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Abstract: Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) is one of the most impor-
tant water-soluble chitosan derivatives; its derivatives have gained growing attention due to their
potential biomedical applications. Here, hydroxypropyltrimethyl ammonium chitosan derivatives
bearing thioctate (HACTs), with different degrees of substitution of thioctate, were prepared using
HACC and α-lipoic acid as the reaction precursors, using an ion exchange method. The structural
characteristics of the synthesized derivatives were confirmed by FTIR, 1H NMR, and 13C NMR
spectroscopy. In addition, their antioxidant behaviors were also investigated in vitro by the assays
of reducing power, and scavenging activities against hydroxyl radicals and DPPH radicals. The
antioxidant assay indicated that HACTs displayed strong antioxidant activity compared with HACC,
especially in terms of reducing power. Besides, the antioxidant activities of the prepared products
were further enhanced with the increase in the test concentration and the degrees of substitution
of thioctate. At the maximum test concentration of 1.60 mg/mL, the absorbance value at 700 nm
of HACTs, under the test conditions, was 4.346 ± 0.296, while the absorbance value of HACC was
0.041 ± 0.007. The aforementioned results support the use of HACTs as antioxidant biomaterials in
food and the biomedical field.

Keywords: hydroxypropyltrimethyl ammonium chitosan derivatives; α-lipoic acid; antioxidant
activity

1. Introduction

The oxidative stress damage caused by the excessive accumulation of reactive oxygen
species (ROS) is closely related to human aging and many neurodegenerative diseases,
such as Parkinson’s and Alzheimer’s diseases, coronary heart disease, skin inflammation,
carcinogenesis, and atherosclerosis [1–4]. As an effective treatment method, the supple-
mentation of exogenous antioxidants can maintain physiological redox homeostasis and
protect organisms from oxidative stress damage by scavenging the excessive ROS [5]. There
is great interest in developing effective bio-macromolecular antioxidants to combat the
effects of ROS [6–8]. Recently, some natural polysaccharides and their derivatives have
been attracting attention to become promising candidates for novel antioxidants [9,10].

As one of the most versatile biomaterials, chitosan is a linear cationic polysaccha-
ride composed of randomly distributed β-(1–4)-linked D-glucosamine and N-acetyl-D-
glucosamine, and it was obtained from the deacetylation of chitin, which was mainly found
in the exoskeletons of shrimps and crabs [11]. Chitosan has attracted much attention in the
exploration as a potent antioxidant used in biomedical materials, biomedicine, and food
science, mainly because of its biodegradability, biocompatibility, non-toxicity, hemostasis,
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healing effect, and excellent processability [12–14]. However, the poor water solubility and
weak antioxidant action of chitosan are the major obstacles to achieve the practical appli-
cations [15,16]. Luckily, the presence of free hydroxyl and amine groups in the chitosan
backbone provide an opportunity to upgrade it with strongly hydrophilic functionalized
molecules via simple chemical modification methods, which can not only improve the
physical and chemical properties of chitosan but also expand its applications ranges [17,18].

As a member of the B-vitamins, α-lipoic acid is a safe, natural organosulfur compound
with amphipathicity, derived from octanoic acid [19]. It has received increasing attention
because of its pharmacological and medical value [20,21]. α-Lipoic acid exists in various
parts of the body; both itself and its reduced form have the capacity to sustain the intrinsic
cellular antioxidant defense system by mainly acting as biological antioxidants, metal-
chelating agents, reducing agents of oxidized forms of other antioxidants such as vitamin C
and E, and glutathione, and, finally, as modulators of some intracellular signaling pathways
such as insulin and nuclear factor-κB [22,23]. Therefore, it can be regarded as an effective
strategy to graft α-lipoic acid onto chitosan to improve the antioxidant ability of chitosan.
The incorporation of α-lipoic acid can not only change the structural characterization, but
also improve the physicochemical and biological properties of chitosan. Shen et al., (2020)
reported the preparation of novel nanomicelles based on chitosan-graft-α-lipoic acid and
these micelles showed excellent water dispersability, stability, and improved antioxidant
activity of quercetin [24]. Luo et al., (2020) obtained the reduction-responsive copolymers
based on chitosan–α-lipoic acid conjugates and they could be used as new copolymer
carriers for the drug delivery of methotrexate [25]. However, the poor water solubility and
the use of organic catalysts in the preparation process of chitosan–α-lipoic acid conjugates
could inevitably limit their further extensive application.

