95H P value

cg01784327 SPON2 Chromosome 4 TSS200 −1.39898 0.24685 0.076772 0.79371 0.019

cg02810967 NCAPG Chromosome 4 TSS1500 −2.45611 0.085768 0.027991 0.26281 < 0.001

cg07107453 IFI44 Chromosome 1 TSS1500 −1.33461 0.263262 0.083798 0.82707 0.022

cg13997435 S100A2 Chromosome 1 TSS200 −1.52516 0.217585 0.052019 0.91012 0.037

cg16407323 COL22A1 Chromosome 8 TSS1500 −1.1744 0.309003 0.096242 0.99211 0.048

cg17638468 CD200R1 Chromosome 3 TSS200 −2.34894 0.095471 0.030917 0.29481 < 0.001

cg24865779 IFNGR2 Chromosome 21 TSS200 −1.20008 0.30117 0.091688 0.98926 0.048

cg25940946 DERL3 Chromosome 22 TSS200 −1.07163 0.342451 0.132182 0.88721 0.027

FIGURE 3 | Identification of key prognostic DNA methylation sites. (A) The forest plot of the hazard ratio of eight DNA methylation sites. DNA methylation degree of
eight methylation sites and corresponding gene expression in low-grade glioma and GBM, and the correlation between DNA methylation degree and corresponding
gene expression: (B) cg01784327 and SPON2, (C) cg02810967 and NCAPG, (D) cg07107453 and IFI44 (E) cg13997435 and S100A2, (F) cg16407323 and
COL22A1, (G) cg17638468 and CD200R1, (H) cg24865779 and IFNGR2, (I) cg25940946 and DERL3. Abbreviations: ns, P > 0.05, *P < 0.05, ***P < 0.001,
****P < 0.0001.
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FIGURE 4 | Distribution of the risk score, survival status, and β values of methylation sites in the training set (A) and testing set (B). K-M survival curves along with
the log-rank test and ROC analysis to evaluate performance of this risk score formula in training set (C), testing set (D), GSE104293 (E), and GSE48462 (F).
Abbreviations: K-M, Kaplan-Meier; ROC, receiver operating characteristic; AUC, area under the curve.

glioma patients were all significantly reduced, which indicated
that the model had good independent prognostic ability and
reliability (Supplementary Figures 2A-D). The above results
indicated that our epigenetic signature has good sensitivity and
specificity in predicting the prognosis of glioma patients.

Association of the Epigenetic Signature
With Clinical and Molecular Features in
Gliomas
The distribution of clinical and molecular features in high- and
low-risk groups and the results of chi-square test are shown in
Supplementary Table 3. The heatmap shows the distribution
of clinical and molecular features in high- and low-risk groups
(Figure 5A). The results showed that except for sex, there
were significant differences in age, glioma type, IDH mutation

status, ATRX mutation status, 1p/19q status, MGMT promoter
methylation status, and survival status between the high- and
low-risk groups. Samples with low risk factors (MGMT promoter
methylated, mutant-type IDH, mutant-type ATRX, and 1p/19q
co-deletion) had lower risk scores.

Comparison of the Epigenetic Signature
With Other Known Prognostic
Biomarkers
With the development of genetics and molecular biology, many
molecular biomarkers have been developed for gliomas, such as
IDH mutation, ATRX mutation, MGMT methylation status, and
1p/19q status, but they have limitations (Ludwig and Kornblum,
2017). In recent years, numerous prognostic signatures have
been developed based on multiple-level molecular data.
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FIGURE 5 | Clinical significance of the epigenetic signature. (A) Heatmap view of the methylation degree of eight DNA methylation sites with genomic and clinical
characteristics and Chi-square test results. (ns, P > 0.05, ***P < 0.001). (B) ROC curves showing the sensitivity and specificity of the epigenetic signature and other
known biomarkers in predicting the overall survival of glioma patients. (C) Development of a nomogram for predicting probabilities of patients with 1-, 3-, and 5-year
overall survival. (D) ROC curve based on the nomogram for 1-, 3-, and 5-year overall survival probability. Abbreviations: K-M, Kaplan-Meier; ROC, receiver operating
characteristic; AUC, area under the curve.

