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Gene expression and splicing QTLs are a powerful tool to link 
disease-associated genetic variants to putative target genes. 
However, despite efforts by large-scale consortia such as 

GTEx1 and eQTLGen2 to provide comprehensive eQTL annotations 
for a large number of human tissues, target genes and relevant bio-
logical contexts for most GWAS signals have not been found yet. 
Systematic co-localization efforts based on GTEx data have iden-
tified putative target genes for 47% of the GWAS loci3. Still, these 
genetic effects mediate only 11% of disease heritability4, suggesting 
that many regulatory effects cannot be detected in bulk tissues at a 
steady state5. In contrast, profiling specialized disease-relevant cell 
types, such as induced pluripotent stem cells6, peripheral immune 
cells7, microglia8,9 or dopaminergic neurons10, often identifies addi-
tional co-localizations that are missing in GTEx. Although several 
databases have been developed to collect eQTL summary statistics 
from individual studies11–17, these efforts have relied on the hetero-
geneous set of files provided by the original authors. These results 
often contain only a small subset of significant associations or lack 
essential details such as effect alleles, standard errors or sample 
sizes, which limit the downstream co-localization and Mendelian 
randomization analyses that can be performed18.

Moreover, there is considerable technical variation between 
studies in sample collection, RNA-sequencing (RNA-seq) proto-
cols, genotyping and data analysis. Thus, it is currently unclear how 
strongly eQTL effect sizes are influenced by technical differences 
in sample collection, how many eQTLs are broadly shared, and 
what fraction is specific to a given cell or tissue type and could thus 
give rise to new disease co-localizations. Although analyses based 
on GTEx data have generally estimated high levels of eQTL shar-
ing between most bulk tissues1,19, smaller studies have often esti-
mated much lower levels of sharing between purified cell types20,21. 
However, these analyses are sensitive to how sharing is defined, 

which genes and variants are included in the analysis, and which 
analytical approaches are used19,22. Thus, it is impossible to directly 
compare the estimates of eQTL sharing between studies without 
reanalyzing the individual-level data with uniform methods.

Recent methodological advances have made it feasible to fine 
map genetic associations to small credible sets of putative causal 
variants and distinguish between multiple independent genetic sig-
nals in the region23,24. These fine-mapping results can be directly 
used in co-localization analysis25. They can also help avoid the many 
false-negative co-localizations missed by approaches that assume a 
single causal variant in the region of interest18. However, reliable 
fine mapping requires precise information about in-sample linkage 
disequilibrium (LD) between genetic variants which is usually not 
available26,27.

To overcome these limitations, we have uniformly re-processed 
(Fig.  1a) individual-level eQTL data from 112 datasets across 21 
independent studies (see Fig. 2). We found that eQTL effect sizes 
from matched cell types or tissues were generally highly reproduc-
ible between studies. Using both eQTL sharing and matrix factor-
ization approaches on fine-mapped eQTL signals, we found that 
differences in eQTL effect sizes between datasets are dominated 
by biological differences between cell types and tissues rather than 
technical differences in sample processing. Uniformly processed 
summary statistics provided us with a unique opportunity to char-
acterize eQTL diversity across 69 distinct cell types and tissues. 
Consistent with previous analyses by the GTEx project, we found 
high levels of cis-eQTL sharing between most bulk tissues. In con-
trast, we found that a much smaller proportion of eQTLs is shared 
between purified cell types and bulk tissues, and between different 
cell types. This eQTL diversity also manifests itself at the level of dis-
ease co-localization, where we detect many novel co-localizations 
that are missed when analyzing GTEx data alone. Finally, in  
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addition to gene expression QTLs, we identified QTLs at the levels 
of exon expression, transcript usage and splicing, which were often 
absent from the original studies. Our uniformly processed QTL 
summary statistics and fine-mapping results are available from the 
eQTL Catalogue FTP server and REST API, and they can also be 
explored using the Ensembl Genome Browser28 (Fig. 1b).

Results
Studies, datasets and samples included in the eQTL Catalogue. 
We downloaded raw gene expression and genotype data from 16 
RNA-seq and 5 microarray studies from various repositories. The 
RNA-seq data consisted of 23,839 samples spanning 95 datasets 
(defined as distinct cell types, tissues or contexts in which eQTL 
analysis was performed separately). These 95 datasets originated 
from 66 distinct cell types and tissues and 10 stimulated conditions 
(Fig. 2a). Similarly, the 4,631 microarray samples spanned 17 data-
sets from 8 distinct cell types and tissues, and 3 stimulated condi-
tions (Fig. 2b). Although most cell types and tissues were profiled 
only by 2 of the largest studies (GTEx1 and Schmiedel_2018 (ref. 21);  
Fig.  2a), 13 cell types or tissues were captured by multiple stud-
ies, allowing us to characterize both technical and biological vari-
ability between datasets and studies. The total number of unique 
donors across the studies was 5,714, of which 89% had predomi-
nantly European ancestries and only 9% had African or African–
American ancestries, with other ancestries being rare (Fig. 2c and 
Supplementary Table 1). Thus, similar to most GWAS studies, pub-
lished eQTL studies also suffer from a lack of genetic diversity29.

To uniformly process a large number of eQTL studies, we 
designed a modular and robust data analysis workflow (Fig.  1a). 
First, we performed extensive quality control and imputed  

missing genotypes using the 1000 Genomes phase 3 reference 
panel30. For RNA-seq datasets, we performed QTL mapping for the 
four molecular traits described above (Fig. 1a and Extended Data 
Fig. 1). The QTL analysis was performed separately in each dataset 
(that is, separately for each cell type or tissue within each study). 
We found the largest number of QTLs at the level of gene expres-
sion, but for all molecular traits the number of significant associa-
tions scaled approximately linearly with the sample size (Fig. 2d and 
Supplementary Table  2). For microarray datasets, we performed 
the analysis only at the gene level but found the same linear trend 
(Fig.  2d and Supplementary Table  2). Our remaining analyses 
focused on the RNA-seq-based eQTL datasets because they covered 
a more comprehensive range of cell types and tissues, and accounted 
for most of the samples in the eQTL Catalogue.

Biological and technical variability between studies. First, we 
assessed whether the gene expression and eQTL signals were domi-
nated by technical differences between studies (Supplementary 
Tables 3 and 4) rather than true biological differences between cell 
types and tissues. We visualized median transcripts per million 
(TPM) gene expression estimates from each dataset using multidi-
mensional scaling (MDS). Reassuringly, we found that the datasets 
clustered predominantly by cell type or tissue of origin, rather than 
by studies or other technical factors (Fig. 3a). Notably, except for 
brain tissues, whole blood and testis, most other bulk tissues had 
relatively similar gene expression profiles (Fig.  3a). In contrast, 
datasets from purified cell types such as lymphoblastoid cell lines 
(LCLs), monocytes, neutrophils, induced pluripotent stem cells 
(iPSCs), and B and T lymphocytes had more distinct gene expres-
sion profiles (Fig. 3a).
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Fig. 1 | Overview of the eQTL Catalogue database. a, A high-level representation of the uniform data harmonization and eQTL mapping process. Extended 
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Next, we performed the same similarity analysis on eQTL effect 
sizes. To overcome the high uncertainty associated with effect size 
estimates, especially in datasets with small sample sizes, we used the 
recently developed multivariate adaptive shrinkage (Mash) model19. 
Mash improves eQTL effect size estimates by sharing information 
across datasets as well as individual eQTLs. We limited our analy-
sis to 62,837 fine-mapped eQTLs (see Methods) and defined two 
eQTLs to be shared between a pair of datasets if they had the same 
sign and their effect sizes did not differ more than twofold. We cal-
culated pairwise eQTL-sharing estimates for all 95 RNA-seq datas-
ets (including 49 tissues from GTEx) and projected those on to two 
dimensions using MDS. Consistent with previous reports by GTEx, 
we found that the eQTL similarity between datasets closely matched 
their gene expression similarity (Fig. 3a,b)1. This suggests that high 
gene expression similarity and a high degree of eQTL sharing both 
reflect similarity in the underlying regulatory state of cells.

