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ABSTRACT: The effect of natural fractures, their orientation, and their interaction
with hydraulic fractures on the extraction of heat and the extension of injection fluid
are fully examined. A fully coupled and dynamic thermo-hydro-mechanical (THM)
model is utilized to examine the behavior of a fractured geothermal reservoir with
supercritical CO2 as a geofluid. The interaction between natural fracture and
hydraulic fracture, as well as the type and location of geofluids, influences the
production temperature, thermal strain, mechanical strains, and effective stress in
rock/fractures in the reservoir. A mathematical model is developed by using the fully
connected neural network (FCN) model to establish a mathematical relationship
between the reservoir parameters and the temperature. The response surface
methodology is applied for qualitative numerical experimentation. It is found that
the developed FCN model can be utilized to forecast the temporal variation of
temperature in the production well to a desired level using FCN. Therefore, the
numerical simulations developed with the FCN method can be useful tools to investigate the temperature evolution with higher
accuracy.

■ INTRODUCTION
Geothermal energy is renewable in nature and abundant in the
crust of the Earth. Geothermal reservoirs can be classified as
hydrothermal and hot dry rock (HDR) geothermal reservoirs.
HDR geothermal reservoirs have low porosity and permeability
and are generally available at a depth of 3 to 10 km from the
surface. As the heat stored in the HDR cannot be extracted via
conventional engineering techniques, proper selection of
injection and production wells connected by hydraulic fractures
in high-temperature regions is required, namely, engineered/
enhanced geothermal systems (EGS).1,2

Cold fluid or heat transfer medium (geofluid), e.g., water or
other working fluid, is injected into EGS to extract the heat
energy from the earth’s crust to the surface. Recently,
supercritical CO2 (SCCO2) has gained a lot of attention as an
alternative geofluid for the extraction of heat from geothermal
reservoirs. As first mentioned by Brown,3 SCCO2 as a geofluid is
considered superior to water due to its high compressibility, high
expansivity, and low viscosity. As a result, there is less resistance
for transport of SCCO2 in permeable rocks and fractures,
helping to reduce the injection pump power and engineering
cost. Previous numerical studies in geothermal reservoirs4−18

have also shown that SCCO2 performed better as a geofluid than
water. Biagi et al. (2015) investigated the extraction of heat from
the geothermal reservoir using CO2 as geofluid.4 They used the
TOUGH2 module ECO2N simulator to simulate thermal

variation. They found that the decline in the production
temperature is due to the cooling of the rock matrix. Zhang et al.
(2016) investigated the performance of CO2 as a geofluid during
the organic Rankine cycle (ORC) operation in the geothermal
reservoir.5 They found that the quality of CO2 and the
production temperature influenced the selection of the ORC
fluid. They also found that the efficiency of the CO2-EGS
systems decreases with impurities in CO2. Pan et al. (2016)
investigated the feasibility of (SCCO2) as a geofluid using a
thermohydro model.6 They found that (SCCO2) outperforms
the Acoculco, Puruańdiro, and Agua Caliente Comond
reservoirs of Mexico. It is about 160% more than the water-
based systems. Zhang et al. (2017) studied the extraction of
geothermal heat from high temperature gas reservoirs using CO2
as a geofluid.7 They also investigated the geological storage of
CO2 in the high-temperature gas reservoirs. They found that the
quality of CO2 produced from the high-temperature gas
reservoir greatly influences the geothermal performance. A low
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water and methane content will improve the geothermal
efficiency of the high-temperature gas reservoirs. Pan et al.
(2015) developed a well-reservoir model for geothermal
reservoirs using CO2 as a geofluid.8 Yin et al. (2011) developed
a finite element code to inject CO2 into porous media.10 They
investigated the pressure and stress variations near the well
during the injection of CO2 and found that temperature and
chemical effects influence high pressure and stress, leading to
reservoir injection problems. Zhang et al. (2013) investigated
the thermodynamic performance of CO2-EGS over water-
EGS.11 They found that CO2-EGS systems produce more heat
than water-EGS systems in low-enthalpy reservoirs. CO2-EGS
systems are underperforming at high flow rates due to high
resistance losses. Liang et al. (2016) investigated the geothermal
performance using CO2 as a geofluid.13 Their study divided the
process into three stages: 100% water production, water-CO2
coproduction stage, and only CO2 production stage. They found
that geochemical reactions had less impact on the heat
performance of the reservoir. From their investigation, 45% of
the heat recovered from the reservoir. They also suggested that a
proper selection reservoir is essential to implement this
technology. Luo et al. (2014) numerically investigated the
performance of CO2-EGS systems in a geothermal reservoir with
doublet configuration.16 CO2 injection rates can influence heat
transfer between the fluid and the rock matrix. The production
temperature is reduced with an increasing mass injection rate.
They found that a mass flow rate of 10 kg/s is the most favorable
for 20 years of heat mining using CO2 as a geofluid in double
systems. Wang et al. (2018) found that the CO2 systems have
more fluid loss than the water system during heat extraction.17

They found an increase in formation permeability in CO2-based

systems, which increases the level of sequestration of CO2 in
geothermal reservoirs. Guo et al. (2019) investigated the
performance of a fractured geothermal reservoir using CO2 as
a geofluid.18 They found that an increase in the density of the
fractures decreases the heat extraction rate. They found that the
systems based on CO2 perform well for a given flow rate
compared with those based on water from fractured geothermal
systems. Furthermore, the evolution of the CO2 plume in the
reservoirs during geothermal recovery also led to the excellent
capacity of geological CO2 sequestration.4−9 The mathematical
models used in the above works do not consider the dynamic
variation of rock and fracture properties. Therefore, in the
present work, we focus on developing the THM model with
dynamic variation of fluid, rock, and fracture properties.

In enhanced geothermal systems (EGS), hydraulics and
natural fractures play a significant role in heat production and
fluid flow. When cold fluid is injected into the reservoir through
injection wells, it becomes hotter during transportation and is
ultimately produced as hot fluid from the production
wells.15,18−23 Natural and hydraulic fractures have better
transmissibility than the rock matrix and thus act as preferential
fluid flow paths.2,15,17,19−25 Therefore, the recovery of heat from
hot dry rocks is based mainly on the distribution of natural and
hydraulic fractures.26−28 The evolution of the flow and
mechanical force fields in the geothermal reservoir depends
mainly on the external loads imposed and the thermal drag,26−29

which can generate stress and strain due to thermal and
mechanical variations in the reservoir. Fractures’ permeability
changes during cold water circulation, resulting from variations
in thermal stresses.30−33 These variations impact the effective
normal stress in the fracture, causing it to open and then close.

