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Abstract

Objectives: Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether
global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the
relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of
human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions
on oceanic islands.

Methods: Historical data were used in order to minimize the influence of differential access to modern health care on
pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of
186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen
prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and
number of pathogens.

Results: Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by
latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more
important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal
dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-
area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although
geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that
variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens.
Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens
has an important influence on global disparities in human welfare.
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Introduction

Geographic variation in infectious disease has played a major

role in determining history’s political and demographic winners

and losers [1,2], and remains a significant factor shaping

differential welfare across the world today. We know a great deal

about the ecological conditions that influence the distribution of

particular pathogens in particular parts of the world, but there

have been comparatively few analyses of global pathogen

distributions and their determinants. On the other hand, theory

in geographical ecology has addressed global patterning in species

distributions across a wide range of taxa. The aim of this paper is

to evaluate some of those arguments in the context of human

pathogens, by assessing the relative influence of environmental

variables that have been found to shape species diversity in other

taxa. Among the factors considered are climate (temperature and

precipitation), island size and isolation, and human factors that

enhance disease transmission (population density, sedentism, and

roads).

The dataset is unusual in being historical and in taking as units

of observation the local pathogen and environmental conditions

prevailing at 186 mostly small-scale non-industrial societies around

the globe (the Standard Cross-Cultural Sample, or SCCS). The

data are specific to these locations, which are for the most part not

near major population centers and transportation hubs. While the

use of historical pathogen data poses obvious limitations in

accuracy and precision, it has the potential to give a clearer picture

of the role of the physical environment, since influential

moderators (global travel, modern medicine and public health)

played a smaller role than they do today. The more that global

disease patterns rest on differential access to vaccines and

antibiotics, good sanitation, and clean water, the more difficult it

becomes to isolate the effect of climate and other biogeographical

variables in a global analysis. The dataset also has the advantage,

when compared to national data such as GIDEON, of being

spatially focused and on a consistent scale. Finally, a number of

relevant cultural variables have been coded for the SCCS,

including several that are likely to affect pathogen abundance

and diversity. The present study, therefore, complements global

biogeographical pathogen analyses that have used modern datasets

[3,4]. The analysis considers effects of latitude, climate, island size

and area, and population density and mobility.
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Species richness is greater at lower latitudes across a wide range

of taxa, and there are reasons why we might expect this to hold for

human pathogens also: parasite richness is strongly correlated with

host species richness in area-based studies [5], and we know that

host species are typically more diverse near the equator.

Furthermore, parasite-associated host mortality is greater at lower

latitudes [6]. However, data on latitudinal gradients in parasites

are conflicting. A recent meta-analysis across a wide range of host

species found no overall relationship between latitude and parasite

species richness per host species [7], and among carnivores the

opposite pattern was found, with more parasite diversity on hosts

living far from the equator [8]. It is likely that the influence of

latitude in such studies is obscured by differences among host

species that affect parasite richness (host body size, density,

geographical range), a problem that would be avoided by studying

pathogen diversity on a globally-distributed host such as Homo

sapiens [7,9]. Global studies of species richness in human

pathogens have found such latitudinal gradients [3,4].

The reason for latitudinal gradients in species richness remains a

subject of debate [10,11]. Energy and water availability affect

organism abundance because they are central to metabolism, but

it is less clear why more energy or water would lead to greater

number of species; it is likely that there are several mechanisms,

and that they vary by taxa [12]. Empirical studies have shown that

temperature (used as a proxy for energy availability) is often

correlated with species richness, but other studies have shown

similar patterning with precipitation and habitat diversity. This

study assesses the relative importance of these variables as

predictors of historical pathogen number and prevalence. In

addition to developing a global model, the study tests the

hypothesis that temperature is more important in areas where it

is limiting (i.e., areas far from the equator), while water [13] and

habitat diversity [14] are more important in areas of energy

abundance.

Species richness on islands is also shaped by island size and

isolation. The MacArthur & Wilson [15] equilibrium model of

island biogeography explained this relationship as a consequence

of immigration and extinction rates: smaller islands have fewer

species due to higher extinction rates and fewer habitats, and more

isolated islands have fewer species due to lower colonization rates.

Larger islands also attract more immigrants (target effect) and less

isolated islands receive repeated immigration and so are less

vulnerable to extinction (rescue effect). While the assumption of

equilibrium is problematic and new dynamic theories have been

developed [16,17], the influence of island area and isolation

remain important. A separate analysis of 37 islands in the sample

was therefore conducted to see whether the size and isolation of

islands shape pathogen number and prevalence, and, if so,

whether greater habitat diversity on larger islands could explain

the relationship.

Finally, the SCCS also allows us to include in the models aspects

of human demography and culture likely to affect pathogen

growth and transmission. Host population density is a strong

predictor of parasite species richness across a wide range of host

taxa [7], including non-human primates [18], and the same is

likely to be the case for humans. Skeletal and other evidence

suggests that the neolithic transition to settled farming and

husbandry was often accompanied by an increase in infectious

disease; proposed reasons include the larger pool of susceptible

hosts and wider contacts arising from larger, denser, and more

permanent settlements, as well as exposure to new zoonoses and

vectors associated with food production [19–21]. Similar factors

are likely to lead to variation in pathogen exposure among the

nonindustrial societies of the SCCS. These factors are evaluated

here by modeling the effects of population density, sedentism, and

road quality.

