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Interaction data from the 
Copenhagen Networks Study
Piotr Sapiezynski1, arkadiusz Stopczynski1, David Dreyer Lassen2 & Sune Lehmann  1,2*

We describe the multi-layer temporal network which connects a population of more than 700 university 
students over a period of four weeks. the dataset was collected via smartphones as part of the 
Copenhagen Networks Study. We include the network of physical proximity among the participants 
(estimated via Bluetooth signal strength), the network of phone calls (start time, duration, no content), 
the network of text messages (time of message, no content), and information about Facebook 
friendships. thus, we provide multiple types of communication networks expressed in a single, large 
population with high temporal resolution, and over a period of multiple weeks, a fact which makes the 
dataset shared here unique. We expect that reuse of this dataset will allow researchers to make progress 
on the analysis and modeling of human social networks.

Background & Summary
The purpose of collecting the Copenhagen Networks Study (CNS) dataset was to accelerate our understanding 
of social systems. In particular, we were interested in the following major topics: Measuring networks across 
modes of communication; Modeling temporal social networks; Modeling spreading processes on social networks; 
Analyzing and modeling human mobility; Understanding the interplay between mobility and social behavior; 
Privacy.

Because of our focus on understanding social networks, we enrolled a group of participants (more than 700 
freshmen at the Technical University of Denmark) likely to constitute a highly interconnected network. Due 
to the scale of the study, the amount of raw data collected was substantial: each participant uploaded between 
50–100 megabytes of data per day, resulting in new data per day in the range of 50 to 100 gigabytes.

Here, we cannot share the entire raw dataset, below we motivate our choice of which selection of data to pub-
lish. The privacy of the study participants is central in the Copenhagen Networks Study, as documented through 
the study design1, as well as our work on privacy discussed in the next section. In a complex dataset, such as ours, 
it is virtually impossible to provide guarantees regarding re-identification of users while preserving its value for 
the stated research purposes2. In preparing the data for publication, it was therefore necessary to restrict the data 
released as described below to make de-anonymization as difficult as possible, but without compromising the 
dataset’ usefulness for research. In addition to obstructing de-anonymization, each step listed below serves the 
second purpose of limiting the potential harm to data subjects in the unlikely case of a successful re-identification 
attack.

 (a) Limiting the types of data available. As part of Copenhagen Networks Study we collected information 
beyond the dataset we make available here, such as location traces and WiFi logs. Such data-types carry 
high risk of re-identification through publicly available information. In Denmark, for example, the physical 
address of every citizen (and phone number) is by default public and published in an open index. Further, 
geo-located tweets or Instagram posts, social physical activity app data, etc can also be used to re-identify 
geospatial data. To avoid this attack, we limit our release to information that cannot be easily cross-corre-
lated with public datasets.

 (b) Limiting the timespan of released information. The data released only have relative time-stamps. This makes 
it difficult to cross-correlate the released data with external information. Releasing a full year of data would 
make it trivial to identify holidays and reconstruct the absolute timestamps. Thus, we do not publish the 
absolute starting time of the data, but note that the dataset starts on a Sunday during school term.

 (c) Delaying the data release. In the European Union, phone metadata retention is limited to two years. By wait-
ing beyond the retention period we limit the probability that a person with access to the network operator 
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data (CDR, call detail records) can use such data to re-identify individuals in our dataset. A similar threat 
is why we do not release Facebook activity data, which could also be used to re-identify individuals via 
data from inside Facebook (which retains data indefinitely). Furthermore, at the same time, in the case 
of re-identification, older data is less harmful as it is less likely to be a precise reflection of data subjects’ 
current social networks and behaviors, and even more so since students have moved on from university. In 
terms of research, this information from a few years ago is just as useful as at the time of collection.

Because the data was recent at the time of publishing most of our research, we took a cautious approach 
and did not release it then. We are only able to release it now, after a careful balancing of threats and research 
usefulness.

These considerations on privacy versus types of data released also impact our view on reproducibility given 
this dataset. The aim of this data release is first and foremost to enable use of rich multi-layer network data for 
new work, while still respecting participant privacy. That being said, however, much of the work published so far 
from this dataset was similarly based on four-week subsets (which might or might not overlap with the provided 
time period). Thus, the timespan of the data is not a limitation to replicability of already published work.