Table 1. Comparison of the Present THM Model with the Existing Models Using CO2 as a Geofluid

SI.
no author geofluid type of model remarks

ML/
DL/
NN

1 Biagi et al. (2015)4 CO2 and water TH no mechanical model which overestimates the production
temperature

no

2 Zhang et al. (2016)5 CO2 and water TH for ORC no mechanical model which overestimates the production
temperature

no

3 Pan et al. (2016)6 CO2 and water TH no mechanical model which overestimates the production
temperature

no

4 Zhang et al. (2017)7 CO2 and natural
gas

two-phase TH no mechanical model which overestimates the production
temperature

no

5 Pan et al. (2015)8 CO2 and water TH wellbore model no mechanical model which overestimates the production
temperature

no

6 Yin et al. (2011)10 CO2 and water THMC not much effect of the chemical process during the geothermal
operation is identified and computationally very expensive

no

7 Zhang et al. (2013)11 CO2 and water TH no mechanical model which overestimates the production
temperature

no

8 Liang et al. (2016)13 CO2 and water TH no mechanical model which overestimates the production
temperature

no

9 Luo et al. (2014)16 CO2 and water TH no mechanical model which overestimates the production
temperature

no

10 Wang et al. (2018)17 CO2 and water TH the no mechanical model which overestimates the production
temperature

no

11 Guo et al. (2019)18 CO2 and water TH no mechanical model which overestimates the production
temperature

no

12 Yan et al. (2023)55 water THM model single fracture and hot sedimentary aquifers yes
13 Yan et al. 2023)56 water THM model single fracture yes
14 Zhou et al. (2019)1 water TH model no mechanical model which overestimates the production

temperature
yes

15 Pandey et al. (2021)57 water TH model the no mechanical model which overestimates the production
temperature

yes

16 present work CO2 and water THM model with dynamic rock,
fluid, and fracture properties

assumed no chemical reactions occur during the operation of heating
recovery from the geothermal reservoir; multi fracture system

yes
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As the fluid continues to circulate, the temperature in the vicinity
of the fractures decreases, altering the effective stress and causing
the fracture to close slightly, thus maintaining dynamic
behavior.33,34 These variations caused dynamic fluid flow in
fractures, so the type of geofluid and lateral forces are critical
during heat extraction.

The use of data-driven models, particularly deep learning
(DL) models, in the energy sector has increased rapidly because
of their predictive capabilities. These models are capable of
handling nonlinear problems of high dimensions, which is more
efficient than traditional numerical simulations based on
physics.35−40 DL has been used in various applications, such
as predicting rock properties, reservoir fluid properties,
production performance, well testing, geological CO2 sequestra-
tion, and production temperature in geothermal reser-
voirs.36−38,41−54 Recently, DNNs have been used to predict
the production temperature at different time steps in geothermal
reservoir modeling. Yan et al. (2023) developed a robust general
thermal decline model for geothermal reservoirs. They
integrated it with DL and Multi-Objective Optimization for
geothermal reservoir management considering uncertainties in
reservoir property.55 Yan et al. (2023) used the Fourier neural
operator to predict the geothermal temperature field over time
with a heterogeneous fracture aperture field in EGS with high
precision and further performed reservoir optimization for
temperature control based on a control neural network (NN) or
stochastic gradient descent method.56 Zhou et al. (2019)
developed a NNmodel based on backpropagation to predict the
production temperature of the Zhacang geothermal reservoir.1

They used the TOUGH2-EOS1 code, a thermo-hydromodel, to
generate a data set for training and testing. The R2 of the ANN-
based model is 0.998 for training and 0.98 for testing. Pandey et
al. (2021) developed an artificial NN model for thermal
drawdown in the EGS system.57 This work created a data set
with a thermo-hydro model using the local temperature,
pressure, mass rate, and fracture transmissibility. Kalogirou et
al. (2021) developed thermal maps at three different depths such
as 20, 50, and 100 m using artificial NNs.58 Esen and Inalli
(2009) used the ANN model to predict the performance of
vertical ground-coupled heat pumps for cooling and heating
cycles. In this work, the vertical well bore is used to extract heat
from the three different depths, including 30, 60, and 90 m, and
found that the Levenberg−Marquardt backpropagation algo-
rithm with 8 neurons is best suitable for both predicting cooling
and heating cycles.59 Gudmundsdottir and Horne (2020) used
the feedforward model (MLP) and recurrent neural network
(RNN) models to predict tracer concentrations in the
production well to investigate the breakthrough in the synthetic
fractured reservoir. They found that the MLP model performed
better and faster in training compared to the RNN model.60

Akin et al. (2010) used artificial intelligence techniques to
optimize well locations in the Kizildere geothermal field in
Türkiye. They used five mass rates to optimize well distances in
this field.61 The comparison of the different models used in
geothermal reservoirs with CO2 as geofluid and the application
of different ML/DL/NN models are presented in Table 1.

Motivated by previous work, this research focuses mainly on
developing the THM model with dynamic properties.
Utilization of SCCO2 as a geofluid during the heat extraction
operation is compared with the water-EGS system. The physical
and thermal properties of CO2 are a function of the pressure and
temperature. Which is actually used in the present work.
Injection of cold fluid into the fractured reservoir leads to rapid

cooling and variation in rock and fracture parameters. These
variations are included in the developed mathematical model.
We evaluate the impact of the orientation of natural fractures
and its interaction with hydraulic fractures. Furthermore, we
develop a hybrid predictive approach involving fully connected
neural network (FCN) models to establish a mathematical
relationship between the influencing parameters and the
production temperature. The response surface methodology
(RSM) is utilized to quantify the number of qualitative
numerical experiments required to establish FCN models.
These models are trained using data from the physics
simulations. They can be used to predict the production
temperature of proposed scenarios within the maximum and
minimum limits of the primary control parameters, including
injection temperature, injection and production velocities,
aperture, and length of the HF. We also present the
mathematical relation between the input and output variables
in the present work.

The communication is organized as follows. In the
Mathematical Modeling Section, we introduce the governing
equations for heat transfer, fluid flow, and geomechanics for
porous media and fractures. In the Geological Model for the
Heat Extraction fromGeothermal Reservoir Section, we provide
information on the geometry of the computational model, the
creation of fractures in the porous medium, and the initial and
boundary conditions. The implementation of the governing
equations, coupled equations, is presented in the THM Model
Implementation Section. In the Results and Discussion Section,
we provide results and discussions of temperature variation and
strain variations along with the selection of NNs to predict the
temporal evolution of the production temperature. Finally, we
conclude this work with a few remarks in the Conclusions
Section.