The analyses begin by looking at the environmental variables

that affect pathogen diversity and prevalence globally. The sample

is then divided into tropical and non-tropical regions, and the

relative importance of these environmental factors in the two

regions is compared. Finally, a set of analyses was performed on

the island locations only, in order to evaluate predictions about the

effects of island area, isolation, and habitat diversity.

Methods

Data sources
The analyses use data from the Standard cross-cultural sample

(SCCS) of 186 non-industrial cultures (see Figure 1). Each SCCS

society is pinpointed to the time and location of a key

ethnographic description [22], with most dating to the early part

of the twentieth century (interquartile range 1880–1939). Many

sociocultural and environmental variables have been coded for this

sample, with the open access electronic journal World Cultures

(http://www.worldcultures.org) functioning as a repository. This

paper uses both existing coded data for the SCCS and a newly-

developed set of SCCS pathogen codes.

The new pathogen codes are described briefly below and in

Cashdan & Steele [23], and in more detail in the supplementary

materials. Datafile S1 includes the code and information to guide

its use and interpretation, while Datafile S2 contains the coded

data.

Pathogen data. The pathogen data for the new codes were

derived from historical sources, chiefly global maps published in

the mid-twentieth century. The codes reflect the prevalence levels

of 8 pathogens: malaria, dengue, filariae, typhus, trypanosomes,

leishmanias, schistosomes, and plague. Most of these pathogens

include several related species, due to limitations of the source

material. Prevalence levels were taken primarily from isolines on

the epidemiological maps, and coded as 1 = absent, 2 = rare, 3

= sporadic or moderate prevalence, and 4 = epidemic or high

prevalence. The prevalence levels of the different pathogens were

combined, as described below, to form a pathogen prevalence

index.

The coding procedure followed that used by Murray & Schaller

[24] in their historical cross-national pathogen codes, but was

made specific to local conditions by recording, for each of the 8

pathogens, the highest pathogen level (1–4) within a 100 km radius

of each SCCS society. The main sources were the three volume

series of maps in Rodenwaldt & Bader [25] and the maps and data

in Simmons et al. [26], supplemented by data in Faust & Russell

[27]. Low [28,29] developed a 7-pathogen index for the SCCS

using different historical sources. The two codes are highly

correlated, but Low’s includes two pathogens (leprosy and

spirochetes) not in the Cashdan-Steele dataset. A combined index

was therefore created by converting Low’s three-point scale for

leprosy and spirochetes and the Cashdan-Steele four-point scale

for the other eight pathogens to z-scores, and using the mean of

the 10 z-scores as an index of pathogen prevalence (see Datafile

S1). A high score on the index, therefore, indicates both more

types of pathogens and more severe exposure. In order to get a

measure that more closely reflects species richness, a second index

was created in which pathogens were dichotomized as either

present or absent. The score here is the number of pathogens out

of a total possible of 10. All analyses were done with both the

pathogen prevalence index and with number of pathogens.

Because of limitations in the source material, both codes are

biased toward pathogens that are transmitted through arthropod
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and other vectors. A few of these also have non-human hosts. The

prevalence of such diseases is likely to be strongly shaped by the

geographic distribution of the vectors that transmit them and the

species that host them. This bias has the disadvantage that a

number of important diseases (e.g., measles and cholera) are

omitted. It also has the advantage that the geographic patterning

of this sample of diseases will be less affected by international travel

and by socioeconomic and public health measures than are

diseases spread via droplet and oral-fecal transmission.

Another limitation is that the historical data do not contain

information on variation in sampling effort, and less was known

about pathogens in remote areas like tropical Africa than in more

economically developed parts of the world. Since the sources

nonetheless indicate more pathogens in these tropical regions,

particularly in central Africa, the effect of this bias is likely to be

conservative. Sampling bias is likely to be most problematic in

studying the influence of island area, since pathogens on very small

islands might have been estimated from better-known larger

islands in the vicinity. The implications of this potential bias is

discussed in the results section on island analyses.

Environmental and island data. Energy measures included

in this study were mean annual temperature, number of frost-free

months, and within-year measures of temperature extremes [30].

Water availability was measured by yearly mean precipitation over

a 20-year period [31], and within-year measures of wet and dry

extremes, including lowest precipitation in dryest month and

highest in wettest month [30]. All data were taken from weather

station records closest in time and place to the focus of each SCCS

society. Habitat diversity was coded as the number of vegetation

types within a radius of 100 through 250 miles [31,32], based on

world maps published in the 1960s [33]. Many sociocultural

factors affect pathogen spread, directly or indirectly, and three are

used in these analyses: population density [34], road quality [35],

and sedentism [34]. These are ordinal variables, as described

below. The environmental and cultural data analyzed here come

from the 2003 World Cultures 14(1) data disks, although the

original published sources were consulted for full variable

definitions and coding procedures.