In addition to the network data we release in this paper, the overall CNS study collected detailed 
high-resolution GPS location (sampled every 5 minutes), information on nearby WiFi routers and cellular towers, 
screen on/off status, battery charge level, as well as demographic and questionnaire information on all partici-
pants1. The questions in the 2013 deployment included The Big Five Inventory3, Rosenberg Self Esteem Scale4, 
Narcissism NAR-Q5, Satisfaction With Life Scale6, Rotters Locus of Control Scale7, UCLA Loneliness scale8, 
Self-efficacy9, Cohen’s perceived stress scale10, Major Depression Inventory11, The Copenhagen Social Relation 
Questionnaire12, and Panas13, as well as health- and behavior-related questions.

A dataset describing human behavior with the richness captured in the CNS study, inevitably raises questions 
of privacy and personal data. In the CNS data collection, privacy was therefore not only important for the sake of 
participants, but also an active area of research. In collecting the data, we also had to answer the question, ‘how 
can we work on these data while respecting the privacy of the study participants?’. Therefore, we now briefly dis-
cuss overall privacy concerns and challenges. The research project and data collection was registered with and 
approved by the Danish Data Supervision Authority before data collection commenced. All data was collected 
with informed consent and with every participant able to withdraw from the study and have their data deleted. 
This protocol, implemented in 2012 and 2013, was in effect similar to the rules being introduced with the EU 
General Data Protection Regulation (GDPR) which came into effect in May 2018. In the present release, to com-
ply with GDPR, the data has been stripped of personally identifying information and the data has been reduced 
in such a way that there is no reasonable likelihood of re-identification occurring.

Details on the actual implementation and broader philosophy of ensuring privacy in sensor-driven human 
data collection can be found in1 and14. Here, we will remark on two integrated components of the privacy strat-
egy. First, it is well known that formal informed consent can be insufficient to meet actual privacy demands as 
construed by participants15. To address this, we, in addition to the written informal consent paragraph, conducted 
numerous presentations of the project to students before they signed up, published blog posts, and answered 
questions using Facebook. Second, we designed a ‘quantified self ’ module allowing participants to access and 
visualize their own – and only their own – data traces16. As the students interacted with these tools, the they were 
able to develop a better understanding of the nature and the depth of the collected data, thus making their consent 
more informed, or – as was the case for a single student – choose to withdraw from participation.

Our work on collecting data from smartphones does not stand alone. In the section below, we provide a brief 
overview of related work. Mobile phones have been a source of data on human activity and interaction since the 
early 2000s. They have been used to collect data broadly (coarse grained, sampled data describing millions of indi-
viduals) or deeply (fine grained data on fewer individuals). On the large scale, teams have studied the connections 
between individuals on a societal level in Belgium and Great Britain17,18, as well as the mobility of millions of indi-
viduals19,20. At the other end of the spectrum, teams from MIT’s MediaLab have pioneered highly detailed studies 
of smaller populations. The landmark study is the Reality Mining dataset21, but more recently many updated 
studies have been published, in part run by teams at MIT22–25 as well as the Nokia Research Center in Lausanne26 
and Aalto University27. Other similar technologies for measuring social networks have also been developed, for 
example based on RFID tags, and provide an important alternative to cellphones as social sensors28–31. In terms of 
size, CNS increased the number of participants by almost a full order of magnitude compared to state-of-the-art 
high-resolution studies21,25,26.

Finally, we address the dataset’s potential for reuse. The dataset collected as part of CNS has already been used 
for research in a number of areas. There is a number of publications covering technical aspects of data collection and 
analysis16,32–35. Another set of papers focused on modeling and analyzing network structure36–41, epidemiology42–44, 
as well as work on human mobility45–50, and privacy14,46. Additionally, there is a body of work that goes beyond the 
stated goals of the CNS project. For example, researchers studied behavioral differences between the two sexes51,52, 
along with studies on academic performance52–54, activity patterns55, sleep patterns56–58, and much more.

The broad and varied research that has already been published based on this dataset underscores its richness. 
Given that we are only able to release network data, we expect reuse of this dataset to focus on the modeling and 
analysis of multi-layer temporal networks and we hope that the data released here will allow researchers to make 
progress on understanding human social networks.

Methods
The Copenhagen Networks Study accumulated data from a number of channels: smartphones, online question-
naires, and third parties. The data collection system was designed to ensure privacy of the participants and main-
tain access control to the data, and is described in detail in Stopczynski et al.1. Figure 1 presents a simplified 
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overview of the system. Data from all sources were collected first on a central on-premises server. The data were 
then stripped of personally identifiable information and replicated both locally and as an encrypted cloud backup. 
Pseudononymized data were then made available to approved researchers via access-controlled API. In this work 
we make a subset of this dataset available to the public for the first time59.