■ MATHEMATICAL MODELING
Mathematical Equations. The mathematical formulations

used in this study, which relate the transportation of heat and
fluid in a rock matrix with geomechanical variations, are given by
eqs 1−24. The transfer of heat in the rock matrix is presented in
eq 1.

+ · · =C
T
t

C u T T Q( ) ( )p peff fl ,fl dlm eff m,frac

(1)

= +C C C( ) , (1 ) ,p p peff mat mat mat mat fl fl (2)

= + (1 )eff mat mat mat fl (3)

=u pdlm
mat

fl
m

(4)

Here, C( )p eff is the effective heat capacity within the matrix;
ϕmat is the rock porosity; ρmat is the rock density; Cp,mat is the
heat capacity of the matrix; Cp,fl is the heat capacity of the fluid;
λeff is the effective thermal conductivity within the matrix; λmat is
the thermal conductivity of the matrix; λfl is the thermal
conductivity of the fluid; Qm,frac is the coupled source/sink term,
which accounts for the heat transfer from matrix to fracture and
fracture to matrix; udlm is the Darcy velocity; p is the pressure, T
is the temperature.

The collective mass conservation and momentum equation62

is presented in eq 5.
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+ · =
t

u q
( )

( ) 0mat fl
fl dlm m (5)

In eq 5, qm accounts for the mechanical variations that occur
during fluid flow in the matrix. The mathematical representation
of qm is given in eq 6.

=
i
k
jjjjj

y
{
zzzzzq

K
K t

1m fl
d

fl

vol

(6)

The mathematical equation that can represent the poroelastic
storage is given in eq 7

=
t M

p
t

( )mat fl fl
(7)

The Biot’s modulus (M) and Biot−Willis coefficient (αb) are
given in eqs 8 and 9, respectively.63,64

= +
M K K
1

( )
1mat

fl
b mat

mat

d (8)

= K
K

1b
d

fl (9)

Here, αb is the Biot−Willis coefficient; Kd and Kfl are the drain
modulus and fluid modulus, respectively. A simplified form of
the combined hydro-mechanical equation is given in eq 10.
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ÅÅÅÅÅÅÅÅÅÅ
i
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y
{
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jjjjj
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t
u

K
K t

1
1

( )

1

fl
mat

fl

d

fl
mat

mat

d

m
fl dlm

fl
d

fl

vol

(10)

The heat transfer in the natural/hydraulic fractures is
represented in eq 11.

+ ·

·

=

d C T
t

d C u T

d T

d Q

( ) ( )

( ( ) )

p pafrc eff afrc fl ,fl frc frc

afrc eff frc

afrc m,fracT (11)

The governing equation to describe the fluid flow with
mechanical variations in the fracture is given in eq 12.

+ · = +d
t

d u d
t

d q( ) V
f

f w
Tn w f f f w b f f (12)

The flow rate (uf) per unit length in the natural or hydraulic
fractures is given by eq 13.

=u
d
R

p
12f

f
2

f w
Tn f

(13)

The mass transfer coupling (that is, qf) between the rock
matrix and the fracture is shown in eq 14.

=q
p
nf

f

w (14)

The volumetric strain (εvol) is described in eq 15.
= +vol 11 22 (15)

The displacement vectors, ε11 and ε22, in eq 15 are defined as

follows: = +( )0.5 u
x

u
xab

da

b

db

a
, where uda and udb are the

displacement vectors in the “a” and “b” directions, respectively.
The governing equation for the equilibrium of forces acting on
the computational domain is presented in eq 16.65−69

· + + =
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjjj

y
{
zzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
p E F

1 2
( )s b m T fl mat mat A

(16)

Here, σs is the stress, E is the elastic modulus, and η is the
Poisons ratio. Natural and hydraulic fractures in the computa-
tional domain are considered thin elastic layers in the present
work. The force per unit area acting on the fracture is
mathematically represented as a function of the spring constant
(kA), damping constant per unit area (dA), and the thickness of
the fracture (or the aperture of the fracture) (dafrc), which gives
the following eq 21.

The fractures in this work are considered to be a thin elastic
layer. The force per unit area acting on the fracture
mathematically represented as a function of the spring constant
(kA,f), damping constant per unit area (dA,f), and fracture
thickness (or fracture aperture) (df) is given in the following eq
17.

=

+

F k u u u d
u u u

t

d
u u

t

( )
( )

0.5
( )

A,f A,f u,f d,f 0 A,f
u,f d,f 0

f f

2
u,f d,f

2 (17)

The spring constant for the unit area acting on the thin elastic
layer is described in eq 18.

= +k k n n k I n n( )A n,f s,f (18)

The stiffness of the fracture (kn,f) in the normal direction and
the shear stiffness of the fracture (ks,f) are defined as a function of
the elastic modulus and the Poisson ratios of the fractures given
in the eqs 23 and 24, respectively.

=
+

k
E

d
(1 )

(1 )(1 2 )n,f
f f

f f f (19)

=
+

k
E

d2 (1 )s,f
f

f f (20)

=

+

F K u u u d
u u u

t

d
u u

t

( )
( )

0.5
( )

A A u d 0 A
u d 0

mat afrc

2
u d

2 (21)

The spring constant for the unit area is given in eq 22

= +k k n n k I n n( )A n s (22)

The stiffness in the normal direction and the shear stiffness are
defined as a function of both the elastic modulus, and the
Poisson ratios of fractures are given in eqs 23 and 24,
respectively.

=
+

k
E

d
(1 )

(1 )(1 2 )n
frc frc

afrc frc frc (23)

=
+

k
E

d2 (1 )s
frc

afrc frc (24)

Rock, Fracture, and Fluid Properties. The porosity of the
rock matrix used in the present work depends on the variation of
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strains generated due to mechanical and thermal loads and is
given in eq 25.66,70

=
+

+

=
+ [ ]

+
T

1
(1 )

1

mat
ini vol T

vol

ini vol T ini

vol (25)

The elastic modulus of the rock and fractures is a function of
the porosity variation (i.e., eq 25) and is represented in eq 26.71

=
i
k
jjjjj

y
{
zzzzz

E
E

dln ( )
i

mat ini
(26)

The variation in permeability of the rock matrix and fractures
is represented in the equations (27) and (28), respectively.72−74

=
+

=
i
k
jjjjj

y
{
zzzzz

Ä
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ÅÅÅÅÅÅÅÅÅÅ
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Cln
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0
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vol n vol

(27)