Island area and various measures of isolation were obtained

from the UNEP (United Nations Environment Programme) Island

Directory at http://islands.unep.ch, supplemented in a few cases

by other sources. A few islands were so small that the 100 km

radius used to calculate pathogens extended beyond the island

border. In these cases, if there was another island within that

radius, the area of that island was added to the focal island.

Analysis
There are two parts to the analysis. The first uses the full sample

of 186 locations to build a global model of significant environ-

mental predictors of pathogen prevalence (using the prevalence

index) and richness (using number of pathogens). The global

model was built incrementally, beginning with a model of physical

environmental variables (island vs. mainland, temperature, and

precipitation) followed by a separate model of three related

cultural environmental variables (density, sedentism, road quality).

The significant predictors from the two models were then

combined into a single global model. In each case, analysis began

with single-factor regressions followed by multivariate models, and

variables that were individually significant but did not contribute

independently to the multivariate models were dropped. The

model was then applied separately to tropical and non-tropical

regions, because the strength of these predictors was hypothesized

to differ by latitude. Because the aim of the global model was to

compare the relative effects of the different predictors, multiple

regressions report standardized (beta) coefficients.

The second part of the analysis uses only the subset of 37 island

locations in order to test the specific hypotheses that pathogen

number and prevalence are associated with island size and habitat

diversity.

In conducting the regressions, island area and some climate

variables were transformed with a natural log transform prior to

regression in order to make relationships linear and improve

residual distributions. Where necessary, a constant was added

before the log transform in order to make the minimum value 1.0.

Mean annual temperature was negatively skewed, so those data

were also reflected about zero before the log transform and then

reflected back so as to restore the original order.

The ordinal variables were handled in different ways, depend-

ing on the nature of the variable. Road quality was dichotomized

into societies where only footpaths were present, originally coded 1

(n~124), and societies with roads of varying quality, originally

coded 2–4 (n~57). Sedentism was dichotomized into the 117

societies that maintain permanent camps (5–6 in the original scale)

and the 69 that move during the year (1–4 in the original scale).

Unlike road quality and sedentism, which were defined by

qualitative descriptors, the 7 levels of population density corre-

Figure 1. Standard cross-cultural sample locations.
doi:10.1371/journal.pone.0106752.g001
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spond nonlinearly to persons per square mile: (1) less than 1 person

per 5 sq. mi, (2) 1 person per sq. mi – 1 person per 5 sq. mi, (3) 1.1

– 5 persons per sq. mi, (4) 5.1–25, (5) 26–100, (6) 101–500, and (7)

more than 500 persons per sq. mi. Population density was

analyzed in multivariate regressions as an interval variable,

although the underlying density in persons per square mile cannot

be directly inferred from the data. Prevalence levels of individual

pathogens were used only in bivariate correlations with individual

environmental variables, using Spearman’s rank order correla-

tions.

Validity checks. Two additional analyses were done to

validate the global model. The first was to run it separately against

the two codes from which the combined index was derived. This

was done both as a check on coding accuracy (since the codes used

different historical sources) and as a way to evaluate how

vulnerable the model was to the particular pathogens chosen

(since the codes differed somewhat in the diseases coded). Another

check was done to see whether the dependent and independent

variables were associated only because they varied similarly across

space, which would be indicated if there was spatial autocorre-

lation in the residuals. For each pair of points, the (squared)

difference between the residuals and the actual geographic

distance was calculated, to see whether the two values were

correlated. This was done at various scales of distance down to

200 km. The societies in the sample are geographically dispersed

(stratified both by geographic region and language group) so

spatial autocorrelation at smaller scales cannot be assessed.

SAS was used for all analyses.

Results

The first part of the analysis builds a global model using the full

dataset, first by considering the physical environment, then the

cultural environment, and finally both together in a single model.

The sample is then divided into high and low latitude zones, to see

how the relative importance of these variables differ by latitude.

The final analyses are restricted to the island locations, in order to

test specific predictions from island biogeography.

Global Analyses
Latitudinal gradients. The upper graph in Figure 2 shows

that the pathogen prevalence index is negatively correlated with

distance from the equator, particularly when island locations are

excluded, and that island locations have lower pathogen scores

than those on the mainland. Because the pathogen prevalence

index conflates number of species and abundance, the lower graph

uses an index based solely on pathogen presence or absence; it

shows a similar picture, with islands having fewer pathogens than

expected given their latitude. This result is consistent with the

broader literature on island biogeography, which finds species

richness to be reduced on islands, and will be discussed further in a

later section that considers island area. First we turn to the climatic

factors that might be influencing the latitudinal gradient. In this

dataset, mean annual temperature and precipitation are both

correlated with distance from the equator (mean annual temper-

ature: r~{:80, pv:0001, n~180; mean annual precipitation:

r~{:50, pv:0001, n~186), so the first question is which

variable is more important in shaping pathogen distributions,

and to what extent associated variables (climate extremes and

variation) also play a role.