In this work, the novel water-soluble chitosan derivatives were synthesized using
HACC and α-lipoic acid as the reaction precursors in an aqueous medium via the ion
exchange method. The chemical structures of the obtained chitosan derivatives were
characterized by FTIR, 1H NMR, and 13C NMR. The quantitative data on degrees of
substitution of the derivatives were calculated by the integral areas in 1H NMR spectra.
In addition, their reducing power and scavenging abilities against hydroxyl radicals and
DPPH radicals were also examined.

2. Results and Discussion
2.1. Chemical Synthesis and Characterization

HACC is one of the most important cationic chitosan derivatives with great water
solubility due to the presence of quaternary ammonium salt moieties [26–28]. In this paper,
as shown in Scheme 1, HACC was obtained in deionized water without any organic solvent
using chitosan and glycidyl trimethyl ammonium chloride as starting materials, by the
nudeophilic ring-opening reaction between an epoxide ring and primary amine groups.
The end products, HACTs with four different degrees of substitution, were prepared using
HACC and thioctate, which was the salt form of α-lipoic acid in sodium hydroxide solution,
as the reaction precursors at different feeding ratios by ion exchange in an aqueous system.
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The chemical structures of pristine chitosan and chitosan derivatives were analyzed by
FTIR spectra (Figure 1). The spectrum of pristine chitosan showed its characteristic bands,
namely: a broad band at 3410 cm−1 due to the free O–H and N–H symmetric stretching vi-
bration and the intra- and inter-molecular hydrogen bonds; weak bands at 2920–2873 cm−1

assigned to the C–H stretch vibrations; characteristic peaks at 1648 and 1598 cm−1 ascribed
to the C=O stretching (amide I) and N–H stretching (amide II), respectively; and the ab-
sorption peak at 1081 cm−1 assigned to the C–O stretching vibrations [29,30]. After the
chitosan was modified with glycidyl trimethyl ammonium chloride, the new significant
peak appears at 1479 cm−1, attributed to the C−H bending vibrations, which suggests the
generation of an N,N,N-trimethyl quaternary ammonium group [31]. Proof of the success-
ful introduction of α-lipoic acid onto the chitosan backbone was extracted from the FT-IR
spectra and a significant new peak at 1567 cm−1 is observed, assigned to a carbonyl group
(C=O) in a carboxylic acid anion of thioctate [32,33]. Meanwhile, increasing intensity of the
adsorption bands at 2923–2861, and 1398 cm−1, ascribed to the C–H stretch vibrations of the
aliphatic group, are observed in the spectra of all HACTs [34], compared with the pristine
chitosan and HACC, also indicating that HACTs have been synthesized successfully.
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Figure 1. FTIR spectra of chitosan and chitosan derivatives.

The chemical structures of the parent chitosan and the new derivatives were confirmed
by 1H NMR, as shown in Figure 2. The 1H NMR spectrum of chitosan has been examined
in previous studies and the signals can be interpreted as: 3.10 ppm (H2), 3.64–3.82 ppm
(H3–H6) [35,36]. In the spectrum of HACC, additional signals at 4.31 (assigned as b),
3.41 (assigned as c), 3.22 (assigned as d), and 2.77–2.90 (assigned as a) ppm can be assigned
to the protons of the newly formed hydroxypropyltrimethyl ammonium moieties, respec-
tively [26,37]. There were new peaks in the range of 1.41–2.50 (assigned as e, f, g, h, j),
and 3.69 ppm (assigned as i) in the spectra of HACTs when compared to the spectrum
of HACC, which could be assigned to the methylene and methine protons of long chain
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alkyl, originating from the grafting of the α-lipoic acid onto the chitosan backbone [24].
The new chemical shifts observed for HACTs confirmed the successful introduction of
α-lipoic acid onto the chitosan backbone via the ion exchange process. From the 1H NMR
data, the DS values of the chitosan derivatives were calculated (Table 1) and the DS value
of the quaternary ammonium salts was determined to be 1.55. By changing the feeding
ratio of thioctate to aminoglucose units, the DS values of thioctate were from 51 to 86 per
100 anhydroglucose units of chitosan, respectively. These values indicated that the chi-
tosan derivatives prepared in this paper, obtained at a higher feeding ratio of thioctate to
aminoglucose units, had higher DS values.
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Table 1. The degrees of substitution and water solubility of chitosan derivatives.