= *
i
k
jjj y

{
zzzexp n

frcN frc0 (28)

The heat capacity and thermal conductivity of the rock and
fracture are given in eqs 29 and 30 respectively.50,66

=
+ ×

+

= [ +
]

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑ

C

C

( )
(2.6log( ) 4.2) 10

2.7log( ) 0.3
;

if 20 log( ) 11

( ) 13log( ) 699;
if 11 log( ) 2

p

p

,mat

3

,mat

(29)

=T T( ) 2.6 0.0025( 293.15)r (30)

The effect of temperature variation on water viscosity, water
density, water specific heat, and water thermal conductivity is
expressed in mathematical equations, namely eqs 31, 32, 33, and
34, respectively.72,75

=

+ ×
× + ×
×

+ ×

× + ×
+ ×

l

m

ooooooooooooooooo

n

ooooooooooooooooo

T

T T
T T
T

T
T

T T
T

T

( )

1.38 0.028 1.36 10
4.61 10 8.9 10
9.08 10

3.84 10 ;
if 273.15 413.15

0.004 2.11 10 3.86 10
2.4 10 ;

if 413.15 553.15

w

4 2

7 3 10 4

13 5

16 6

5 8 2

11 3

(31)

= + + ×T T T T( ) 838.47 1.4 0.003 3.72 10w
2 7 3

(32)

= + ×

+ ×

C T T T T

T

( ) 12010.15 80.41 0.31 5.38 10

3.62 10

pw
2 4 3

7 4 (33)

= + ×

+ ×

T T T

T

( ) 0.869 0.009 1.58 10

7.98 10
w

5 2

9 3 (34)

Variations in the thermodynamic properties of SCCO2,
including viscosity, density, heat capacity, and thermal
conductivity, are described in eqs 35−38. These properties
depend on temperature and pressure and are valid within the
temperature range of 273 to 553 K and the pressure range of 15
to 40 MPa.15

Figure 1. Arrangement of natural fracture in the porous media (Fracture aperture varied from 0.1 to 5 mm and fracture length varied from 1 to 40 m).
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■ GEOLOGICAL MODEL FOR THE HEAT EXTRACTION
FROM GEOTHERMAL RESERVOIR

Computational Model. In this work, we use a two-
dimensional (2D) porous media geometry with dimensions of
500 × 500 × 30 m3 x−y−z directions. There is a 200 m long
hydraulic fracture, as shown in Figures 1 and 2a. The cold fluid
injection and heat production wells are placed at the extremes of
the hydraulic fracture, the primary flow path for the geofluid to

gain heat from the surrounding rock. The computational porous
domain has an initial rock porosity of 0.04 and an initial rock
permeability of 3.2 × 10−16 m2. Natural fractures vary in length
from 5 to 40 m, and their orientations change from 0 to 165°, as
shown in Figure 1. Figure 2b shows the complex reservoir
geometry with different arrangements of the natural fractures.

Natural Fracture Geometry. The generation of natural
fractures is discussed in detail in this section. The development
of an appropriate fracture network76−78 in porous media is
essential to characterize fluid flow, especially in the development
of EGS, because the fracture network dominates the extraction
of heat from the rock as the geofluid moves from the injection
well to the production well.2,24,79 We adopt the power-law
distribution function to generate natural fractures in the
computational domain. The mathematical representation of
the power-law distribution is presented in eq 39.

=
i
k
jjjjj

y
{
zzzzzf a

b
a

a
a

( )
1

b

min min (39)

where a is the population value; amin is the minimum population
value; b is the power law exponent.

The Fisher distribution is used to define the orientation of the
fracture. The mathematical form of the Fisher distribution is
described as follows,

=f K
e

e e
( )

sin K

K KF

cosF

F F (40)

Figure 2. Reservoir geometry and boundary conditions.
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In eq 40,KF is the Fisher constant; θ is the angular deviation of
the fracture. Fisher constant (KF) indicates the tightness of the
orientation cluster. The aperture, orientation, and distribution of
the fractures strongly determine the flow characteristics of the
natural fractures. In general, the walls of natural fractures are
rough. In the present work, we consider the walls to be
smooth.80 The aperture is uniformly distributed from 0.1 to 5
mm. The relation between the length of the fracture and the
aperture of the fracture is given in eq 41.

= ·d c lpafrc f frc (41)

where cpf is a proportionality factor; lfrc is the length of fracture;
dafrc is the aperture of the fracture.

Initial and Boundary Conditions. The initial temperature
of the geothermal reservoir is 425 K (151.85 °C) with an average
reservoir pressure of 15 MPa. The porous domain is appropriate
to confine the effects of boundaries during the extraction of heat
from the rock matrix. Thus, constant temperatures equal to the
initial reservoir temperature are maintained at the boundaries.
No-flow conditions are employed for fluid flow at the reservoir
boundaries. In the geomechanical section, the rolling and lateral
stresses (i.e., σx and σy) are applied to two boundaries, as shown

Table 2. Rock, Fracture, and Fluid Properties75,81−83

property rock properties fluid properties

density, kg/m3 2600 eq 32
dynamic viscosity, Pa.s eq 31
thermal conductivity, W/m·K eq 30 eq 34
heat capacity at constant pressure, J/kg·K eq 29 eq 33
coefficient of thermal expansion, K−1 3 × 10−5

initial Young’s modulus, GPa 24
Poisson’s ratio 0.26
initial porosity 0.03
initial permeability, m2 3.2 × 10−16

ratio of specific heats 1.0
Biot−Willis coefficient 0.25−0.75
fluid-injection rate, m/s 0.1
fluid-production rate, m/s 0.1
initial reservoir temperature, °C 180
fluid injection temperature, °C 20
initial Young’s modulus-fracture, GPa 2.4
Poisson’s ratio-fracture 0.104
fracture aperture, mm 0.2
fracture porosity 1
boundary load: x-direction, MPa 48
boundary load: y-direction, MPa 44

Figure 3. Schematic of the solution process employed for fully coupled thermohydromechanical model in the present work.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07215
ACS Omega 2024, 9, 7746−7769

7752

https://pubs.acs.org/doi/10.1021/acsomega.3c07215?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07215?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07215?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07215?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07215?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in Figure 2c. The properties of the rock, fracture, and injected
fluid are listed in Table 2. The initial conditions for the fluid flow,
temperature, and displacement fields are provided in eqs 42, 43,
44, and 45, respectively.

==p x y t p( , , )t 0 ini (42)

==T y t T(x, , )t 0 ini (43)

[ ] = [ ]=u u, 0, 0x y t
T T

0 (44)
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t

T
T

0 (45)

The fluid flow boundary conditions at the injection well and the
production well are represented by eqs 46 and 47, respectively.