Next, we focused on potential batch effects between studies. 
Reassuringly, we found that, if the same cell type or tissue was pro-
filed in multiple studies, then their eQTL effect sizes often showed a 
high degree of concordance (Fig. 3b and Extended Data Figs. 2 and 3).  
For example, LCLs from TwinsUK, GENCORD and GEUVADIS 
clustered together with LCLs from GTEx (Fig.  3b) and exhibited 
median sharing of ~80% (Fig. 3c and Extended Data Figs. 2 and 3).  
The same was also true for the brain (GTEx, ROSMAP and 
BrainSeq), whole blood (GTEx, TwinsUK and Lepik_2017), mus-
cle (GTEx and FUSION), skin (GTEx and TwinsUK) and adipose 
tissues (GTEx, TwinsUK and FUSION), which all had median 
within-tissue sharing of ~70% (Fig. 3c). We also observed broadly 
similar patterns of sharing among the QTLs detected with the other 
three quantification methods (Extended Data Fig. 4). To assess this 
formally, we focused on a subset of tissues profiled in at least two 
studies. We found that the average eQTL sharing for the same tis-
sue profiled in two different studies was significantly higher than 
for two different cell types or tissues profiled within the same study 
(Extended Data Fig. 5).

Finally, we focused on the patterns of sharing between differ-
ent cell types and tissues. We found that 46–80% (median 62%) of 
the eQTLs were shared between most pairs of bulk tissues (Fig. 3c). 
The exceptions to this pattern were the brain tissues and whole 
blood that formed separate clusters in the MDS analysis (Fig. 3b) 
and shared a median of 45% and 35% of the eQTLs with other tis-
sues, respectively (Fig. 3c). In contrast, purified immune cell types 
(LCLs, neutrophils, monocytes, macrophages and lymphocytes) 
formed distinct clusters on the MDS plot (Fig. 3b), and had much 
lower eQTL sharing with both whole blood and other bulk tissues 
(Fig. 3c). Thus, although our results reconfirm the generally high 
level of cis-eQTL sharing between bulk tissues, they also reveal a 
much greater cis-eQTL diversity between purified cell types and 
especially immune cells. Importantly, this diversity is missed when 
analyzing highly tissue-focused eQTL studies such as GTEx.

Identification of tissue-specific and shared latent factors. To 
better understand the eQTL-sharing patterns between cell types 
and tissues, we turned to a recently developed semi-non-negative 
sparse matrix factorization (sn-spMF) model that can directly iden-
tify latent factors from eQTL summary statistics31. When applied 
to the fine-mapped eQTL Catalogue summary statistics, sn-spMF 
detected 21 independent factors (Fig.  3d). The largest univer-
sal factor was broadly shared between all datasets and accounted 
for ~26.9% of the independent fine-mapped eQTLs (Extended 
Data Fig.  6). The remaining 20 factors captured cell-type- and 
tissue-specific effects (Fig. 3d and Extended Data Fig. 7). Overall, 
matrix factorization identified many of the same patterns detected 
in the pairwise eQTL-sharing analysis (Fig. 3b). For example, lym-
phocytes, LCLs, iPSCs, monocytes, macrophages, neutrophils and 
stimulated T cells, as well as brain and blood tissues all had their 

individual factors. Notably, these cell-type- and tissue-specific fac-
tors were shared across multiple studies (Fig. 3d).

Although most eQTLs were highly shared between bulk tis-
sues (Fig. 3b,c), our factor analysis still detected independent fac-
tors capturing eQTLs that were specific to muscle, skin, testis, 
thyroid, heart and adipose tissues from the FUSION32, GTEx1 and 
TwinsUK33 studies. Together with brain and blood, these tissues had 
larger sample sizes than other bulk tissues and purified cell types 
(Fig. 2a), allowing us to obtain more accurate eQTL effect size esti-
mates. Thus, we expect to detect additional tissue-specific factors as 
the sample sizes of the respective tissues increase31. Finally, only 2 of 
the 21 factors were specific to a single dataset (BLUEPRINT CD4+ 
T cells and ROSMAP brain samples), suggesting that, although 
batch effects between datasets exist, they are not a major factor con-
founding our analysis.

A major advantage of the matrix factorization is that it allows 
us to focus on a small number of biologically meaningful factors 
shared between one or more datasets rather than comparing the 
eQTL effect sizes in 95 individual datasets. This level of summa-
rization is going to be increasingly important as the number of 
datasets included in the eQTL Catalogue increases. For example, 
a cis-eQTL for RBMS1 had large effects in both BLUEPRINT and 
Schmiedel_2018 CD4+ T-cell datasets and smaller significant effects 
in multiple other T-cell subsets from Schmiedel et al.21 (Fig.  4a). 
Consequently, the two factors with the largest loadings for this 
eQTL were the BLUEPRINT CD4+ T-cell factor and the general 
lymphocyte factor (Fig.  4b). The RBMS1 eQTL also co-localized 
with a GWAS signal for lymphocyte count34 in BLUEPRINT and 
Schmiedel_2018 CD4+ T cells (posterior probability 4 (PP4) >0.98; 
Fig. 4c), illustrating how a lymphocyte-specific eQTL might contrib-
ute to the regulation of lymphocyte count in whole blood. Notably, 
we did not detect this co-localization in any of the 49 GTEx tissues.

Detection of additional co-localizations missed in GTEx. Our 
eQTL sharing analysis demonstrated that the eQTL Catalogue con-
tains many additional eQTLs not present in GTEx. To quantify how 
these additional eQTLs might improve the interpretation of com-
plex trait and disease associations, we performed co-localization 
between GWAS summary statistics for 14 traits and either the new 
eQTL Catalogue datasets or all GTEx tissues. To ensure that each 
independent GWAS locus was counted only once, we first parti-
tioned GWAS summary statistics into approximately independent 
LD blocks35. Overall, we detected at least one co-localizing eQTL 
(PP4 ≥ 0.8) for 4,528 independent loci across 14 traits, 925 (20.4%) 
of which were detected in only one of the eQTL Catalogue datas-
ets and not captured by GTEx (maximum PP4 < 0.8). The fraction 
of additional co-localizing loci varied from 14% for height to 29% 
for lupus (Extended Data Fig. 8), suggesting that a substantial frac-
tion of trait co-localizations might be missed if the analysis were 
restricted only to GTEx.