In the sections below we explain the details of the collection methods for each channel.

Smartphone data collection. Each participant in the study was equipped with an Android-based Google 
Nexus 4 smartphone and required to install the data collection software from Google Play Store. Participants 
agreed to use this study issued devise as their primary phone. The data collection software was based on the Funf 
platform (http://www.funf.org/); its source code along with all the modifications we introduced, is open and avail-
able on Github (https://github.com/OpenSensing/funf-v3). The software triggered data collection from multiple 
channels: cell phone location (from AGPS), nearby cell towers, WiFi routers, and Bluetooth devices, as well as 
collected this information whenever another application on the phone requested it from the system. Additionally, 
each day we collected the meta-data logs of calls and short messages. Our previous work provides a full description 
of the collected data1, here we focus on the three channels which we now make available to the public: Bluetooth 
data as well as call and SMS metadata. In terms of node-metadata, we include the gender of each participant.

Bluetooth data. Bluetooth is a wireless communication standard designed to provide connectivity over dis-
tances of up to 10 m (30 ft). Each device in the experiment was configured to be discoverable at all times, and to 
discover nearby Bluetooth devices every five minutes. During the discovery process (or scanning), a device sends 
probe requests and receives responses from all nearby Bluetooth discoverable devices. Each response contains a 
unique identifier of the discoverable device, which also uniquely corresponds to the study participant carrying the 
device, enabling us to track proximity events between the study participants. Additionally, the device measures 
and reports the Received Signal Strength (RSSI), which can be (roughly) mapped to physical distance: a high RSSI 
means that the two devices are physically close, a low measure indicates that they are further apart or that there 
are obstacles inbetween. In previous work we investigated the interplay between the distance and RSSI in detail32.

To prepare the data for release we followed the same pre-processing steps as in other work we published based 
on this dataset (e.g.36,42):

 1. We removed identifiers belonging to discovered devices that were not in the experiment, and mapped the 
participating devices’ identifiers to their users.

 2. We quantized the time of each scan into bins of five minutes.
 3. Within each timebin we found all instances of users A and B discovering each other, reported the one with 

the highest RSSI, and discard others.
 4. The information of directionality (whether userA discovered userB or vice versa) is discarded.
 5. In bins where userA was actively scanning, but found no other Bluetooth devices in proximity, we reported 

the alter ID as −1 and the received signal strength as 0.

Fig. 1 A schematic view of the data collection for CNS. See main text for a detailed description and Stopczynski 
et al.1 for a full overview.
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 6. In bins where userA discovered other Bluetooth devices but not other study participants, we reported the 
alter ID as −2 and the highest received signal strength measured. We do not report the type of the discov-
ered device.

The data is presented as a temporal, weighted edge list, and each edge is described using (1) the timestamp of 
the beginning of the timebin in seconds (because of the quantization of time into five minute bins the timestamp 
is reported in the multiples of 300 seconds), (2, 3) the IDs of users who discovered each other, (4) the measured 
received signal strength. Note, that in some of the published work (e.g.36,) we performed the additional step of 
triadic closure, i.e. if userA discovered userB and userB discovered userC, we assumed proximity between userA and 
userC regardless of whether they discovered one another. Since there is no meaningful RSSI to assume in such 
cases, we do not perform this step here and instead we leave it to the researchers using this data to decide which 
approach is appropriate for their specific analysis.

Calls and short messages. Call and message logs were obtained from the smartphones every day. For pri-
vacy reasons, we did not capture or store the content of the interactions, only the metadata. Since the participants 
were required to use the provided smartphones as their primary phones and to reveal their phone number, we 
matched the entries in the call logs to the participants’ identities. Each record in the call logs is in the form of 
timestamp, userA, userB, and call duration (in seconds). Each record in the SMS logs is in the form of timestamp, 
userA, and userB. In both cases the data is organized such that userA initiates the interaction and userB is the 
recipient.

Facebook data. Most of the participants of the study voluntarily opted in to authorize data collection from 
Facebook. We used the official Facebook API and the access tokens provided by participants to collect their 
Facebook data every day. The data we collected include all the participants’ activity, characteristics, and the con-
tents of their News Feed. Here, we release a static snapshot of the friendship network among the participants at 
the end of the observation period (links to non-participants are removed). This friendship network is presented 
in the form of a static edge list.