=m t uAt injection well: ( )inj inj w/SCCO2 (46)

=m t uAt production well: ( )prod inj w/SCCO2 (47)

The heat flux boundary condition is used at the injection well
and is given in eq 48.

=

q t

C T T u

At injection well: ( )

( )p

inj

,w/SCCO inj 0 inj w/SCCO2 2 (48)

THM Model Implementation. COMSOLMultiphysics is a
finite element simulator, and engineers utilize COMSOL
Multiphysics to perform fully coupled numerical investigations
for geothermal reservoirs.69,84−92 In this work, we utilize heat
transfer, poroelasticity, Darcy flow, solid mechanics, and thermal
expansion modules integrated with COMSOL Multiphysics and
develop a fully coupled and dynamic THM model for the
geothermal reservoir with natural and hydraulic fractures

(Figure 3). Coupled interactions, presented as local variables
in the component section, are embedded (i.e., eqs 25−38). In
the solid mechanics module, natural and hydraulic fractures are
designated as a thin elastic layer, and the mathematical
formulation is presented from eqs 21−24. The fracture flow
physics conditions are used to model fluid and heat flow in the
fractures in both Darcy’s law and heat transfer modules. The
developed THM model is implemented in fully coupled mode.
The dynamic variables (i.e., presented in Section Rock, Fracture,
and Fluid Properties) are implemented in the COMSOL
multiphysics as local variables. The model updates these
variables for each time step based on the variations in pressure
and temperature in the rock and fracture. Sequentially,
stationary and transient solvers are employed. The backward
difference formula with the Euler backward initialization
technique is used, and the multifrontal massively parallel sparse
direct linear solver is utilized to solve pressure and displacement.
Furthermore, a parallel direct sparse solver is used for solving the
temperature.

Mesh Sensitivity. In numerical modeling, mesh sensitivity
analysis is significant because it helps establish the lowest mesh
density that is adequate to offer a reliable and accurate solution
to the problem being modeled. This helps to ensure that the
model is as precise and reliable as possible. If the mesh is too
coarse, the solution may be erroneous and unreliable, but if the
mesh is too fine, it may lead to larger computation times and an
increase in the required processing resources. In the work
presented here, we use unstructured grids. The sensitivity of the
grid to production temperature is studied and presented in
Figure 4. The production temperature is consistent until the
mesh size is 5 m. When the element size increases to 6 m, an
underestimation of the production temperature is observed. The
results are consistent and accurate until the mesh size is 5 m. So,
in the present work, we use the element size of 5 m for each
model.

Figure 4. Mesh sensitivity studies the production temperature.
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■ RESULTS AND DISCUSSION
Validation. The fully coupled THM model is validated with

a single fracture scenario and the rock matrix without a fracture.
The analytical solution given by Lauwerie93 in eq 49 is used to
validate the model developed. Figure 5a,c presents the geometry
details of validation-1 and validation-2, respectively. The rock
and fluid properties were taken from the works of Ghassemi and
Zhang81 and Han et al.94
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The results of the developed THM model and their
comparison with analytical solutions are presented in Figure
5b,d for validation-1 and validation-2, respectively. A compar-
ison of the results obtained from the developed THM model

with analytical solutions shows a high precision. This confirms
that the developed THM model is suitable for predicting
thermo-hydromechanical variations in both the rock matrix and
fractures. Therefore, the developed model is applied to
investigate the variations that occur in fractured geothermal
reservoirs.

Temperature Evolution. Figure 6 illustrates the spatial and
temporal distribution of temperature in porous media in
different arrangements of natural fractures when SCCO2 is
used as a geofluid. In the early stages, heat transfer occurs
between the matrix and the geofluid in the hydraulic fracture.
Due to the heat conduction between the geofluid and the rock
matrix, the temperature of the geofluid increases (Figure 6).
During this period, the temperature of the rock matrix in the
vicinity of the hydraulic fracture decreases, creating a low
temperature region that advances into the rock matrix over time.
This reduces the production temperature as a result of the lower
extraction of heat compared with the initial stage. It is efficiently
identified after five years of production (Figure 6). The geofluid
mass and heat exchange are maximized in the injection well
locality. The influence of natural fractures on the temperature

Figure 5. Validation of the developed THM model with the single fracture case and only the rock matrix case.
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distribution is investigated and presented in Figures 6 and 7. It is
clearly found that the injected fluid moves from the hydraulic
fracture to the natural fracture before reaching the production
well (Figure 6b1−b4,c1−c4). It can be seen from the numerical
results that the zone adjacent to the hydraulic fracture is highly
influenced at the beginning of heat production (Figure 6a1−a4)
and expands through the natural fracture connected in the
reservoir (Figure 6b1−b4,c1−c4). Figure 7 shows the spatial
distribution of the temperature in the reservoir after 10 years of
production. The distribution of the low temperature zone
depends on the orientation of the natural fractures and the
connectivity of the hydraulic fractures. Thus, numerical

investigations clearly identify the influence of natural fractures
on the expansion of the low-temperature zone.

Figure 8 represents the impact of the hydraulic fracture
aperture and the injection and production (inj/prod) velocity
on the temperature of the production well. It is found that an
increase in the aperture of the hydraulic fracture reduces the
temperature in the production well. This is due to the low
residence time before reaching the production well for small
aperture scenarios (Figure 8a), which decreases the transfer of
heat from the matrix to the geofluid. The temperature in the
production well decreases with an increase in inj/prod velocity,
as illustrated in Figure 8b. At a higher inj/prod velocity (0.04 m/

Figure 6. Spatiotemporal variation of temperature in the reservoir at different arrangements of natural fractures while using SCCO2 as geofluid.

Figure 7. Spatial variation of temperature in the reservoir at different arrangements of natural fractures after 10 years of production.
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s), the fluid moves faster in the hydraulic fracture, leading to a
low residence time. As a result, the fluid has shorter time to
transfer heat from the surrounding rock matrix before reaching
the production well, which is consistent with our previous
work.55 Thus, the production temperature is lower compared to
the low inj/prod velocity (0.01 to 0.03 m/s).

Figure 9 depicts the influence of the orientation of the fracture
on the production temperature under the same operating
conditions. It is found that the orientation of natural fractures
significantly impacts the production temperature, unlike the
hydraulic fracture aperture and inj/prod velocity. Therefore, the
aperture of the hydraulic fracture, the inj/prod velocity, and the
orientation of the natural fractures influence the temperature at
the production well.