Zeng et al. (2019) constructed a prognostic model for LGG using
DNA damage repair-related genes. Their prognostic model
was composed of six genes defined using a weighted gene
co-expression network analysis and COX regression analysis
(Zhao et al., 2019). In addition to using DNA methylation sites,
lncRNAs were also used to construct prognostic models (Yin
et al., 2018; Li et al., 2019). Although previous studies have also
used DNA methylation sites to build a prognostic risk model,
there was no integrated analysis of DNA methylation and gene
expression, or use of methylation sites of epigenetic genes to
construct a signature. The ROC curve analysis showed that
our signature consisting of eight DNA methylation sites had
the highest accuracy and was more accurate than the signature
composed of the eight corresponding genes alone (Figure 5B).

Establishment of a Nomogram for the
Prognosis of Patients With Glioma
Age, sex, IDH mutation status, ATRX mutation status, 1p/19q co-
deletion status, promoter methylation status of MGMT, radiation
therapy history, gliomas type, and risk score were significantly

related to OS in the TCGA cohort based on the results from
the univariate analysis. Through multivariate analysis of the
above factors, age, sex, 1p/19q status, glioma type, and the
risk score remained independent and stable prognostic factors
(p < 0.05) in the cohort (Table 2). A prognostic nomogram
based on the independent factors (age, sex, 1p/19q status, gliomas
type, and risk score) was constructed (Figure 5C). ROC analysis
was performed to evaluate the performance of the nomogram
in predicting the prognosis of patients in 1-, 3- and 5-years
(Figure 5D).

Comparison of the Results of the GSEA
Analysis Between High- and Low-Risk
Groups
We used GSEA analysis to compare the KEGG pathways involved
in high- and low-risk groups, the results showed that mismatch
repair, focal adhesion, leukocyte transendothelial migration,
apoptosis, pathways in cancer, and the p53 signaling pathway
were significantly enriched in the high-risk group (Figure 6A).
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TABLE 2 | The univariable and multivariable Cox regression analysis of the 8-DNA methylation signature in glioma patients.

Univariate analysis Multivariate analysis

Variables HR 95% CI of HR P value HR 95% CI of HR P value

Age

<45 1(Reference)

45-59 1.9078 1.2691-2.8681 0.001899 1.8819 1.2683-2.7923 0.001687

≥60 3.4931 2.2917-5.3243 6.02e-09 3.5307 2.3423-5.3219 1.69e-09

Gender

Female 1(Reference)

Male 1.6943 1.2440-2.3076 0.000823 1.7647 1.3119-2.3739 0.000174

Type

LGG 1(Reference)

GBM 2.4083 1.6645-3.4847 3.12e-06 2.6290 1.8475-3.7411 7.85e-08

Radiation therapy

NO 1(Reference)

YES 1.1441 0.7716-1.6964 0.502964

IDH status

Wild 1(Reference)

Mutant 0.7883 0.4617-1.3459 0.383487

ATRX status

Wild 1(Reference)

Mutant 1.1234 0.7305-1.7274 0.596238

the methylation status of MGMT promoter

unmethylated 1(Reference)

methylated 0.7807 0.5703-1.0687 0.122225

1p/19q status

intact 1(Reference) 1(Reference)

Co-deletion 0.5915 0.4339-0.8062 0.000891 0.5362 0.4023-0.7148 2.14e-05

Risk Score

Low 1(Reference) 1(Reference)

High 3.2527 1.9617-5.3932 4.84e-06 4.0223 2.7383-5.9084 1.30e-12

Associations Between the Epigenetic
Signature and Immune-Checkpoint
Blockade Immunotherapy-Related
Signature
To study the potential role of the epigenetic signature in immune-
checkpoint blockade (ICB) immunotherapy, correlation analysis
was carried out with these known immunotherapy-related
signatures. The results showed that the epigenetic signature
was positively correlated with expression of PD-1, PD-L1, PD-
L2, CTLA-4, and TMB (Figure 6B). In addition, we also
analyzed the correlation between the eight methylation sites
and immunotherapy-related signatures, as well as the correlation
between the eight genes and immunotherapy-related signatures,
as shown in Supplementary Figures 3A,B. In summary,
although our eight-DNA methylation prognostic signature was
constructed to accurately predict the prognosis of gliomas
patients, it may also play a potential role in defining the
application of ICB immunotherapy for glioma patients.

Epigenetic Signature Was Associated
With the Tumor Microenvironment
The immune score, stromal score, and ESTIMATE score in the
high-risk group were higher than those in the low-risk group,

while the tumor purity in the high-risk group was lower than
that in the low-risk group (Figure 6C). K-M analysis showed
that a poorer prognosis was associated with higher immune
scores, stromal scores, ESTIMATE scores, and lower tumor
purity (Figure 6D). The Immune, stromal, and ESTIMATE
scores were positively correlated with the risk score, while tumor
purity was negatively correlated with risk score (| correlation|
> 0.20, P < 0.05), as shown in Figure 6E. In addition, we
analyzed the association between the eight methylation sites, their
corresponding genes, and the immune, stromal, and ESTIMATE
scores, and tumor purity (Supplementary Figures 4A,B).