However, we often detected many additional co-localizations 
even in those eQTL Catalogue datasets that were already captured by 
GTEx (for example, blood, skin, muscle, adipose and brain tissues; 
Fig. 2a). These additional co-localizations could be due to threshold-
ing effects (just below or above the PP4 ≥ 0.8 threshold), increased 
sample sizes in the eQTL Catalogue, or biological and population 
differences between datasets or other technical factors. For example, 
we found that the number of additional co-localizations detected 
for height GWAS increased linearly with the eQTL sample size, 
with no particular dataset standing out (Fig.  5a). In contrast, for 
some trait and eQTL dataset pairs, we detected considerably more 
co-localizations than we would have expected at the given sample 
size. For example, we observed 18 additional co-localizations with 
lymphocyte count in BLUEPRINT CD4+ T cells (including the 
RBMS1 example in Fig. 4c), which was three times more than in any 
other dataset of comparable sample size (Fig. 5b).
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selected representative tissues (x axis) and all other cell types and tissues in the eQTL Catalogue. The individual points have been colored according to the 
major cell type and tissue groups from a. d, Matrix factorization of the eQTL effect sizes across all eQTL Catalogue datasets. The heatmap represents the 
loadings of 21 latent factors in each of the 86 naive datasets. Nine datasets from stimulated macrophages and monocytes have been excluded to improve 
legibility. The version of this heatmap with dataset labels is shown in Extended Data Fig. 7.
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To assess whether some eQTL datasets were particularly relevant 
for specific GWAS traits, we assigned each dataset a ‘novelty score’ 
by dividing the number of additional co-localizations detected in 
that dataset by its sample size. For each GWAS trait, we then asked 
whether the novelty scores were higher for datasets from cell types 
and tissues missing in GTEx compared with the datasets that were 
already well captured by GTEx. Although there was considerable 
overlap between the two distributions (Fig.  5c), we detected sev-
eral trait–dataset pairs where the number of new co-localizations 
observed was higher than expected for a given sample size. For 
example, we observed most additional co-localizations for mono-
cyte and lymphocyte count in the BLUEPRINT monocyte and 
CD4+ T-cell datasets, respectively (Fig. 5c). Similarly, we observed 
an excess of additional co-localization with multiple immune-
mediated diseases in several monocyte and T-cell datasets (Fig. 5c). 
These results suggest that many additional co-localizations detected 
in the eQTL Catalogue relative to GTEx cannot be explained by 
sampling or technical variation alone and are likely to reflect cell-
type-specific genetic effects.

A subset of co-localizations manifest at the transcript level. 
Multiple studies have demonstrated that some co-localizations 
between QTLs and complex traits manifest only at the level of 
RNA splicing and transcript usage36,37. To quantify this in the eQTL 
Catalogue, we performed co-localization analysis across the 14 
complex traits mentioned above and all QTLs detected with the 3 
transcript-level quantification methods (Extended Data Fig.  1). 

We found that 713/4,270 (16.7%) co-localizations in independent 
LD blocks were detected only using 1 of the 3 transcript-level traits 
and not by traditional eQTLs in any of the 95 RNA-seq datasets 
(Fig. 6a). However, this is likely to be underestimated because tran-
script and gene-level QTLs could be co-localizing with independent 
GWAS signals within the same LD block1. Furthermore, our gene 
expression quantification was based on the total read count, which 
can also capture larger splicing changes, especially as the number of 
datasets and their sample sizes increase.

To illustrate how splicing changes can sometimes manifest 
as standard eQTLs, we looked at the co-localization between 
low-density lipoprotein (LDL)-cholesterol and an exon expression 
QTL for HMGCR. The gene product of HMGCR is a known target 
for statins, and the link between exon 13 inclusion and circulating 
LDL-cholesterol levels has been reported previously37,38. Our analy-
sis detected co-localization (PP4 ≥ 0.8) between the expression of 
exon 13 of the HMGCR gene and LDL-cholesterol in 63/95 data-
sets. We saw the strongest association in the HipSci6 iPSC dataset, 
where we were able to fine map the exon QTL to a single causal 
variant (rs3846662, posterior probability = 1) (Fig.  6b). The same 
co-localization was also detected by transcript usage in 18/95 data-
sets and by txrevise in 29/95 datasets. Although the co-localization 
was also seen at the level of gene expression in the FUSION32 mus-
cle dataset (PP4 = 0.99; Extended Data Fig.  10), the 95% credible 
set contained a total of 46 variants. Furthermore, the standardized 
effect size of the fine-mapped variant on exon expression (Fig. 6c) 
was considerably larger than on gene expression (Fig.  6d) in all 
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datasets (Fig. 6c,d). Thus, even though some transcript-level QTLs 
can manifest as standard eQTLs in large datasets, having access 
to summary statistics from different quantification methods can 
inform on the identity and functional impact of the causal variant, 
as well as provide stronger genetic instruments for future Mendelian 
randomization applications.

Discussion
We believe that the main value of the eQTL Catalogue (https://
www.ebi.ac.uk/eqtl) lies in the uniformly processed gene-level and 
transcript-level QTL summary statistics and statistical fine-mapping 
results. We have thus sought to make the data as easy to use as pos-
sible. By mapping cell and tissue types to standard ontology terms, 
we make it easy to discover which studies contain the tissues and 
cell types of interest to the users. We have further re-imputed geno-
types using the 1000 Genomes phase 3 reference panel for all studies 
using genotyping microarrays, ensuring that the same set of genetic 
variants is present in most studies. We have used a consistent set of 
molecular trait identifiers (genes, exons, transcripts, events) across 
all datasets, ensuring that genetic effects can be directly compared 

across datasets. Finally, we have released credible sets from statis-
tical fine-mapping analysis, which can help to further character-
ize loci with multiple independent signals and pave the way for 
fine-mapping-based co-localization approaches25. We will progres-
sively expand the resource to all accessible human datasets.

The relationship between gene expression similarity and eQTL 
sharing has been noticed before. For example, two studies con-
ducted in stimulated monocytes and macrophages found that the 
number of differentially expressed genes between cell states cor-
relates with the number of state-specific eQTLs37,39. This correla-
tion raises an exciting prospect that, once a sufficient sample size 
has been reached in a given cell type or tissue, the discovery of new 
eQTL can be maximized by focusing on cell types and cell states with 
low gene-expression similarity to existing eQTL datasets. Of course, 
the definition of what is a sufficient sample size depends on how 
the eQTL datasets are being used. Although many cell-type- and 
tissue-specific cis-eQTLs can be detected with a sample size of a few 
hundred individuals, other applications such as expression-mediated 
heritability analysis4, Mendelian randomization18 and trans-eQTL 
analysis2 benefit from much larger sample sizes.
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As the number of eQTL studies and their sample sizes increase, it 
is becoming increasingly clear that eQTL analysis is not the silver bul-
let for identifying causal genes underlying GWAS associations that it 
was once hoped to be. A number of carefully conducted studies have 
demonstrated that eQTL co-localization analysis often identifies mul-
tiple candidate genes, many of which are unlikely to be truly causal40,41. 