Figure 10 depicts a comparison of SCCO2 and water as
geofluids and illustrates the impact of geofluid type on
production temperature and produced heat energy at the same
operating conditions. It is found that the production temper-
ature decreases dramatically with the progression of the
operational time when using water compared with SCCO2
(Figure 10a). The angle of the natural fractures also significantly
affects the production temperature but does not follow any
sequential trend. Similarly, thermal breakthrough is faster when
water is used as the geofluid. The net heat energy produced at
the bottom hole is depicted in Figure 10b. Net heat energy is
determined using eq 50.

=W mH mH( ) ( )net prod inj (50)

The net heat energy also follows the same trend as the
production temperature. Initially, the net heat energy starts at
the same point and then decreases as the production
temperature drops. This decline is very sharp in the case of
water as geofluid. The net heat energy produced using SCCO2 is
higher than that of water as a geofluid. This is due to the higher
production temperatures in the SCCO2 as in geofluid cases.
Thus, SCCO2 provides a better production temperature and net
extraction of heat energy compared to water as a geofluid from
the same fractured reservoir under similar operating conditions.

Evolution of Strain. The importance of strains generated
due to thermal and mechanical variations in the reservoir has
been extensively studied. Figure 11 represents the spatial and
temporal disparity of thermal and mechanical strains. The
volume of rock matrix variation due to the temperature
difference is called thermal strain. It is found that the strain
generated due to the temperature variation is highly active near
the hydraulic fracture and injection well. The maximum thermal
strain is identified near the injection well, and the lowest is
observed in the production well (Figure 11a,b). The minimum
strain generated due to mechanical variation is found in the low
temperature zone (Figure 11c,d). Thus, strains generated due to
thermal variation are more active in the low-temperature zone,
and geomechanical stresses are influential in the rest of the area
(i.e., away from the low-temperature zone). The type of geofluid
has a significant impact on the region of the reservoir where
thermal and mechanical deformation occur (Figure 11). The
low temperature region is more prominent when water is used as
a geofluid compared to SCCO2. Due to this, thermal strains are
more significant when using water in the low-temperature region
compared to SCCO2. Thus, the type of fluid strongly influences
the thermal and mechanical strains.

The spatial variation of the stress in the reservoir is presented
in Figure 12. Compressive stresses are observed to dominate the
reservoir due to the applied boundary conditions. These stresses
change over time in the vicinity of the injection well and along
the fracture. It is clearly identified in the present work and is
depicted in Figure 12. Due to this, the porosity and permeability
in the vicinity of the injection well and along the fracture will
enhance and improve the flow and heat transfer. The impact of
injection/production rates on the effective stress generated in
the rock matrix and fractures is studied and presented in Figure
13. It is found that the effective stress is compact in nature (i.e.,
negative effective stress) at lower inj/prod velocities (i.e.,
0.025). The spatiotemporal evolution of effective stress in the
reservoir is presented in Figure 13. It shows that with the
compression stress is dominating in the vicinity of hydraulic
fracture. With an increase in the velocity, the magnitude of the
effective stresses decreases in the vicinity of the hydraulic
fracture during the heat extraction operation (Figure 13a−c).

Figure 8. Impact of fracture aperture (fracture angle = 0°, inj/prod velocity = 0.05 m/s) and injection/production velocity (Fracture angle = 15°,
fracture aperture = 0.5 mm) on production temperature.
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Similarly, effective stress on fractures will influence their
permeability, further affecting the heat extraction procedure
(Figure 13d−e). The higher magnitude of negative stresses
would enhance the permeability of the fracture, which increases
the velocity of fluid flow within the fractures. The higher
magnitude of stress is found to accumulate in the vicinity of the
injection well and progress toward the production well. These

stress accumulations occur in the vicinity of the hydraulic
fracture and the natural fracture, which are influenced by the
injected fluids (Figure 14).

The impact of maximum and minimum stresses on the heat
extraction performance of the fractured geothermal reservoir is
also studied. It is found that production decreases with an
increase in the applied stress for the same operating conditions.

Figure 9. Impact of natural fractures angle on production temperature (°C) while using SCCO2 and water as geofluids.
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An increase in the external loads to the reservoir’s boundaries
directly influences the effective stress in the rock matrix and
fractures. With an increase or decrease in the external load, the
fracture permeability is affected, which can directly influence the

flow of cold fluid in the fracture. With an increase in external
loads, the permeability of the fractures increases, and the
injected fluid reaches much faster compared to lower loads. It is
reflected directly in the production temperature. Thus, applying

Figure 10. Comparison of SCCO2 and water as geofluids on the production temperature (°C) and heat energy (MW).
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Figure 11. Comparison of SCCO2 and water as geofluids on thermal and mechanical strains (×10−3) at a natural fracture orientation of 75°.

Figure 12. Spatial and temporal variation of stress in the reservoir with a natural fracture orientation of 75°.
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suitable external loads to the geothermal load is essential and
improves the thermal/cold front movement and production
temperature prediction during the operation.

NN Model for Geothermal Reservoirs. Neural Networks.
NNs are employed successfully in various fields such as medical,

engineering, economics, mathematics, and more, for identifying
patterns, sounds, and speech, and forecasting the stock market,
rain, weather, etc. In recent years, the application of NNs in the
geoscience and hydrocarbon sectors has gainedmore popularity,
including the prediction of crude oil production, rock properties,

Figure 13. Effective of injection/production velocities on the stress distribution in rockmatrix and fractures after 20 years of operation (natural fracture
angle = 15°).

Figure 14. Influence of stresses in the production temperature (natural fracture angle = 45°).
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and the recognition of seismic patterns.1,46−50,55−58,95 NNs are
nontraditional tactics in which they are accomplished to study
systems of solutions rather than being programmed to model a
specific problem normally. They are widely recognized as a
technology that provides an alternative way to address complex
problems and an alternative to complex rules. NNs can learn the
key information from the multilayered information provided in
the form of data. NNs contain an input layer (IL), an output
layer (OL), and these are connected with a series of hidden
layers (HL). Each HL has a number of neurons that receive
information from the previous neuron for processing.

Mathematical Model Based on FCN to Predict Production
Temperature. In this work, a time series model is being
developed using the FCN model. The FCN model is utilized to
develop a mathematical model for predicting the production
temperature by using the influencing parameters. The flow
structure from the input features to the development of the FCN
model is presented in Figure 15. The first section involves the
data generated using the design of experiments. The temporal
data of the production temperature were collected from the

production well. In the second section, a FCN is developed with
a single hidden layer over time as an additional input feature.
The data collected from the first section are used to develop a
proxy model (i.e., Section Geological Model for the Heat
Extraction fromGeothermal Reservoir). The full structure of the
FCN model is provided as follows.