Relationship Between the Epigenetic
Signature and the Proportion of Immune
Cell Infiltration
After samples with P < 0.05 were excluded, the remaining
216 samples were subjected to CIBERSORT analysis, including
192 LGG samples and 24 GBM samples. Twenty-two subtypes
of immune cells were obtained (Figure 7A). A t-test was
used to compare differences between the 22 kinds between
the immune cell types in the high-risk and low-risk groups,
as shown in Figure 7B. The proportion of CD8+ T cells,
CD4+ memory activated T cells, gamma delta T cells,
M0 macrophages, M1 macrophages, M2 macrophages, and
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FIGURE 6 | The relationship between the epigenetic signature and immune cell infiltration. (A) GSEA showing the differences between high- and low-risk groups.
(B) Correlation analysis between the risk score and immune checkpoint expression. (C) Distribution of stromal scores, immune score, ESTIMATE score, and tumor
purity among high- and low-risk glioma patients. (D) Glioma patients were divided into two groups based on Stromal scores, immune score, ESTIMATE score, and
tumor purity. K-M survival curve show overall survival of the low score group is longer than high score group, as indicated by the log-rank test. (E) Correlation analysis
between the risk score and stromal scores, immune score, ESTIMATE score, and tumor purity. Abbreviations: K-M, Kaplan-Meier; ns, P > 0.05, ****P < 0.0001.

neutrophils were higher in high-risk group, while plasma
cells, activated NK cells, monocytes, activated mast cells, and
eosinophils were higher in the low-risk group (P < 0.05).
Pearson’s correlation analysis was used to analyze the correlation
between the risk score and the different immune cell proportions.
CD8+ T cells, CD4+ memory activated T cells, gamma
delta T cells, M0 macrophages, M1 macrophages, and M2
macrophages were positively correlated with risk score, while
activated NK cells, monocytes, activated mast cells were
negatively correlated with risk score (| correlation| > 0.20,
P < 0.05), as shown in Figure 7C. The results of the K-M
analysis showed that glioma patients with a low proportion of
activated NK cells, activated Mast cells and high percentage
of M0 macrophages and M1 macrophages had a shorter OS
(Figure 7D). Finally, we analyzed the correlation between
the methylation degree of eight DNA methylation sites and

the proportion 22 immune cell subtypes, and the correlation
between the expression of the eight corresponding genes and
the proportion of the immune cell subtypes (Supplementary
Figures 5A,B).

Immunostaining of SPON2, IFI44, CD68,
and CD206 Expression in Glioma Tissue
Samples
We performed immunohistochemical staining of SPON2, IFI44,
CD68, and CD206 in 33 cases of gliomas. The immunostaining
score evaluated by two professional pathologists showed
that SPON2, IFI44, CD68, and CD206 were significantly
overexpressed in high-grade gliomas (Figure 7E,G). Notably,
the immunostaining score of SPON2 was positively correlated
with the macrophage marker CD68, but not with the M2
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FIGURE 7 | Analysis of the relationship between risk score and immune cell subtypes. (A) Proportion of immune cells in each glioma sample are indicated with
different colors, and lengths of the bars in the bar chart indicate the levels of the immune cell proportions. (B) Comparison of the proportion of 22 immune cell types
in high and low risk groups. (C) Correlation risk score and the proportion of 22 immune cell types. (D) Survival curves of four immune cell types significantly related to
the prognosis of patients with glioma. (E) Comparison of the scoring of SPON2, IFI44, CD68 and CD206 expression in low-and high-grade gliomas tissues.
(F) Correlation analysis between the scoring of SPON2, IFI44, CD68 and CD206 expression. (G) Representative immunohistochemistry of low- and high-grade
gliomas tissues with the scoring of SPON2, IFI44, CD68 and CD206 expression. Abbreviations: ns, P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

macrophage marker CD206. The immunostaining score of IFI44
was positively correlated with CD68 and CD206 expression
(Figure 7F). These results suggested that SPON2 may be involved
in the recruitment of non-M2 macrophages, while IFI44 may
participate in the recruitment of M2 macrophages.