Similarly, we found that, in our analysis, 56% of LD blocks co-localized 
with the expression of more than one gene. The two main reasons for 
this are: (1) multiple independent causal variants affecting the two 
traits that current co-localization methods fail to properly distinguish, 
and (2) truly pleiotropic variants that affect multiple neighboring 
genes. Although improved fine mapping and co-localization methods  
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can overcome the first limitation, true molecular pleiotropy will 
remain. For example, we found that 18.4% of confidently fine-mapped 
eQTLs (credible set size <30) were associated with the expression of 
two or more genes. Similarly, clustered regularly interspaced short 
palindromic repeats (CRISPR) perturbation experiments have shown 
that individual enhancers often regulate multiple neighboring genes42. 
A promising avenue to overcome this limitation are pleiotropy-robust 
multivariable Mendelian randomization approaches that jointly 
model the effects of multiple independent genetic variants across 
all neighboring genes to identify the most likely causal genes43,44, 
but generalizing these approaches across multiple tissues is still an 
open question. There is also an inherent trade-off between sensitiv-
ity and specificity. Limiting eQTL overlap analysis only to loci where 
the GWAS and eQTL signals are both fine mapped to a single causal 
variant is likely to yield high specificity25, but will exclude many other 
loci with more complex LD structure or traits that lack fine-mapping 
results altogether. Finally, as our RBMS1 example highlighted, even if 
eQTL analysis fails to pinpoint a single causal gene, it can sometimes 
still reveal the most relevant cell type or context for the disease.

A limitation of our automated RNA-seq processing and eQTL 
mapping workflow is that we have not tailored our analyses to spe-
cific studies. For example, although the TwinsUK33 and HipSci6 
studies collected samples from multiple related individuals, we used 
only a subset of samples (TwinsUK: 1,364 of 2,505 total; HipSci: 322 
of 513 total) from unrelated individuals to avoid pseudoreplication 
when using linear regression. Similarly, for the six studies contain-
ing individuals from non-European and admixed populations, we 
jointly analyzed all samples with six genotype principal components 
(PCs) as co-variates. However, stratified analyses45 or approaches 
taking into account local ancestry46,47 might be more appropriate in 
this specific setting. Access to individual-level data will enable us to 
revisit these decisions as new analytical approaches and computa-
tional workflows become available.

A number of single-cell RNA-seq eQTL datasets have been pub-
lished from differentiating iPSCs and peripheral blood cells10,48–50 and 
many others are likely to follow in the near future. These approaches 
are likely to revolutionize our understanding of cell-type-specific 
gene regulation in complex tissues and we are planning to start 
incorporating these datasets into the eQTL Catalogue as the raw 
data become available. At the same time, single-cell (sc)RNA-seq 
data also bring many additional challenges. To obtain the large 
number of cells required for eQTL mapping, many studies are rely-
ing on droplet-based scRNA-seq protocols that can only capture 5ʹ- 
or 3ʹ-ends of transcripts and might thus miss most genetic effects 
on RNA splicing. Similarly, single-cell eQTL datasets might have 
lower power to detect eQTLs compared with bulk, but this can be 
improved with proper modeling of batch effects51. Thus, bulk eQTL 
datasets are likely to remain relevant for some time as the single-cell 
technologies continue to improve.

To ensure that the eQTL Catalogue is a comprehensive resource 
that encompasses tissue and human population diversity, we encour-
age researchers to contribute their eQTL datasets (contact eqtlcata-
logue@ebi.ac.uk). Unfortunately, we have been unable to include 
some existing datasets due to consent limitations or restrictions on 
sharing individual-level genetic data. These limitations could be 
overcome in the future by federated data analysis approaches, where 
the eQTL analysis is performed at remote sites using our analysis 
workflows, and only summary statistics are shared with the eQTL 
Catalogue. To this end, we will continue to improve the usability 
and portability of our data analysis workflows and will make them 
available via community efforts such as the nf-core52 repository.
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Methods
Data access and informed consent. Gene expression and genotype data from two 
studies (GEUVADIS and CEDAR) were available for download without restrictions 
from ArrayExpress53. For all other datasets, we applied for access via the relevant 
data access committees. In our applications, we explained the project and our 
intent to share the association summary statistics publicly. Ethical approval for 
the project was obtained from the Research Ethics Committee of the University of 
Tartu (approval 287/T-14).

Genotype data quality control and imputation. We aligned the strands of the 
genotyped variants to the 1000 Genomes phase 3 reference panel using Genotype 
Harmonizer54 v.1.4.20. We excluded genetic variants with a Hardy–Weinberg P 
value <10−6, missingness >0.05 and minor allele frequency (MAF) <0.01 from 
further analysis. We also excluded samples with >5% of their genotypes missing.

We pre-phased and imputed the genotypes to the 1000 Genomes phase 3 
reference panel30 using Eagle v.2.4.1 (ref. 55) and Minimac4 (ref. 56) v.1.0.2. After 
imputation, we converted the coordinates of genetic variants from the GRCh37 
reference genome to the GRCh38 using CrossMap v.0.4.1 (ref. 57). We used bcftools 
v.1.9.0 to exclude variants with MAF < 0.01 and imputation quality score R2 < 0.4 
from downstream analysis. The genotype imputation and quality control steps are 
implemented in eQTL-Catalogue/genimpute (v.20.11.1) workflow available from 
GitHub (see URLs).

We used PLINK58 v.1.9.0 with ‘--indep-pairwise 50000 200 0.05’ to perform 
LD pruning of the genetic variants and LDAK59 v.5.0 to project new samples to 
the PCs of the 1000 Genomes phase 3 reference panel30. To assign each genotyped 
sample to one of four superpopulations, we calculated the Euclidean distance in the 
PC space from the genotyped individual to all individuals in the reference dataset. 
Distance from a sample to a reference superpopulation cluster is defined as a mean 
of distances from the sample to each reference sample from the superpopulation 
cluster. We explored distances between samples and reference superpopulation 
clusters using different numbers of PCs, and found that using three PCs worked 
best for inferring the superpopulation of a sample. Then, we assigned each sample 
to a superpopulation if the distance to the closest superpopulation cluster was 
at least 1.7× smaller than the second closest one (Supplementary Fig. 1a–d). We 
used this relatively relaxed threshold because our aim was to get an approximate 
estimate of the number of individuals belonging to each superpopulation. The 
population assignment steps are implemented in the eQTL-Catalogue/qcnorm 
(v.20.12.1) workflow available from GitHub (see URLs).

Microarray data pre-processing. All five microarray studies currently included  
in the eQTL Catalogue (CEDAR60, Fairfax_2012 (ref. 61), Fairfax_2014 (ref. 62),  
Kasela_2017 (ref. 63) and Naranbhai_2015 (ref. 64)) used the same Illumina 
HumanHT-12 v.4 gene expression microarray. Batch effects, where applicable, 
were adjusted for with the function removeBatchEffect from the R v.3.40.6 limma 
package65. The batch adjusted log2(intensity values) were quantile normalized using 
the lumiN function from the R v.2.36.0 lumi package66. Only the intensities of 
30,353 protein-coding probes were used.