Computational Geometry. A new geometry of computation
is designed for the hybrid FCNmodel and is presented in Figure
2b. A complex natural fracture network is created using power
law and Fisher distributions, as presented in Section. The
aperture of the natural fracture ranges from 0.1 to 5 mm, the
length of the natural fractures varies from 1 to 50 m, and the
orientations vary from 0° to 165°. The same initial and boundary
conditions are imposed, except for injection temperature,
fracture aperture, fracture length, and injection/production
velocity, which are considered as influencing parameters in the
present work.

Sampling. The training data are generated by utilizing the
design of the experimentation technique. RSM is applied for
qualitative numerical experimentation. A total of four influenc-
ing parameters are identified, and the RSM is designed for 30
numerical experiments (Figure 15). Table 3 provides the
minimum and maximum ranges of the influencing parameters,
and Table 4 illustrates the qualitative experiments designed to
carry out the numerical simulations. These numerical experi-
ments will provide adequate training and validated data sets for

Figure 15. Schematic of the flow scheme from the experimental design
to FCN.

Table 3. Influencing Parameter and Its Ranges with Units

name of factor unit lower limit higher limit

injection temperature °C 35 45
fluid injection/production velocity m/s 0.025 0.05
fracture aperture Mm 2 6
fracture length m 200 300

Table 4. Qualitative Numerical Experimentation’s for Deep
NNs

SI.
no

hydraulic
fracture
length, m

hydraulic
fracture

aperture, mm

injection
temperature,

°C
injection/production

velocity, m/s

1 250 4 40 0.0375
2 200 2 45 0.025
3 300 6 45 0.025
4 200 6 45 0.05
5 300 2 35 0.05
6 200 4 40 0.0375
7 250 4 45 0.0375
8 200 6 45 0.025
9 300 4 40 0.0375
10 250 4 40 0.0375
11 300 6 35 0.025
12 200 2 35 0.025
13 250 4 40 0.025
14 250 4 40 0.0375
15 250 6 40 0.0375
16 300 6 35 0.05
17 200 6 35 0.05
18 250 4 40 0.05
19 250 4 40 0.0375
20 250 2 40 0.0375
21 300 2 45 0.05
22 250 4 40 0.0375
23 200 2 35 0.025
24 300 6 45 0.05
25 200 2 45 0.05
26 200 6 35 0.025
27 250 4 40 0.0375
28 250 4 35 0.0375
29 300 2 35 0.025
30 300 2 45 0.025
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the FCN model to evaluate the influence of input parameters on
the temperature in the production well.

Input Layer. The IL includes five nodes, which include the
injection temperature, fracture aperture, fracture length, inj/
prod velocity, and time.

Output layer. The OL consists of one output node, and it is
the production temperature, which is obtained from the
numerical simulations.

Hidden Layer. The number of input nodes in the input layers
varies and depends on the problem statement. It is not possible

Figure 16. Schematic of the FCN model used to predict the production temperature.

Figure 17. Histogram of training (a−f) and testing (g−l).
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to use the same architecture for all problem statements. For the
optimal architecture of the FCN and better accuracy, in the
present work, we utilize 30 neurons and bias.

Objective/Loss Functions. In this work, the FCN model is
used to estimate the temporal changes that occur in the
temperature in the production well. There are various error
calculation tools available in the design of the DNN models. In
this work, the average absolute percentage of error, the mean
square error, and the coefficient of determination (R2) are
applied as error estimation (loss) functions. Equations from eqs
51−53 represent the loss functions used in the design of DNN
models.
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p data
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Mathematical Equation to Estimate Production Temper-
ature. The structure of the FCN is presented in Figure 16. The
distributions of the input and output parameters used in training
and testing are presented in Figure 17. Figure 18a depicts the
cross plots of the training and testing data, which show greater
precision in the prediction of the production temperature. The
residual errors accumulated within −2 to 2 for training and
testing data (Figure 18). A mathematical model is developed
using the above FCN model with influencing parameters. The

hidden layer neuron uses its weight w1 and bias b1, and the
mathematical expression is presented in eq 54.

+= w x b( )j
N

j jtf,L 1 1, 1
p

(54)

The output of the whole network will be expressed in eq 55

= [ + + ]= =w w x b b( ) ( )i
N

i j
N

j jp tf,0 1 2, tf,L 1 1, 1 2
h p

(55)

Here, =
+( )x( ) 1

etf,L
2

1 x2 , and σtf,0(x) = x. The proposed

equation of FCN of the production temperature can be written
more specifically as in eq 56

=T T103.75 48.05prod prod,n (56)

The equation for the Tprod,n is given in eq 57

= [ + ]=T w X b( )i
N

iprod,n tf,0 1 2, tf,L 1 2
h (57)

= + + +

+ +

X w L w d w T w v

w t b

1 1, f,n 1, afrc,n 1, inj,n 1, inj/prod,n

1, n 1,

i i i i

i i

,1 ,2 ,3 ,4

,5 (58)

The expressions for the normalized terms such as Lf,n, dafrc,n,
Tinj,n, vinj/prod,n, and tn were presented from eqs 59−63.

=L L5 0.02f,n f (59)

=d d2 0.5afrc,n afrc (60)

=T T8 0.2inj,n inj (61)

=v v3 80inj/prod,n inj/prod (62)

=t t1 0.066n (63)

Figure 18. Production temperature of numerical simulations vs DNN model predicted with residual error histograms.
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Here, Lf in m, dafrc in mm, Tinj in °C, vinj/prod in m/s, and t is in
years. The mathematical model developed with FCN shows
greater precision with the simulated results, and the coefficients
are listed in Table 5. Figure 19 shows the impact of influencing
the production temperature, and a similar impact is observed
from the simulation results (i.e., Figure 8). The accuracy of the
developed mathematical model is also checked with ten random
scenarios and compared with the simulated results. In Figure 20,
it is found that the mathematical model developed shows results
similar to the simulated results. Therefore, the mathematical
model developed can be utilized to predict the temporal
evolution of the production temperature of a fractured
geothermal reservoir within the desired limits.

■ CONCLUSIONS
In the present research work, we use the fully coupled THM
model to examine the behavior of a geothermal reservoir. In the
present work, we consider the dynamic behavior of fluid, rock,
and fracture properties and examine the influence of natural
fractures and their orientation. We utilized COMSOL Multi-
physics software for numerical experimentation using the THM
model. The effect of SCCO2 as a geofluid for heat extraction has
also been extensively studied and compared to that of water as a
geofluid.