Data quality. In this section we report on the quality (availability) of the Bluetooth data. Phones in the exper-
iment were set to scan for Bluetooth every five minutes. We therefore divide the four weeks observation period 
into 8064 five minute periods (4 (weeks) × 7 (days) × 24 (hours) × 12 (five minute periods) = 8064). The data 
quality (availability) of each user is the fraction of these periods in which they have scan data (there were actively 
scanning and/or scanned by another user). Figure 2 summarizes the Bluetooth data availability concerns. Panel 
a displays the distribution of data quality as defined above: the median availability is 0.81, meaning that half the 
users have data in 81% of timebins or more. In Panel b, we show that in most cases only few consecutive bins are 
missing, with a small peak at one hour. Panel c emphasizes the fact that missing data is correlated in time. The 
best quality is observed during working hours and the worst on the night between Friday and Saturday. We expect 
higher date coverage when more users are interacting – even if one user’s phone fails to report scan results, that 

Fig. 2 Statistics on data quality. (a) Missing data per user. The data availability – measured as the fraction of 
5 minute timebins in which data is available – varies across users. Half of the users have at least 81% of data 
available. (b) Distribution of time-bins with missing data. Most commonly only a few bins are missing. The 
visible peak at 12 bins, corresponds to 1 hour of data—the interval at which the phones moved collected data 
into encrypted files—and could be caused by file corruption on the device. (c) Data availability across the week. 
The data availability is the highest during working hours, when the majority of interactions occur.
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user is likely to be scanned by others around them. The effect of the Friday night missing data is a combination of 
fewer study participants nearby each other and the study participants neglecting to charge their phones during 
a night out.

Data records
All data is available in Figshare59. A description of the Bluetooth interaction data is available in Table 1, call info 
is listed in Table 2, text message data descriptions are in Table 3, the Facebook data description is in Table 4, and 
description of the gender information is stored in Table 5.

technical Validation
In this section we describe and visualize the properties of the networks, providing readers with an overview which 
we hope will facilitate working with the data.

Person to person proximity (Bluetooth data). Temporal dynamics. The properties of the presented 
Bluetooth data reflect the highly dynamic and circadian nature of interactions between the participants of the 
study. Figure 3 summarizes 168 hours (one week) of data by reporting the number of active participants (i.e. 
participants in the vicinity of other participants) as well as the number of active edges in the network. Note that a 
small part of the network is active over night and during weekends: some students share accommodations or have 
dorm rooms adjacent to one another. During daytime on weekdays, the network grows and becomes much more 
connected. Notice as well, that the overall properties of the network during Friday are different than other days of 
the week, with interactions continuing late into night hours.

Temporal aggregates. Given the volume and high temporal resolution of the Bluetooth data, one might intro-
duce temporal aggregation to simplify the analysis of the data. It is, however, important to note that the structure 
of the network changes drastically as the aggregation window grows. Figures 4 and 5 illustrate the effects of 

column name column description

timestamp Timestamp in seconds from the beginning of the observation period (as reported by the device. Note, that because of 
differences in the internal clock of different devices, some of the measurements will not be perfectly aligned.)

user_a ID of one user (ego).

user_b ID of the other user (alter). 0–850 for participants of the study, −1 for empty scans, −2 for any non-participating device.

rssi Received Signal Strength Indication, measured in dBm, a rough proxy for distance between devices (the higher the 
absolute value, the higher the distance)

Summary: 5,474,289 records, 706 total users

Table 1. Bluetooth interactions. These are listed in bt.csv and are formatted as described above.

column name column description

timestamp Timestamp in seconds from the beginning of the observation period

user_a ID of the user initiating the call

user_b ID of the other user receiving the call.

duration Duration of the interaction in seconds, or −1 for missed calls

Summary: 3,600 records, 540 total users

Table 2. Phone calls. These are stored in calls.csv and are formatted as described above.

column name column description

timestamp Timestamp in seconds from the beginning of the observation period

user_a ID of the user sending the message.

user_b ID of the user receiving the message (non-participants were removed).