We used Genotype harmonizer54 v.1.4.20 to convert the imputed genotypes 
into TRITYPER format. We used MixupMapper67 v.1.4.7 to detect sample swaps 
between gene expression and genotype data. We detected 155 sample swaps in the 
CEDAR dataset, most of which affected the neutrophil samples. We also detected 
one sample swap in the Naranbhai_2015 dataset.

RNA-seq data pre-processing. The eQTL Catalogue contains RNA-seq data 
from the following 16 studies: ROSMAP68, BrainSeq69, TwinsUK33, FUSION32, 
BLUEPRINT20,70, Quach_2016 (ref. 71), Schmiedel_2018 (ref. 21), GENCORD72, 
GEUVADIS73, Alasoo_2018 (ref. 74), Nedelec_2016 (ref. 75) Lepik_2017 (ref. 76),  
HipSci6, van_de_Bunt_2015 (ref. 77) Schwartzentruber_2018 (ref. 78) and GTEx1. 
For each study, we downloaded the raw RNA-seq data from one of the six 
databases (European Genome-phenome Archive (EGA), European Nucleotide 
Archive (ENA), ArrayExpress, Gene Expression Omnibus (GEO), Database of 
Genotypes and Phenotypes (dbGaP), Synapse). If the data were already in fastq 
format, then we proceeded directly to quantification. If the raw data were shared 
in BAM or CRAM format, we used the samtools collate command79 to collate 
paired-end reads and then used samtools fastq command with ‘-F 2816 -c 6’ flags 
to convert the CRAM or BAM files to fastq. As samples from GEO and dbGaP 
were stored in Sequence Read Archive (SRA) format, we used the fastq-dump 
command with ‘--split-files --gzip --skip-technical --readids --dumpbase --clip’ 
flags to convert those to fastq. The pre-processing scripts are available from the 
eQTL-Catalogue/rnaseq GitHub repository (see URLs).

RNA-seq quantification. We quantified transcription at four different levels: (1) 
gene expression, (2) exon expression, (3) transcript usage and (4) transcriptional 
event usage (Extended Data Fig. 1). Quantification was performed using a 
customized Nextflow80 workflow that we developed by adding new quantification 
methods to an nf-core/rnaseq pipeline52. Before quantification, we used Trim 
Galore v.0.5.0 to remove sequencing adapters from the fastq files.

For gene expression quantification, we used HISAT2 v.2.1.0 (ref. 81) to align 
reads to the GRCh38 reference genome (Homo_sapiens.GRCh38.dna.primary_

assembly.fa file, downloaded from Ensembl). We counted the number of reads 
overlapping the genes in the GENCODE v.30 (ref. 82) reference transcriptome 
annotations with featureCounts v.1.6.4 (ref. 83). To quantify exon expression, 
we first created an exon annotation file (GFF) using GENCODE v.30 reference 
transcriptome annotations and dexseq_prepare_annotation.py script from the 
DEXSeq84 v.1.18.4 package. We then used the aligned RNA-seq BAM files from the 
gene expression quantification and featureCounts with flags ‘-p -t exonic_part -f 
-O’ to count the number of reads overlapping each exon.

We quantified transcript and event expression with Salmon v.0.13.1  
(ref. 85). For transcript quantification, we used the GENCODE v.30 (GRCh38.
p12) reference transcript sequences (fasta) file to build the Salmon index. For 
transcriptional event usage, we downloaded pre-computed txrevise37 alternative 
promoter, splicing and alternative 3ʹ-end annotations corresponding to Ensembl 
v.96 from Zenodo (https://doi.org/10.5281/zenodo.3232932) in GFF format. We 
then used gffread86 v.0.9.12 to generate fasta sequences from the event annotations 
and built Salmon indices for each event set as we did for transcript usage. Finally, 
we quantified transcript and event expression using Salmon quant with ‘--seqBias 
--useVBOpt --gcBias --libType’ flags. All expression matrices were merged 
using csvtk v.0.17.0. All of these quantification methods are implemented in 
the eQTL-Catalogue/rnaseq workflow available from GitHub (see URLs). Our 
reference transcriptome annotations are available from Zenodo (https://doi.
org/10.5281/zenodo.3366280).

RNA-seq quality control. The quality of the RNA-seq samples was assessed 
using the gene expression counts matrix. In all downstream analyses, we only 
included 35,367 protein-coding and noncoding RNA genes belonging to one of the 
following Ensembl gene types: lincRNA, protein_coding, IG_C_gene, IG_D_gene, 
IG_J_gene, IG_V_gene, TR_C_gene, TR_D_gene, TR_J_gene, TR_V_gene, 
3prime_overlapping_ncrna, known_ncrna, processed_transcript, antisense, 
sense_intronic and sense_overlapping. For principal component analysis (PCA) 
and MDS analyses, we first filtered out invalid gene types (23,458) and genes on the 
sex chromosomes (1,247), TPM normalized87 the gene counts, filtered out genes 
having median normalized expression value <1 and log2 transformed the matrix. 
We performed PCA with the prcomp R package (center = true, scale = rue). For 
MDS analysis, we used the iso-MDS method from the MASS R package with k = 2 
dimensions. As a distance metric for iso-MDS, we used 1 − Pearson’s correlation 
as recommended previously88. We plotted these two-dimensional scatter plots to 
visually identify outliers (Supplementary Fig. 2a,b).

Previous studies have successfully used the expression of XIST and Y 
chromosome genes to ascertain the genetic sex of RNA samples89. In our analysis, 
we extracted all protein-coding genes from the Y chromosome and the XIST gene 
(ENSG00000229807) expression values, and TPM normalized them. Then, we 
calculated the mean expression level of the genes on the Y chromosome. Finally, 
we plotted the log2(XIST expression level) (x axis) against the mean expression 
level of the genes on the Y chromosome (y axis). In addition to detecting samples 
with incorrectly labeled genetic sex, this analysis also allowed us to identify 
cross-contamination between samples (XIST and Y chromosome genes expressed 
simultaneously; Supplementary Fig. 2c).

Finally, we used the Match Bam to VCF (MBV) method from QTLtools90 
which directly compares the sample genotypes in VCF format to an aligned 
RNA-seq BAM file. MBV can detect sample swaps, multiple samples from the same 
donor and cross-contamination between RNA-seq samples. In some cases, such 
cross-contamination was confirmed by both the sex-specific gene expression and 
MBV analyses (Supplementary Fig. 2d).

RNA-seq data normalization. We excluded all samples that failed the quality 
control steps. We normalized the gene- and exon-level read counts using the 
conditional quantile normalization (cqn) R package v.1.30.0 (ref. 91) with gene 
or exon GC nucleotide content as a co-variate. We downloaded the gene GC 
content estimates from Ensembl biomaRt and calculated the exon-level GC 
content using bedtools v.2.19.0 (ref. 92). We also excluded lowly expressed genes, 
where 95% of the samples within a dataset had TPM-normalized expression <1. 
To calculate transcript and transcriptional event usage values, we obtained the 
TPM-normalized transcript (event) expression estimates from Salmon. We then 
divided those transcript (event) expression estimates by the total expression of 
all transcripts (events) from the same gene (event group). Subsequently, we used 
the inverse normal transformation to standardize the transcript and event usage 
estimates.