The temperature in the production well and the low
temperature zone in the rock matrix are impacted by the
injection/production velocity, the hydraulic fracture aperture,
and the orientation of the natural fracture. Production

Figure 19. Impact of influencing parameters on the production temperature (i.e., results from eq 57).
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temperature decreases with increasing time, injection/produc-
tion velocity, and hydraulic fracture aperture. A comparison
between the water-EGS and SCCO2-EGS systems is performed

at the production temperature, and the SCCO2-EGS system has
been found to provide promising results compared to those of
the water-EGS system. The strain generated due to thermal

Table 5. Weights and Biases of the Optimized NN Model

weights between input and hidden layer (w1)

neurons Lf,n dafrc,n Tinj,n vinj/prod,n tn
weights between hidden and

output layer (w2)
bias between input and

hidden layer (b1)
bias between hidden and

output layer (b2)

1 0.530 −0.588 0.162 −2.465 −1.944 0.438 2.754
2 −0.846 −0.965 −0.278 1.005 −0.783 −0.319 3.745
3 1.316 1.576 1.926 −0.222 −2.134 0.052 0.785
4 −0.892 3.643 −1.015 −2.038 0.471 0.067 2.110
5 −0.003 1.164 −3.465 −2.910 −0.120 −0.075 2.948
6 −1.988 3.694 0.281 0.187 1.075 −0.039 1.139
7 −0.113 −1.434 −2.841 1.038 −0.003 −0.068 −1.059
8 1.363 −1.940 3.105 1.271 2.411 0.068 −1.272
9 −0.047 −0.007 0.042 0.933 2.952 −0.178 0.766
10 −1.546 −3.237 −0.747 −0.380 −0.062 −0.213 −0.978
11 −2.173 0.386 −1.199 1.140 −1.371 −0.069 1.791
12 1.325 1.914 −1.833 0.328 −0.210 −0.211 −1.293
13 1.191 1.767 2.874 −0.609 −1.482 −0.164 −0.574
14 0.802 −3.961 −0.387 0.801 2.324 0.141 −4.276
15 0.430 −0.183 0.043 −1.651 −2.571 0.311 0.895
16 −3.720 1.981 1.765 1.129 −1.357 0.111 −0.126
17 0.243 −1.162 −2.589 0.313 −2.034 0.042 −0.357
18 1.224 −0.374 −1.156 3.432 −1.421 0.151 0.131
19 2.476 1.300 −0.107 −3.223 1.036 0.130 0.168
20 −0.636 −2.689 −0.092 1.677 0.377 −0.241 0.169
21 −2.487 −3.579 1.644 −0.786 2.596 0.056 −0.291
22 2.821 2.612 −2.356 −2.287 2.642 0.056 0.357
23 −2.151 −1.937 −0.682 1.946 −0.090 0.345 −1.162
24 1.415 4.384 0.284 −1.062 −2.066 −0.047 1.068
25 −0.662 −0.183 2.816 −0.777 4.132 0.016 −1.602
26 3.671 −1.015 0.804 −3.300 −1.453 0.111 1.223
27 4.935 0.070 −1.298 −1.427 −2.790 0.105 3.398
28 1.906 1.307 2.208 −2.510 −0.495 0.008 3.373
29 0.163 2.684 −2.063 1.999 −0.598 −0.185 3.304
30 −1.780 1.102 3.987 −0.532 −0.456 −0.186 3.416 −30 × 0.745

Figure 20. Comparison of simulated results with the equation (i.e., eq 57) developed from the FCN.
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drawdown is active in the low-temperature zone, and the strain
generated due tomechanical loads is substantial in the rest of the
area. Injection/production velocities influence effective stress in
both the rock matrix and natural fractures. External load
significantly influences the production temperature. The
interaction between natural fractures and hydraulic fracture,
and the type of geofluid influence the production temperature,
thermal strain, mechanical strains, and effective stress in rock/
fractures in the geothermal reservoir.

An FCN model is used to forecast the temporal temperature
in the production as well as a function of injection temperature,
inj/prod velocity, HF aperture, and HF length. RSM is utilized
to design numerical experiments without temporal constituents.
A mathematical equation is developed to predict the temporal
variation of temperature in the production well to a desired level
using FCN. Therefore, the numerical simulations developed
with the FCN model can be a useful tool to investigate the
temporal evolution of the production temperature with higher
accuracy.
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■ NOMENCLATURE

Special symbols
dafrc,n normalized fracture aperture
Lf,n normalized fracture length
Np number of neurons
tn normalized time
Tinj,n normalized injection temperature
vinj/prod,n normalized injection/production velocity
w1,j weights in hidden layer
xj parameters
αb Biot−Wills coefficient
αT coefficient of thermal expansion
ΔεT thermal strain
Δεvol change in volumetric strain
ΔT change in temperature

t
vol rate of change in volumetric strain of the porous

matrix
κfrc0 initial fracture permeability
κfrc fracture permeability
κmat rock permeability
λeff effective thermal conductivity
λfl thermal conductivity of fluid
λmat thermal conductivity of matrix
μfl viscosity of the fluid
∇Tn gradient is measured on the tangential plane of

fracture
νfrc Poisson’s ratio of fracture
ϕmat porosity of matrix
ϕini initial porosity of matrix
ρfl density of fluid
ρmat rock density
σn normal stress acting on fracture
σ* normalizing constant (and it is considered as the

initial reservoir pressure)
a1 constant
b1 constant
Cn coefficient and it is a function of initial porosity of

formation and is equal to 5/ϕi
Cp,fl specific heat capacity of fluid
Cp,mat specific heat capacity of matrix
d fitting parameter (constant and equal to 1)
dA damping constant per unit area
dafrc fracture aperture
Ei initial elastic modulus
Efrc elastic modulus of fracture
KA spring constant
Kd drained bulk modules
kn stiffness in the normal direction
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ks shear stiffness
Kfl fluid bulk modules
M Biot’s modulus
p pressure
pfrc Pressure in fracture
qm source/sink term which couple both matrix and

fracture with mechanics
QfracT source/sink terms fracture
qfrc flow rate in fractures
QmatT source term of matrix
sigmatf,L activation function
T temperature
t time
Tavg,p−data mean production temperature of the given data
Tp−data production temperature of the from the training data
Tp−DNN production temperature predicted from the DNN

model
u0 initial displacement of fracture
ud displacement in downside of fracture
uu displacement in upside of fracture
udlm Darcy’s velocity
ufrc Darcy’s velocity in fracture
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