The physical environment (temperature, frost,

precipitation). Figure 3 shows pathogens as a function of log

mean annual temperature, subset in two ways to illustrate

additional effects on the relationship. The upper graph shows

that islands have lower pathogen scores than would be expected

from their temperature, the same pattern seen with latitude. The

lower graph, which excludes islands, shows that a year-round frost-

free climate predisposes to more pathogens than would be

expected from the climate’s average temperature. Other measures

of within-year temperature extremes were also analyzed, but were

too highly correlated with mean annual temperature to be

included in regressions. Temperature, frost, and islands have

independent effects when included together in a multiple

regression model: log mean annual temperature, frost months

(dummy coded as some vs. none), and islands (dummy coded as

island vs. mainland) together explain 39% of the variance in the

pathogen prevalence index and 40% of the variance in number of

pathogens, with the pathogen prevalence index being higher on

the mainland (b~:33, pv:0001), in areas with high mean annual

temperature (b~:46, pv:0001), and in frost-free climates

(b~{:26, p~:0002).

Precipitation shows a more complicated relationship to patho-

gens, because two variables have independent effects: (a) mean

annual precipitation and (b) the amount of precipitation in the

dryest part of the year. As will be shown below, these two

precipitation variables affect different kinds of pathogens. Mean

annual precipitation showed a modest (R2~:13) curvilinear

relationship with pathogens best approximated with a third-order

polynomial (see Figure 4; one influential precipitation value was

removed from this graph and from the analyses). Extreme dryness

Figure 2. Pathogens by latitude. Separate regression lines for
mainland and island locations.
doi:10.1371/journal.pone.0106752.g002
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during part of the year (measured as log lowest precipitation

during driest month) also increases the pathogen prevalence index

(see Figure 5). Adding mean annual precipitation and seasonal dry

extremes to the previous model increases the variance explained to

50% for both the pathogen prevalence index and number of

pathogens.

This final climate model, showing the effects of the physical

environmental variables (island vs mainland, temperature, frost,

mean rainfall and seasonal dry extremes) has an adjusted R2~:48,

F (7, 171)~24:52, pv:0001 for the pathogen prevalence index

and adjusted R2~:48, F (7, 171)~24:73 for number of patho-

gens.

It has been suggested [36] that greater climate variation leads to

lower diversity because organisms in such climates have evolved to

be generalists, broadly tolerant of a wide range of climates.

Guernier et al. [4] found the opposite to be the case for six groups

of human pathogens: greater seasonal range in precipitation was

associated with greater species diversity. In the present analysis,

also, greater precipitation range (measured as maximum precip-

itation in wettest month minus lowest precipitation in dryest

month) was associated with a higher pathogen prevalence index.

However, dry extremes seem to be driving this relationship;

precipitation range was not a significant predictor when the other

climate variables are included in the model, while lowest

precipitation in dryest month (one componenent of precipitation

range) remains significant.

The effects of temperature, mean precipitation, and dryness

differ for the different pathogens, and the patterning appears to

reflect the ecology of the vector more than the type of pathogen.

The mosquito-borne pathogens are a variable lot, including

malaria (protozoans), dengue (virus), and filariae (nematodes), but

all were worse in hot wet climates. Typhus (rickettsia) leishmanias

(protozoans), and schistosomes (flukes) were all worse in areas with

dry months, perhaps because of greater aggregation of vectors and

hosts during drought. Bivariate correlations between the various

pathogen groups and environmental predictors are summarized in

Table 1.

The cultural environment (population density, mobility,

roads). Pathogen distributions are affected by cultural as well as

physical environmental factors. This section examines the effect of

three cultural variables (population density, residential mobility,

and roads) on pathogen distributions.

Figure 3. Pathogens by natural log of mean annual tempera-
ture (c). Regression lines in the upper graph are subset by mainland vs.
island locations. Regression lines in the lower graph are subset by
locations with frost-free climates vs. those with one or more frost
months.
doi:10.1371/journal.pone.0106752.g003

Figure 4. Pathogen prevalence index by mean annual precip-
itation. The regression line is a third-order polynomial.
doi:10.1371/journal.pone.0106752.g004

Figure 5. Pathogens by seasonal dry extremes, controlling for
latitude. Dry extremes are measured by the lowest precipitation in the
dryest month, logged. Regression with 95% confidence limits.
doi:10.1371/journal.pone.0106752.g005
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Better roads can be expected to broaden the geographic reach

of pathogens by facilitating the movement of people, and of

insect vectors transported inadvertently in the goods they

carry. The mean pathogen prevalence index was higher in

societies with roads (.29) as opposed to footpaths (2.14),

t(139)~{5:17, pv:0001. Pathogens were also higher in more

sedentary groups: societies with permanent camps had a mean

pathogen prevalence index of .22 as compared with 2.37 for more

mobile groups (t(184)~{7:7, pv:0001). Population density was

also, as expected, positively correlated with the pathogen

prevalence index: r~:46 (rs~:47), pv:0001, n~184.

These variables are correlated, since all are associated with

greater social complexity. Figure 6 shows that increases in

population density are accompanied by a trend toward increased

sedentism, although mobile populations have lower pathogens at

the same degree of density. A check for collinearity supports

keeping both sedentism and density in the model (variance

inflation factor = 1.84), although with these variables in the

model, road quality is no longer a significant predictor. The

cultural environmental model, with just density and sedentism,

explains 26% of the variance in the pathogen prevalence index

and number of pathogens. For the pathogen prevalence index, the

standardized coefficients were b~:28, p~:001 for density,

b~:27, p~:002 for sedentism.