DISCUSSION

Glioma is the most common malignant tumor of the central
nervous system, accounting for about 80% of diagnosed cases.
Despite the implementation of surgical treatment and adjuvant
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therapy, the prognosis of patients with glioma is still poor,
resulting difficulty to cure and death (Hemmati et al., 2003).
Investigating the differences between GBM and LGG can
improve the understanding of the glioma development and the
development of treatment strategies of brain tumors (Ceccarelli
et al., 2016; Binder et al., 2019). Risk classification of gliomas
patients is helpful to guide the choice of treatment, while
molecular markers have the advantages of providing prognostic
information and exploring the mechanism of tumor progression.
We integrated multiple DNA methylation sites to construct a
more sensitive and specific signature. Using the methylation sites
of the screened epigenetic difference genes, a prognostic signature
based on eight methylation sites was developed by applying a
series of statistical approaches. K-M analysis showed that the
OS of high- and low-risk groups could be easily stratified, and
ROC analysis verified that the signature had accurate predictive
ability. The clinical molecular characteristics and risk scores were
analyzed using Cox regression analysis. The prognosis of GBM,
older age, male sex, absence of 1p/19q co-deletion, and a high-risk
score for gliomas showed worse prognosis, and all these features
were independent prognostic factors (HR > 1 and P < 0. 05). We
used the above factors to construct a nomogram able to predict
the 1-, 3-, and 5-year prognosis of patients with glioma.

There are more immunosuppressive factors than pro-
inflammatory factors expressed in gliomas, suggesting that the
microenvironment of gliomas is mainly immunosuppressive
(Sokratous et al., 2017). Monocytes from the peripheral blood
infiltrate to form microglia-like cells, which participate in
the renewal of microglia. Under different signal stimulation
conditions, microglia/macrophages M0 in gliomas can develop
into M1 microglia/macrophages that promote inflammation
and inhibit tumor growth, or M2 microglia/macrophages that
inhibit inflammatory response and promote tumor growth,
with mainly the infiltration of the latter and namely tumor
associated macrophages (TAM) (Durafourt et al., 2012; Shapouri-
Moghaddam et al., 2018). Although the tumor immune
microenvironment plays an important role in tumor initiation
and development, there is no effective signature available that
evaluates the immune infiltration of gliomas. In addition, the
epigenetic signature has shown limited value in the exploration or
evaluation of tumor immune subtypes, especially in the immune
infiltration (Aichmüller et al., 2020; Wu et al., 2020).

We integrated publicly available gene expression and DNA
methylation data to define epigenetic regulatory mechanisms
of some genes essential for immune infiltration. Further, this
study has emphasized the potential relationship between CpG
methylation markers and indicators of immune infiltration in
gliomas. The Infinium Human Methylation450 BeadChip can
detected more than 450,000 CpG sites, which may serve as
a more suitable alternative marker of immune infiltration. To
investigate the correlation between our signature and immune
infiltration, we used the following approach. First, the GSEA
findings revealed that leukocyte transendothelial migration was
significantly enriched in the high-risk group. Second, the
ESTIMATE algorithm was used to evaluate the degree of immune
and stromal cell infiltration and tumor purity of each glioma
patient. Pearson’s correlation analysis showed that the risk score

was positively correlated with the degree of immune cell and
stromal cell infiltration, and negatively correlated with tumor
purity. Third, the proportion of 22 immune cells subtypes in each
glioma patient was evaluated using the CIBERSORT algorithm.
Pearson correlation analysis revealed that the risk score was
positively correlated with the infiltration of CD8+ T cells,
gamma delta T cells, M0 macrophages, M1 macrophages, and M2
macrophages and was negatively correlated with the proportion
of activated NK cells, monocytes, and activated mast cells. The
high proportion of M0 macrophages and M2 macrophages was
negatively correlated with patient prognosis, whereas a high
proportion of NK cells and activated mast cells was positively
correlated with prognosis.

NK cells have been reported to exert their cytotoxicity by
secreting tumor necrosis factor (TNF) and interferon (IFN) to
kill susceptible target cells (Moretta and Moretta, 2004; Raulet,
2004). The possible mechanism of mast cells inhibiting tumor
are related to the immune response, but the specific roles
of their intracellular bioactive cytokines in tumorigenesis and
progression is still difficult to determine. Many experimental
results have suggested that mast cells can secrete a variety of
cytokines, such as TNF-α, interleukin (IL)-3, IL-4, IL-6, and IL-
8 (Gordon et al., 1990; Burd et al., 1995). According to our
analysis, it can be inferred that NK cells and mast cells can clear
tumor tissue through immune activity. In brief, the epigenetic
signature can stratify glioma patients into different immune
infiltration subgroups ("low immune infiltration type" and "high
immune infiltration type"). Therefore, this novel signature may
reflect the immune microenvironment and serves as a prognostic
marker in gliomas. We also found that the type of immune
infiltration of gliomas was related to the status of IDH mutation
or 1p/19q co-deletion. Gliomas with mutated IDH or 1p/19q co-
deletion presented a lower degree of immune infiltration and
better prognosis.