Summary: 24,333 records, 577 total users

Table 3. SMS data. Short messages are listed in sms.csv are formatted as described above.

column name column description

user_a ID of user A

user_b ID of user B

Summary: 6,429 edges, 800 total users

Table 4. Facebook friendships. The static snapshot of Facebook friendships is stored fb_friends.csv, and 
formatted according to the description in this table.
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aggregation. At five minutes—the underlying temporal resolution of the data—participants form multiple small, 
disjoint groups. Figure 4 highlights how the biggest connected component in the graph grows with aggregation 
up to 40 minutes. Figure 5 shows the effect of aggregating the data for up to 24 hours: the structure of the network 
is not clear from the network layout, and the average degree grows from ∼2 to ∼30. For more details on how 
aggregation changes the structure of the network and the subsequent implications for epidemic modelling, refer 
to Stopczynski et al.43. For a more detailed description of the network structures at the highest resolution, and the 
implications for modeling of social interactions, refer to Sekara et al.36.

Figure 6 shows that the aggregates of the Bluetooth networks are very dense: in the weekly aggregates between 
10% and 20% of possible links are active at least once, and during the entire observation 30% of all possible links 
were active.

telecommunication network. Figure 7 shows that the participants of the study prefer text messages to 
making phone calls, with an order of magnitude higher number of SMSes than calls. The telecommunication 
networks appear to be complementary to the person-to-person network: participants resort to text messages and 
phone calls in more the evenings and weekends, when there are fewer proximity events. As shown in Fig. 6, the 
difference in the density of aggregate networks is not pronounced as strongly as in the sheer volume of communi-
cations. There is a positive correlation between the number of messages and phone calls dyads exchange.

Network comparisons. The overlap between networks is an interesting avenue of investigation, which we 
explored to some extent in our previous work32,38,40. Figure 8 shows the overlap between most active dyads in 
different networks. We see that over 80% of short messages are exchanged among 15% of dyads that have the most 
physical proximity (panel A), and that 89% of dyads call each other are also in physical proximity at least once 
during the observation (panel B).

Data loading. The data is released as CSV files. We show how data can be loaded using the Pandas60 package 
in Python. All data files are directly loadable with a basic call of pandas.read_csv().

Bluetooth network visualization. The iPython notebook released with the data shows a visualization 
(using NetworkX61 and Matplotlib62) of the temporal Bluetooth network by considering the network structure at 
a single 5-minute bin, similar to the visualization in Fig. 5. At this high temporal resolution, the network consists 
of many small connected components which can be directly used for network analysis36.

We note that while the network is prepossessed to be symmetric wrt. RSSI values (we store the higher value of 
RSSI between two users), the components in the network are not necessarily fully connected: if userA saw userB 
and userC, but userB did not see userC (nor vice versa) we do not create a link between userB and userC. Due to high 
temporal and spatial resolution of the provided data, users of the of data may consider treating the components as 
fully connected at given time slice, expecting that spurious connections disappear in analysis over longer periods, 
see, for example, Sekara et al.36.

SMS communication visualization. The notebook also shows the principle of joining different types of 
data by visualizing the number of text messages sent between users of different genders in the study. Using a 
consistent user id in all the data types, allows for straightforward merging of different subsets, allowing us to, for 
example, consider dynamics of communication separately for different genders.

column name column description

user ID of user

gender gender of user; 0 for male, 1 for female

Summary: 788 total users

Table 5. Binary descriptors of participants’ gender. These are recorded in genders.csv, and formatted as 
explained above.

Fig. 3 Bluetooth activity reveals a clear circadian and weekly rhythm. Black solid line shows the number of 
active nodes, while the dashed gray bars show the number of active edges.

https://doi.org/10.1038/s41597-019-0325-x


7Scientific Data |           (2019) 6:315  | https://doi.org/10.1038/s41597-019-0325-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Fig. 4 Temporal aggregation of the Bluetooth network. The biggest connected component (shown in blue) 
grows steadily as we increase the duration of the aggregation window from five minutes—the underlying 
sampling frequency in the data—to 40 minutes.

Fig. 5 Temporal aggregation of the Bluetooth network. By using daily aggregates important structures are 
obscured36.

Fig. 6 Relative network density in weekly and monthly aggregates. Density is the fraction of dyads that are 
active vs the number of possible dyads. In the nested bar-charts, the dark gray bars show data aggregated by 
month, while light bars show data aggregated weekly.

Fig. 7 Telecommunications activity. Contrary to interactions in the physical space, the participants call/text 
each other most during evenings and weekends. The black solid line shows the mean number of text messages 
per participant as a function of time, whereas the gray line shows the corresponding mean number of phone 
calls.
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Code availability
Alongside the data, we provide an iPython notebook showing basic data loading and use (see Copenhagen_
Networks_Study_Notebook.ipynb in the Figshare data repository59). The notebook is intended to 
showcase the basic approaches to working with the released data.
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