Examination of outliers in the climate analysis underscores the

importance of considering the cultural as well as physical

environment. For example, there was a highly influential point

in the temperature and frost model. This point represents the

Teda, a nomadic group in Chad with an unusually low pathogen

score, given their local temperature and rainfall. None of the

physical environmental factors in the dataset explain the

discrepancy adequately, but their comparatively low pathogens

are consistent with their very low density and high mobility at the

time and place of their SCCS ethnographic description.

A combined global model (physical and cultural

environmental variables). The effects of the physical and

cultural environment on disease are not independent, and so the

final global analysis considers the variables in a single model. In a

combined model with the physical environmental variables,

residential mobility is no longer a significant predictor and is

dropped from the final model. However, the earlier result suggests

that the effect of density on pathogens in this model may be due

both to its direct effects and to indirect effects resulting from

associated decreased mobility.

Taken together, the results indicate that there are more

pathogens and pathogen types on the mainland than on islands,

and that pathogens increase with mean temperature, population

density, and a frost-free climate. The relationship with precipita-

tion is more complex, peaking at intermediate levels of mean

Table 1. Pathogen-specific correlations.

Mean annual
Temperature

Yrly Precip
(linear)

Yrly Precip
(polynomial)

Precipitation
Dryest month

Number of
Frost months

Population
Density

Malaria .53*** .42*** .41 2.07 2.41*** .36***

Dengue .56*** .48*** .43 .06 2.38*** .48***

Filaria .53*** .42*** .41 2.02 2.39*** .46***

Typhus 2.07 2.01 .22 2.39*** 2.16* .35***

Trypanosomes .06 .18* .20 2.03 2.12 .05

Leishmanias .21** .08 .14 2.22** 2.33*** .11

Schistosomes .26*** .17* .19 2.24*** 2.24** .18*

Plague .07 .27** .17 .01 2.12 .19*

Spirochetes .35*** .26** .20 2.13 2.35*** .38***

Leprosy .38*** .35*** .23 2.19* 2.31 *** .32***

Pathogen prevalence level by predictors in the final model of Table 2. Spearman’s rank-order correlations were used for all variables other than annual precipitation.
Two correlations are given for mean annual precipitation (‘‘Yrly Precip’’): the polynomial model uses the full sample, but without significance values, which are probably
unreliable for the individual pathogen scores. The linear model is limited to the 78% of the sample where pathogens increase with precipitation (i.e., up to 2000 mm).
Other variables were transformed as indicated in the text, except that frost was not dichotomized. Sample sizes are 180 for log temperature, log precipitation in dryest
month, and number of frost months; sample sizes for the polynomial and linear correlations with mean annual precipitation are 185 and 143 respectively.
�v:05, � �v:01, � � �v:001

doi:10.1371/journal.pone.0106752.t001

Figure 6. Pathogen prevalence index by density and residen-
tial mobility. Points have been jittered to avoid overlap. Population
density is a nonlinear ordinal scale based on persons per sq. mi; see the
methods section for density and mobility codes.
doi:10.1371/journal.pone.0106752.g006
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annual precipitation but also increasing in seasonally dry climates.

The combined model explains 58% of the variance in both

number of pathogens and the pathogen prevalence index. The

regression statistics of this model are in Table 2.

Validity checks. As a check, the final model was run against

each of the two databases from which the combined pathogen

score was derived. Low [28,29] coded data on 7 pathogens using

different historical sources, only two of which were used in the

combined index. Using Low’s 7-pathogen index as the dependent

variable with this model produces an identical R2~:58, although

the coefficient for density was smaller and that for temperature was

larger. The greater influence of temperature using Low’s data is

probably because typhus and plague, which are unrelated to

temperature in Table 1, were not included in that dataset. The

other coefficients were similar to those of the combined index. A

similar summation of the 8 pathogens in our new codes yields an

R2~:60 with coefficients very similar to those of the combined

index.

Another check was done to see whether the relationship

between the independent and dependent variables in this model

was due to spatial autocorrelation (e.g., whether independent and

dependent variables were associated only because they vary

similarly across space). Where this is the case, there will be spatial

autocorrelation in the residuals. In order to evaluate this, the

squared difference between the residuals of each pair of points was

plotted against their great circle geographic distance, using both

the full sample and subsets at increasingly smaller scales (points less

than 3000, 1000, 500, and 200 km apart). Visual inspection

indicated that the relationship was flat (r averaged {:02) at all

scales of distance, none were statistically significant, and there

were no trends with distance over this range.

Differences between high and low latitude regions
The model above is the best fit for global pathogen distributions,

but recent literature suggests that more specific models may be

appropriate at high and low latitudes. Energy availability appears

to have a greater effect on species richness farther from the

equator, whereas water [13] has been proposed as more important

where energy is abundant. Habitat diversity [14] may also be more

important at low latitudes. The sample was divided into tropical

(low latitude) and non-tropical (high latitude) zones, and the results

supported these expectations. Bivariate correlations by latitude

zone are shown in Table 3.