Metadata harmonization. We mapped all RNA-seq and microarray samples to a 
minimal metadata model. This included consistent sample identifiers, information 
about the cell type or tissue of origin, biological context (for example, stimulation), 
genetic sex, experiment type (RNA-seq or microarray) and properties of the 
RNA-seq protocol (paired-end versus single-end; stranded versus unstranded; 
poly(A) selection versus total RNA). To ensure that cell type and tissue names 
were consistent between studies and to facilitate easier integration of additional 
studies, we used Zooma (https://www.ebi.ac.uk/spot/zooma) to map cell and tissue 
types to a controlled vocabulary of ontology terms from Uber-anatomy ontology 
(Uberon)93, Cell Ontology94 or Experimental Factor Ontology (EFO)95. We opted to 
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use an ad-hoc controlled vocabulary to represent biological contexts because those 
often included terms and combinations of terms that were missing from ontologies.

Association testing. We performed association testing separately in each dataset 
and used a ±1-Mb cis window centered around the start of each gene. First, we 
excluded molecular traits with fewer than five genetic variants in their cis window, 
because these were likely to reside in regions with low genotyping coverage. 
We also excluded molecular traits with zero variance across all samples and 
calculated phenotype PCs using the prcomp function from the R stats package 
(center = true, scale = true). We calculated genotype PCs using plink2 v.1.90b3.35. 
We used the first six genotype and phenotype PCs as co-variates in QTL mapping. 
We calculated nominal eQTL summary statistics using the GTEx v.6p of the 
FastQTL96 software (https://github.com/francois-a/fastqtl) which also estimates 
s.e of the effect sizes. We used the ‘--window 1000000 --nominal 1’ flags to find all 
associations in the 1-Mb cis window. For permutation analysis, we used QTLtools 
v.1.1 (ref. 97) with ‘--window 1000000 --permute 1000 --grp-best’ flags to calculate 
empirical P values based on 1,000 permutations. The ‘--grp-best’ option ensured 
that the permutations were performed across all molecular traits within the same 
‘group’ (for example, multiple probes per gene in microarray data or multiple 
transcripts or exons per gene in the exon-level and transcript-level analysis) and 
the empirical P value was calculated at the group level. The steps described above 
are implemented in the eQTL-Catalogue/qtlmap v.21.04.1 Nextflow workflow 
available from GitHub (see URLs).

Statistical fine mapping. We performed QTL fine mapping using the Sum of 
Single Effects Model (SuSiE)23 implemented in the susieR v.0.9.0R package. We 
converted the genotypes from VCF format to a tabix-indexed dosage matrix 
with bcftools v.1.10.2. We imported the genotype dosage matrix into R using 
the Rsamtools v.1.34.0 package. We used the same normalized molecular trait 
matrix used for QTL mapping and further applied a rank-based inverse normal 
transformation to each molecular trait, to ensure that they were normally 
distributed. We regressed out the first six phenotype and genotype PCs separately 
from the phenotype and genotype matrices. We performed fine mapping with the 
following parameters: L = 10, estimate_residual_variance = TRUE, estimate_prior_
variance = TRUE, scaled_prior_variance = 0.1, compute_univariate_zscore = TRUE 
and min_abs_corr = 0. Finally, we extracted the 95% credible sets and the 95% 
posterior inclusion probabilities for each variant belonging to the credible set. The 
steps described above are implemented in the eQTL-Catalogue/qtlmap v.21.04.1 
Nextflow workflow available from GitHub (see URLs).

Identifying independent QTL signals. We extracted independent signals from 
the variants included in fine-mapped credible sets. At first, we selected credible 
sets with fewer than 30 variants in size and with a maximal univariate z-score 
>3. If the same credible set was associated with the expression of multiple genes 
(Supplementary Fig. 3), then we considered all those associations as independent 
signals. For every gene, we then built connected components of credible sets to 
represent independent signals. Two credible sets from different datasets were 
assigned to the same connected component if they shared at least one variant. 
Consequently, all variants that were part of at least one overlapping credible set 
were also assigned to the same connected component. To reduce the number 
of missing values, for each connected component, we first retained only those 
variants that were present in the largest number of datasets. Finally, we assigned 
the variant with the largest effect size (β) across datasets as the lead variant for 
each connected component. The final list contained 62,837 lead variants for 21,270 
genes. We found that this approach picked slightly more lead eQTLs from datasets 
with smaller sample sizes, but this relationship was not strong (Supplementary 
Fig. 4b). We also tested an approach where the lead variant within each connected 
component was selected based on the smallest P value and found that this 
approach tended to favor datasets with larger sample sizes (Supplementary Fig. 4a). 
Reassuringly, the exact strategy for choosing lead variants did not have a strong 
effect on downstream eQTL sharing analysis results (Supplementary Fig. 5a–c).

Identifying independent signals for the other three quantification methods 
(exon expression, transcript usage and txrevise) was more challenging, because 
each gene often has multiple, highly correlated molecular traits (exons, transcripts, 
transcriptional events) that cannot be treated as independent measurements. 
Thus, for each gene, we first selected the smallest credible set in each dataset. If 
there were multiple credible sets of the same size, we selected the one containing 
a variant with the largest maximal posterior inclusion probability value. Then, 
among the selected credible sets per dataset, we randomly selected one credible set 
per gene across datasets. Finally, to reduce the number of missing values, for each 
selected credible set, we first retained only those variants that were present in the 
largest number of datasets and assigned the variant with the largest effect size (β) 
across datasets as the lead variant. For consistency, we also repeated the same lead 
variant selection process for gene expression QTLs, and again found only a weak 
negative relationship between dataset sample size and the number of lead variants 
selected from that dataset (Supplementary Fig. 4c).

Quantifying eQTL sharing between datasets. We aggregated the eQTL data into 
a matrix of effect sizes, where each row represents a lead variant and each column 

an eQTL dataset. We noticed that this matrix contained many missing values. 
Although most of the missing values were caused by the gene not being expressed 
in a particular cell type or tissue, some of the missing values were also caused 
by low allele frequency or low imputation quality score. Thus, we substituted all 
missing values with zeros. We then calculated pairwise Spearman’s correlation 
between the columns of the matrix to estimate the eQTL similarity between 
datasets.

As an alternative to Spearman’s correlation, we used the multivariate adaptive 
shrinkage (Mash)19 model to estimate the pairwise sharing of eQTLs between 
datasets. The β values and s.e.s of lead effects were input into the Mash model 
as Bhat and Shat. We set missing eQTL effect sizes to 0 and s.e.s to 1. The model 
was fitted with α = 1 (exchangeable effects model). To find candidate co-variance 
matrices, we discovered strong effects that are significant in at least one dataset 
using the get_significant_results method. Then we performed PCA on identified 
strong effects to obtain co-variance matrices with the cov_pca function and applied 
extreme deconvolution to them with cov_ed. The resulting matrices were set as 
candidate co-variance matrices into the model fitting. We estimated pairwise eQTL 
sharing between datasets with the get_pairwise_sharing method by magnitude 
(factor of 0.5) and sign of posterior effect estimates.