Amankulor et al. (2017) found that IDH mutation
significantly reduced the infiltration of immune cells such
as macrophages, microglia, monocytes, and neutrophils,
resulting in the suppression of the tumor-associated immune
system. However, it is not clear whether the effect of 1p/19q co-
deletion status on prognosis is mediated by immune regulation,
which is worthy of further study. In addition, we verified
the association of SPON2 and IFI44 genes with macrophage
recruitment and performed immunohistochemical staining
on glioma samples for SPON2, IFI44, the macrophage marker
CD68, and the M2 macrophage marker CD206. SPON2, IFI44,
CD68, and CD206 were highly expressed in high-grade gliomas,
and SPON2 was positively correlated with CD68 rather than
CD206, whereas IFI44 was positively correlated with both
CD68 and CD206 expression. Recent studies have found that
SPON2, a member of the Mindin F-pondin family of conserved
secretory ECM proteins, plays an important role in immunity
by participating in the initiation of the immune response, and
acts as an integrin ligand for inflammatory cell recruitment
and T cell priming (Jia et al., 2005; Li et al., 2006). Combined
with our experimental results, SPON2 may be involved in the
recruitment of non-M2 macrophages in glioma. IFI44 gene,
whose expression is induced by alpha/beta-IFN, can block
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extracellular signal-regulated kinase signals, and causes cell cycle
arrest by binding to intracellular GTP (Kitamura et al., 1994;
Hallen et al., 2007). Further, IFI44, as an immune-related gene,
is involved in immune diseases, but the studies in tumors is
insufficient (DeDiego et al., 2019). Our study showed that IFI44
was positively correlated with macrophage infiltration in gliomas.
The potential role of IFI44 in tumor formation and development
needs further experimental verification.

Previous studies have shown that CD200R1 is also an
immune-related gene that encodes the OX-2 membrane
glycoprotein receptor, which is mainly distributed on the
surface of myeloid cells and T lymphocytes (Gorczynski,
2005). CD200 interacts with its receptor CD200R1 to
trigger immunosuppressive signals, resulting in macrophage
suppression, regulatory T cell induction, cytokine profile
switching from Th1 to Th2, and finally the inhibition tumor-
specific T-cell immunity (Gorczynski et al., 1999; Vaine
and Soberman, 2014). IFN-γ binds to the IFN-γ receptor
(heterodimer composed of IFNGR1 and IFNGR2) and activates
a downstream signal pathway that can inhibit tumorigenesis
and immunomodulatory effects (Parker et al., 2016; Lin et al.,
2017). IFN-γ induces the polarization of M1 macrophages,
but not M2 macrophages (Duluc et al., 2009). However, it
has not been reported whether the other four genes, NCAPG,
S100A2, DERL3, and COL22A1, exert any biological role in
the interaction between tumor and immune cells. In the future,
we will perform additional experiments to verify the biological
function in gliomas of the eight genes identified in this study,
which may provide additional treatment targets and improve
patient management.

Finally, we studied the monitoring role of DNA methylation
biomarkers in ICB immunotherapy. The epigenetic signature was
also highly correlated with the expression of CTLA4, PD-L1, and
PD-1, suggesting that it may be a potential indicator of cancer
immune infiltration and may predict the patients’ response to
immunotherapy drugs. An individualized treatment regimen can
be realized through the stratification of patients, which will
significantly improve the effects of immunotherapy and prolong
the survival of patients.

In conclusion, this study highlighted the potential role of
DNA methylation in assessing risk prognosis and monitoring
immune infiltration. Our research innovatively used an approach
based on an epigenetic signature to classify gliomas into two
categories: the “low immune infiltration type” and “high immune
infiltration type”. In addition, the eight genes in the signature may
be involved in glioma progression and may have a significant
potential to improve risk stratification, and regulate immune

cell infiltration, and ICB immunotherapy response. If further
verified, the epigenetic signature may improve the stratification
and immunotherapy options of cancer patients in clinical trials.
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