High latitudes. As expected, temperature was a significant

predictor only at high latitudes. In this region, the relationship was

strongly linear (r~:63 for number of pathogens, r~:66 for the

pathogen prevalence index). An unanticipated result was that the

same is true for population density: it is a strong predictor of

pathogens at high latitudes only. A multivariate model using only

those two variables (log mean annual temperature and population

density) explains 56% of the variance in the pathogen prevalence

index and 61% in pathogen number at high latitudes. No other

variables add significantly when those are in the model.

Low latitudes. The pattern in the tropical locations, in

contrast, is shaped more by precipitation than by temperature.

The relationship between precipitation and pathogens in the

tropics is similar in shape to that shown in Figure 4 for the full

sample, but the relationship is much tighter, the peak is at

somewhat lower precipitation, and the pathogen decline at higher

precipitation is more apparent. The best multivariate model of the

pathogen prevalence index in the tropics includes mean annual

precipitation as a third-degree polynomial together with popula-

tion density (notwithstanding its weak bivariate relationship) and

the dummy-coded island vs. continent (most of the islands in the

sample are in the tropics). This model explains 44% of the

variance in the pathogen prevalence index and 50% in pathogen

number.

Table 3 shows that habitat diversity (measured as number of

vegetation zones in a given radius) is also a factor in shaping

pathogen diversity in the tropics. Habitat diversity remains

significant when added to the other variables (precipitation,

islands, density) in the tropical model. However, the overall R2 is

reduced, perhaps because of reduced sample size when that

variable is included. Habitat diversity, alone among the variables

Table 2. Final regression model for predictors of the pathogen prevalence index and number of pathogens.

Prevalence Index Number of Pathogens

Variable b p b p

Temperature 0.30 v:001 0.31 v:001

Frost months 20.19 :001 20.20 v:001

Island 0.31 v:001 0.31 v:001

Driest month 20.18 :009 20.19 :006

Pop Density 0.31 v:001 0.30 v:001

Precipitation (P) 1.78 v:001 1.62 v:001

P2 22.73 :001 22.45

P3 1.15 :024 1.03 :006

F(8,168) = 29.57 F(8,168) = 29.23

R2~:58 R2~:58

Variable definitions:
Temperature: Log mean annual temperature (c).
Frost months: 1 = presence 0 = absence.
Island: 1 = mainland 0 = island.
Driest month: Log lowest precipitation in driest month (mm).
Pop Density: Population density (ordinal scale, 1–7).
Precipitation: Mean annual precipitation (mm).
doi:10.1371/journal.pone.0106752.t002
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considered in this study, is a stronger predictor of number of

pathogens than it is of the prevalence index. Habitat diversity

presumably facilitates pathogen species richness via niche differ-

entiation, whereas temperature, precipitation and population

density also have direct effects on pathogen prevalence by

enhancing pathogen growth and transmission.

The island model
We now turn to the subset of the sample consisting of island

locations, in order to test the prediction from classical island

biogeography that small islands will have fewer species than large

islands. The analysis is based on 37 islands (New Guinea was

excluded because it is home to four societies in the sample). The

prediction is supported: controlling for distance from the equator,

the partial correlation of log island area with pathogens is

r~:63, pv:0001 for the pathogen prevalence index and

r~:61, pv:0001 for number of pathogens. Figure 7 shows the

relationship for islands in the tropics; the non-tropical islands are

included in the statistics but are not shown in the figure because

they span a wide latitudinal range.

As Figure 7 indicates, the linear relationship breaks down for the

smallest islands. This is often the case in small islands, where the

effect of area on species richness is overshadowed by stochastic

factors [37,38]. In such cases, species richness typically plateaus at

the lowest level, which may not be the case in these data. The

leveling off with small islands could be an artifact of the poor

resolution of historical pathogen data, reflecting extrapolation from

better-known larger islands to poorly-sampled small islands nearby.

A regression without the four smallest islands probably presents a

more accurate picture of the relationship between pathogens and

island area; in this model the largest island (Borneo) is also best

removed as it is a highly influential point. Within this intermediate

range of values, the relationship is linear with the log of island area,

and the regression of log area and latitude on pathogen number

provides a better fit: F (2, 29)~23:51, pv:0001, R2~:62. The

unstandardized coefficient for log island area on number of kinds of

pathogens is 0:64.

Theory predicts that pathogens will also decrease with distance

from the mainland. The relationship is weak in this dataset, and its

independent effect is hard to evaluate since the smallest islands are

also farthest from the mainland. Getting a good measure of

isolation is difficult, since it involves not just distance to the nearest

continent but to nearby islands that could be links to sources of

greater diversity. Various distance measures were used to try to

capture this, but none showed more than a weak correlation with

pathogens, or remained significant when island area was also

included in the model. However, this could reflect measurement

difficulties rather than relative importance. It is also possible that

some of the area effect reflects the greater isolation of many of the

smaller islands.

Discussion and Conclusions

Summary
Many of the variables that influence the distribution of free-

living taxa also predict the number and prevalence index of

Table 3. Bivariate correlations between independent variables and pathogen number and prevalence index, by latitude zone.