Factor analysis. We performed factor analysis using the sn-spMF model31. We 
included the 62,837 independent gene-variant pairs detected using statistical fine 
mapping (see above). The input files contained effect sizes and s.e.s as reciprocals 
of the weights of lead effects. The missing values made up ~29% of the input 
effect size matrix. If the effect size estimate was missing in a given cell type or 
tissue, then the effect size and weight were set to zero. To find hyperparameter K 
(initial number of factors), and regularization parameters α and λ, we performed 
a two-level grid search. In the first level, K was set to 20, 30, 40 and 50, and λ and 
α were set in a range of 1,000–2,000 with optimization of the number of iterations 
of 10. In the second level, we fine-tuned the parameters by narrowing the search 
space to those values that lead to higher sparsity of the loading and factor matrices 
in the first level. At the second level, we ran the parameter optimization for 20 
runs and 10 iterations each. We picked the final matrix with a high cophenetic 
coefficient (0.89) and 21 factors.

Co-localization. We performed co-localization analysis on QTLs in the eQTL 
Catalogue against GWAS summary statistics from 14 studies downloaded from 
the IEU OpenGWAS database in VCF format98,99. Our analysis included summary 
statistics for inflammatory bowel disease (IBD) and its two subtypes (Crohn’s 
disease (CD) and ulcerative colitis (UC))100; rheumatoid arthritis (RA)101, systemic 
lupus erythematosus (SLE)102, type 2 diabetes (T2D)103, coronary artery disease 
(CAD)104, LDL-cholesterol105, four blood cell type traits (lymphocyte count (LC), 
monocyte count (MC), platelet count (PLT), mean platelet volume (MPV))34 
and two anthropometric traits (height, body mass index (BMI)) from the UK 
Biobank105. The variant coordinates of the GWAS summary statistics were lifted 
to the GRCh38 reference genome using CrossMap57. We used v.3.1 of the coloc 
R package106. All analysis steps are implemented in the v.21.01.1 of the eQTL 
Catalogue/co-localization workflow (see URLs).

We used our uniformly processed GTEx summary statistics together with all 
the other summary statistics from eQTL Catalogue release 3.1. For all eQTL and 
GWAS dataset pairs, we performed co-localization in a ±200,000 window around 
each of the 62,837 fine-mapped eQTL credible set lead variants (see Statistical 
fine mapping above). This ensured that co-localization was also performed 
separately for multiple independent eQTLs of the same gene and co-localization 
results were obtained in datasets in which no significant eQTL was detected for 
a particular gene. However, as we did not use masking or conditional analysis, 
many secondary eQTL co-localizations could still have been missed18,107. 
Inspired by the study by Barbeira et al.3, we summarized strong co-localizations 
(PP4 ≥ 0.8) at the level of approximately independent LD blocks35. Positions of 
approximately independent LD blocks were obtained from Berisa and Pickrell35 
and converted to GRCh38 coordinates using CrossMap57. If the co-localization 
cis window overlapped two or more LD blocks, then the co-localizing QTL was 
assigned to the LD block where the QTL lead variant was located. We defined an 
LD block to harbor a novel co-localization signal if there was no co-localization 
detected within that LD block in any of the GTEx tissues. We further excluded 
datasets with small sample sizes (n < 150) due to their low power to detect 
co-localizations.

As transcript usage, exon expression and txrevise contained many more 
redundant phenotypes (for example, multiple exons of the same gene), we limited 
co-localization analysis for those molecular traits to the significant lead QTL 
variants in each dataset only (false discovery rate (FDR) < 0.01), using the same 
±200,000 cis window as above. To make the co-localization signals comparable 
across quantification methods, we also performed co-localization analysis for 
gene expression using significant lead QTL variants as we did for the other three 
quantification methods. We only included QTL and complex trait pairs with 
strong evidence of co-localizations (PP4 ≥ 0.8) in our analysis and summarized 
the results at the level of independent LD blocks, as described above. The number 
of LD blocks for which we detected at least one co-localizing QTL with each 
quantification method was visualized using the upsetR v.1.4.0 R package108.
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URLs. Data analysis workflows:
•	 RNA-seq quantification: https://github.com/eQTL-Catalogue/rnaseq
•	 Normalization and quality control: https://github.com/eQTL-Catalogue/

qcnorm
•	 Genotype imputation: https://github.com/eQTL-Catalogue/genimpute
•	 QTL analysis and fine mapping: https://github.com/eQTL-Catalogue/qtlmap
•	 Co-localization: https://github.com/eQTL-Catalogue/colocalisation

Example use cases:
•	 Accessing eQTL Catalogue summary statistics with tabix: https://github.

com/eQTL-Catalogue/eQTL-Catalogue-resources/blob/master/tutorials/
tabix_use_case.md

•	 Python example for querying the HDF5 files: https://github.com/
eQTL-Catalogue/eQTL-SumStats/blob/master/querying_hdf5_basics.ipynb

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
All eQTL Catalogue summary statistics are available under the Creative Commons 
Attribution 4.0 International License. The full association summary statistics 
and fine-mapped credible sets in HDF5 and TSV format can be downloaded 
from the eQTL Catalogue website (https://www.ebi.ac.uk/eqtl/Data_access). 
Slices of the TSV files can be accessed using tabix109 and seqminer110. All 
summary statistics are also available via the REST API (https://www.ebi.ac.uk/
eqtl/api-docs). Fine-mapped credible sets can be browsed using our interactive 
web interface (https://elixir.ut.ee/eqtl). Our summary statistics have also 
been integrated into third party services such as the Open Targets Genetics 
Portal111 and FUMA13. The following show the accession nos. for the different 
data. Raw microarray gene expression data from CEDAR (E-MTAB-6667), 
Fairfax_2012 (E-MTAB-945), Fairfax_2014 (E-MTAB-2232) and Naranbhai_2015 
(E-MTAB-3536) were downloaded from the ArrayExpress53. Microarray gene 
expression data from Kasela_2017 (GSE78840) were downloaded from the 
GEO. RNA-seq data from Alasoo_2018 (EGAD00001003204, PRJEB18997), 
GEUVADIS (E-GEUV-1), Schwartzentruber_2018 (EGAD00001003145, 
PRJEB18630) and HipSci (EGAD00001003529, PRJEB7388) were downloaded 
from the EGA and ENA. BrainSeq (syn12299750) RNA-seq data were 
downloaded from Synapse. Nedelec_2016 (GSE81046) RNA-seq data were 
downloaded from the GEO. RNA-seq and genotype data from GENCORD 
(EGAD00001000425, EGAD00001000428), TwinsUK (EGAD00001001086, 
EGAD00001001087, EGAD00001001088, EGAD00001001089), van_
de_Bunt_2015 (EGAD00001001601, EGAD00001001601), Quach_2016 
(EGAD00001002714, EGAD00010001131) and BLUEPRINT (EGAD00001002671, 
EGAD00001002674, EGAD00001002675, EGAD00001002663) were downloaded 
from EGA. RNA-seq and genotype data from GTEx (phs000424.v8.p2), FUSION 
(phs001048.v2.p1) and Schmiedel_2018 (phs001703.v1.p1) were downloaded from 
dbGaP. ROSMAP (syn3219045) RNA-seq and genotype data were downloaded 
from Synapse. HipSci, Alasoo_2018 and Schwartzentruber_2018 genotype data 
were downloaded from EGA and ENA (EGAD00010001147, PRJEB11752). 
Fairfax_2012, Fairfax_2014 and Naranbhai_2015 genotype data were downloaded 
from EGA (EGAD00010000144, EGAD00010000520). CEDAR (E-MTAB-6666) 
genotype data were downloaded from ArrayExpress. BrainSeq (phs000979.
v2.p2) genotype data were downloaded from dbGaP. Lepik_2017 RNA-seq and 
genotype data and Kasela_2017 genotype data were obtained from the Estonian 
Genome Center, University of Tartu (https://genomics.ut.ee/en/access-biobank). 
Processed RNA-seq count matrices together with minimal metadata are available 
from Zenodo (https://doi.org/10.5281/zenodo.4678936). Microarray expression 
matrices are available from Zenodo (https://doi.org/10.5281/zenodo.3565554). 
Gene expression matrices from a subset of studies (Schwartzentruber_2018: 
E-ENAD-33; van_de_Bunt_2015: E-ENAD-42; HipSci: E-ENAD-35, BLUEPRINT: 
E-ENAD-34, Alasoo_2018: E-ENAD-41) have also been made available via the 
EMBL-EBI Expression Atlas112. We are not able to publicly share the processed 
genotype datasets because this is not allowed by the data-sharing conditions set by 
the original studies.