Low latitudes High latitudes

Number Prevalence Number Prevalence

Mean temperature 2.20* 2.18 .59*** .61***

Mean precipitation .44*** .40** .30 .35

Low precip dryest month 2.33*** 2.31 ** 2.33** 2.31**

Population density .14 .17 .67*** .69***

Habitat diversity .36*** .24*** .05 2.01

Note. Table shows Spearman’s rank order correlation coefficients except for mean annual precipitation, where the correlation is based on the adjusted R2 of a third-
degree polynomial regression (no significance values are given for high latitudes because of poor fit diagnostics). Sample sizes for low/high latitudes: temperature 107/
73, precipitation 111/75, precipitation dryest month 107/73, habitat diversity 97/75, density 109/75. Habitat diversity calculated at 150 miles radius; the correlation was
slightly less at 100 miles.
�v:05, � �v:01, � � �v:001

doi:10.1371/journal.pone.0106752.t003

Figure 7. Pathogens by Island Area (tropical islands only), with
loess curves.
doi:10.1371/journal.pone.0106752.g007
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human pathogens in this dataset. Pathogens increased with mean

annual temperature and, controlling for mean temperature, in

climates that remained free of frost throughout the year. The effect

of temperature was highly significant, but only outside the tropics.

Within the tropics, mean annual precipitation was a more

important predictor, and was associated most strongly with

mosquito-borne diseases (malaria, dengue, filariasis). Extreme

seasonal dryness was also associated with more pathogens,

especially typhus, leishmaniasis, and schistosomiasis. Finally,

pathogens were worse in areas with high population density.

Pathogens were also more numerous on the mainland than on

islands, and on large as opposed to small islands. Most of the

predictions derived from species diversity patterns in other taxa

were supported, and are discussed in turn below, beginning with

the island results.

Island biogeography
The classic model of island biogeography [15] predicts that

there will be fewer species on islands that are small and isolated.

The model uses simplifying assumptions [16], and the assumption

of equilibrium is particularly problematic when studying the

distribution of human infectious diseases. Nonetheless, and

notwithstanding the heterogeneity of the 37 islands in this dataset,

the classic predictions of island biogeography were upheld: islands

have fewer kinds of pathogens than expected given their climate,

and fewer in smaller than in larger islands. Island isolation did not

have an independent effect, but may have had an indirect

influence since many of the smaller islands in this dataset were also

more isolated. Smaller islands also offer fewer types of habitat, but

this appears not to be driving variation in pathogen richness in this

dataset: although habitat diversity and area of islands were

correlated, only island area had any relationship to pathogens.

The lower pathogen load on islands is consistent with Curtin’s

[39] meticulous accounting of historical troop mortality, which

found that early in the 19th century some Pacific islands had a far

lower pathogen load than would be expected by their climate,

particularly Tahiti ‘‘which gave French troops a 100% mortality

improvement over France’’ in the 1840s and continued to give

benefits into the early 20th century ([39], p. 12). A similar pattern

existed for Hawaii and New Zealand. (This ecological protection

later made the islanders vulnerable to novel European diseases,

which caused huge mortality throughout the Pacific).

Most of the pathogens in this dataset are vector-borne, and this

is likely to enhance the influence of island area and isolation since

two species, pathogen and vector, need to be present at the same

time [40]. Some pathogens also require a minimum size of host

population in order to remain endemic. This triple challenge can

be expected to amplify the effect of isolation and extinction on

pathogenic species on small islands, and among small isolated

populations generally [41].

Latitudinal gradients
Both the pathogen prevalence index and number of pathogens

show a strong latitudinal gradient in these data, with more

pathogens closer to the equator. This could reflect vector ecology,

since malaria (protozoans), dengue (virus) and filariae (nematodes)

are taxonomically diverse, yet all are transmitted by mosquitos and

all are most prevalent in hot wet climates where mosquitos are

abundant. Typhus, leishmanias, and schistosomes, on the other

hand, are transmitted by other vectors and intermediates (lice and

fleas, sandflies, and freshwater snails, respectively) and had

different environmental correlates. The latitudinal gradient in

human pathogens may also reflect the ecology of alternate hosts.

Rodents, an important reservoir for many human diseases, host

more viral parasites at lower latitudes, perhaps because of

latitudinal gradients in their own viral vectors [42]. This

complexity may contribute to the inconsistent findings regarding

latitudinal gradients in parasite species richness across host taxa

[7,9].

Environmental predictors
Although a latitudinal gradient in species richness exists across a

wide range of free-living taxa, the cause of this pattern remains a

topic of debate [10,11] and its relevance to parasitic taxa remains

unclear. A number of mediators have been discussed in the

literature; those discussed below include temperature (often used

as a proxy for energy availability), frost, and precipitation.

Pathogen prevalence levels increased with temperature in 7 of

the 10 pathogen groups, including the mosquito-borne pathogens,

which are known to be highly temperature sensitive [43].

Although growth and survival of insect vectors, hence pathogen

transmission, decline in extreme heat [44], the relationship with

log temperature was linear in these data. There were also more

kinds of pathogens as temperature increased. Locations with a

year-round frost-free climate had more pathogens than would be

expected from their mean annual temperature, probably by

enabling pathogens and their vectors to overwinter.