Code availability
The Nextflow workflows for RNA-seq data quantification (eQTL-Catalogue/rnaseq 
v.20.11.1), gene expression normalization and quality control (eQTL-Catalogue/
qcnorm v.20.12.1), genotype imputation (eQTL-Catalogue/genimpute v.20.11.1), 
QTL analysis and statistical fine mapping (eQTL-Catalogue/qtlmap v.21.04.1), 
and co-localization (eQTL-Catalogue/colocalisation v.21.01.1) are available 
from GitHub (see URLs). All code has been released under permissive MIT or 
Apache-2.0 license.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quantification methods for molecular traits in the eQTL Catalogue. Symbolic representation of 23 read fragments assigned to one 
gene (aligned with HISAT2, quantified with featureCounts) consisting of two transcripts (quantified with Salmon) and six exonic parts (annotated with 
DEXSeq, quantified with featureCounts). The gene also has five distinct introns which are identified and quantified by Leafcutter. Transcriptional event 
usage is quantified with txrevise. Txrevise uses shared exons as a scaffold to identify independent transcriptional events corresponding to alternative 
promoters, internal exons and 3ʹ ends. Leafcutter splice junction QTLs will be included in a future version of the eQTL Catalogue.
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Extended Data Fig. 2 | Pairwise eQTL sharing between 95 datasets estimated with the Mash model. We used 62,837 independent gene variant pairs 
from the fine mapping analysis (see Methods) and used the Mash model to estimate eQTL sharing between all pairs of the 95 datasets measured with 
RNA-seq. Heatmap represents the fraction of eQTLs ‘shared’ (same sign and effect size difference < 2-fold) between all pairs of datasets.
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Extended Data Fig. 3 | Pairwise eQTL similarity between 95 datasets estimated with Spearman correlation. We used 62,837 independent gene-variant 
pairs from the fine mapping analysis (see Methods) and used the Spearman correlation of eQTL effect sizes to estimate eQTL sharing between all pairs of 
the 95 datasets measured with RNA-seq. Heatmap represents the pairwise Spearman correlation estimates between fine mapped eQTL effect sizes.
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Extended Data Fig. 4 | MDS analysis of QTL sharing across datasets. Pairwise QTL sharing between datasets was estimated using the Mash model. 
The individual points have been coloured according to the major cell type and tissue groups. To facilitate comparison between quantification methods, 
and avoid redundant signals from correlated transcripts and exons, all analyses have been performed using one lead variant per gene (see Methods). The 
panels show pairwise QTL sharing MDS plots for gene expression (a), exon expression (b), transcript usage (c), and txrevise (d) QTLs.
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Extended Data Fig. 5 | Quantifying QTL sharing between tissues, cell types and studies. Distribution of pairwise mash QTL sharing estimates for 
seven cell types and tissues (skin, adipose, LCL, blood, fibroblast, muscle, brain (DLPFC)) profiled in two or more studies (GTEx, TwinsUK, GENCORD, 
GEUVADIS, Lepik_2017, ROSMAP, FUSION). Each panel contrasts the QTL sharing estimates for the same cell type or tissue profiled in different studies (n 
= 18) against different cell types and tissues profiled in the same study (n = 30). Analysis was performed separately for gene expression (a-b), transcript 
usage (c), exon expression (d) and txrevise (e) QTLs. Note that adipose, skin and muscle tissues have high eQTL sharing also within the same study. The 
p-values were calculated using the two-sample Wilcoxon rank sum test (two-sided).
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Extended Data Fig. 6 | The fraction of fine mapped eQTLs assigned to universal and cell-type-specific factors. The sn-spMF method was used to assign 
all fine mapped eQTLs to the 21 latent factors inferred from the data.
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Extended Data Fig. 7 | Factor loadings for each of the 86 naive datasets across 21 latent factors detected by sn-spMF. Datasets from stimulated 
monocytes and macrophages have been excluded to improve readability.
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Extended Data Fig. 8 | The number of shared and additional colocalisations detected for the 14 GWAS traits and diseases. The cumulative heights of the 
bars indicate the number of independent colocalising loci (LD blocks) detected for each GWAS trait and the percentages represent the fraction of those 
colocalisation that were unique to the eQTL Catalogue datasets relative to GTEx.
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Extended Data Fig. 9 | The number of additional colocalising loci detected for the 14 GWAS traits in each cell type and tissue from eQTL Catalogue 
divided by the eQTL sample sizes. The analysis was done independently for exon QTLs (a), transcript usage QTLs (b) and txrevise QTLs (c). The eQTL 
Catalogue cell types and tissues were grouped according to whether they were present in GTEx (blood, LCL, adipose, muscle, skin, brain) or not (T cells, 
B cells, monocytes, macrophages, neutrophils and iPSCs). GWAS traits: PLT - platelet count, MPV - mean platelet volume, MC - monocyte count, LC - 
lymphocyte count, UC - ulcerative colitis, SLE - systemic lupus erythematosus, RA - rheumatoid arthritis, IBD - inflammatory bowel disease, CD - Crohn’s 
disease, T2D - type 2 diabetes, height, CAD - coronary artery disease, BMI - body mass index, LDLC - LDL cholesterol.
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Extended Data Fig. 10 | Regional association plot for LDL cholesterol (top panel) and HMGCR eQTL in the FUSION muscle dataset (bottom panel). The 
eQTL signal was fine mapped to 46 variants represented by red dots on both panels.
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