Precipitation had a more complex relationship with the

pathogen prevalence index, because mean yearly precipitation

and extreme seasonal dryness had different effects and affected

different pathogens. Mean annual precipitation had a curvilinear

relationship with both the prevalence index and pathogen

number, peaking at intermediate values and declining in very

high precipitation areas. The association between pathogens and

mean annual precipitation was especially strong in the tropics and

for mosquito-borne pathogens; perhaps the decline in very wet

areas is associated with mosquito larvae being washed out due to

heavy rains and flooding.

Areas with little or no precipitation during the dryest part of the

year (lowest precipitation in dryest month) also had more

pathogens. Seasonal dryness affected a different group of

pathogens than did mean temperature and precipitation. The

greatest effect was on typhus. Typhus is transmitted by fleas and

lice and can become worse in crowded conditions with poor

sanitation, and when drought causes rodents (and the fleas they

carry) to move near human habitation in search of water. An

analysis of tree-rings in pre-industrial Central Mexico found that a

significant drought occurred during the first year of all 22 large

typhus outbreaks studied [45]. A similar effect via aggregation of

people and the sand fly vector during dry periods has been

associated with temporal changes in leishmaniasis in Brazil [46].

Guernier et al. [4] found precipitation range to be the single

best predictor of species richness across six categories of human

pathogens. In the present dataset, precipation range (highest

precipitation in wettest month minus lowest precipitation in dryest

month) was also associated with significantly higher pathogen

number, and with the prevalence index. However, range was not a

significant predictor when other climate variables were included in

the model, while seasonal dryness (one component of range)

remained significant. In these data, therefore, the more influential

aspect of precipitation range on pathogen distributions appears to

be seasonal dryness.

Differences at low and high latitude
The relative importance of temperature and water as predictors

of species richness has been shown to vary with latitude, with

temperature being more important at high latitudes and

availability of water more important at low latitudes, where
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energy is already abundant [13,47]. These patterns were also

found in the pathogen data. In high latitude areas, mean annual

temperature was the strongest climatic predictor of pathogen

number and the prevalence index, whereas in tropical areas mean

annual precipitation was the key climate variable. Surprisingly,

population density was also a much stronger predictor in high

latitude areas; one plausible reason for this finding is that there are

more alternate animal hosts in the tropics, so that zoonotic

pathogens may remain endemic there even when people are at low

density.

Historical data: Advantages and limitations
Cross-national differences in pathogen prevalence today have

been shown to reflect differential access to disease prevention

measures more than environmental variables, although pathogen

richness still shows the latitudinal gradient found with other taxa

[3]. Historical data on remote populations, as used here, reduces

the influence of public health and modern medicine, allowing for a

clearer picture of the way environmental variables shape

geographic patterning in pathogen prevalence. A second advan-

tage of this dataset for environmental analysis is that the data

describe local conditions at a consistent scale, rather than being

based on national averages. In the present study, the pathogen

prevalence index and number of kinds of pathogens show similar

patterns, and are strongly environmentally determined.

Use of historical data has limitations as well as advantages, due

primarily to lack of precision in the historical source material:

pathogen distributions were for the most part not available at the

species level, and prevalence was assessed by an index based on

ordinal scales for each pathogen, rather than by direct counts of

infected individuals. Limitations of the source material also bias

the pathogen sample toward vector-borne pathogens, which are

less global than other pathogens [48] and are likely to show a

stronger environmental signature. For this reason, prevalence and

richness are more likely to be correlated with each other in this

group of pathogens, even in modern datasets [49], and latitudinal

gradients and climatic correlates are likely to reflect vector as well

as pathogen ecology [50].

The results of this study show strong support for several

theoretical and empirical findings in geographical ecology, and

show that they explain human pathogen distributions on a global

level. The results offer insights into past and present patterns of

infectious disease, and provide information relevant to the likely

effects of global warming on pathogens sensitive to temperature,

frost, and seasonal dry extremes.
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42. Bordes F, Guégan JF, Morand S (2011) Microparasite species richness in rodents

is higher at lower latitudes and is associated with reduced litter size. Oikos 120:
1889–1896.

43. Patz JA, Epstein PR, Burke TA, Balbus JM (1996) Global climate change and

emerging infectious diseases. JAMA 275: 217–223.

44. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, et al. (2013)

Optimal temperature for malaria transmission is dramatically lower than
previously predicted. Ecology Letters 16: 22–30.

45. Acuna-Soto R, Stahle D, Villanueva Diaz J, Therrell M (2007) Association of

drought with typhus epidemics in Central Mexico. In: AGU Spring Meeting
Abstracts. volume 1.

46. Thompson RA, de Oliveira Lima JW, Maguire JH, Braud DH, Scholl DT
(2002) Climatic and demographic determinants of American visceral leishman-

iasis in northeastern Brazil using remote sensing technology for environmental

categorization of rain and region influences on leishmaniasis. The American
Journal of Tropical Medicine and Hygiene 67: 648–655.

47. Whittaker RJ, Nogués-Bravo D, Araújo MB (2007) Geographical gradients of
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