Compound Chitosan HACC HACT1 HACT2 HACT3 HACT4

Degree of Substitution 0.95 a 1.55 b 0.51 c 0.68 c 0.80 c 0.86 c

Water Solubility
(mg/mL) / * ≥50 ≥50 ≥50 ≥50 ≥50

a Deacetylated degree of chitosan. b Degree of substitution of quaternary ammonium salts in HACC. c Degree of
substitution of thioctate in HACTs. * Symbol ‘/’ represented insoluble.

13C NMR spectroscopy was used for further investigation of the structures of the
prepared chitosan derivatives. As shown in Figure 3, on the one hand, the peaks ascribed
to the carbons in the chitosan backbone at 98.1 ppm (C-1), 55.8 ppm (C-2), 70.4 ppm (C-3),
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76.4 ppm (C-4), 74.7 ppm (C-5), and 59.9 ppm (C-6) are evidently observed [38]. Addition-
ally, the new 13C NMR signals at 51.8 ppm (a), 64.8 ppm (b), 77.9 ppm (c) and 54.3 ppm (d)
for HACC are associated with the carbons of hydroxypropyltrimethyl ammonium moi-
eties [26,28]. Other new signals at approximately 183.3 ppm (l), 56.7 ppm (i), 40.4 ppm (j),
37.7 ppm (k), 33.3–34.0 ppm (e, h), 28.5 ppm (g), and 26.0 ppm (f) are present in HACTs
when compared with HACC, which were correlated to the carbons of thioctate [39].
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The original FTIR, 1H NMR, and 13C NMR recorded spectra of raw materials and
products were also provided in Supplementary Information (Figures S1–S7). The analytical
results of the FTIR, 1H NMR, and 13C NMR spectra provided support for the success
synthesis of HACTs.

2.2. Water Solubility

It was widely known that pristine chitosan and α-lipoic acid have poor solubility in
neutral water. The effect of pH on water solubility of the chitosan derivatives prepared
in this work was shown in Figure 4a. The fluctuation of pH directly affected the water
solubility of pristine chitosan. At a low pH (pH < 6.0), chitosan had good solubility with the
transmittance above 99%. When the pH was gradually increased from 7.0 to 13.0, the trans-
mittance of the chitosan solutions decreased rapidly and became cloudy. In contrast, good
solubilities of HACC and HACTs, without being affected by pH, in a wide range from 3.0 to
13.0, were observed. Meanwhile, the water solubility of chitosan, HACC, and HACTs were
investigated, and the results were summarized in Table 1 and Figure 4b, which showed that
HACC and HACTs could be completely dissolved in deionized water at a concentration of
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50 mg/mL. These results indicated that the introduction of an N,N,N-trimethyl quaternary
ammonium moiety into the chitosan backbone could greatly enhance water solubility and
a combination of quaternization and an ion exchange method provided a highly efficient
tool to prepare water-soluble chitosan derivatives with fat-soluble functional organic acids.
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2.3. Antioxidant Activity

Three methods, namely, reducing power, DPPH, and hydroxyl radical scavenging
activities, were used to evaluate the antioxidant activities of the prepared HACTs in vitro.

2.3.1. Reducing Power

The reducing powers of HACTs as a function of the test concentration are presented
in Figure 5. No reducing power was detected for HACC, while HACTs exhibited obvious
increase in the absorbance values at 700 nm, which meant stronger reducing power. The
results showed that as the concentration increases from 0.10 to 1.60 mg/mL, the reducing
powers of HACTs showed a significant dose–effect relationship, and the reducing power
reached the maximum when the test concentration was 1.60 mg/mL. At the maximum test
concentration of 1.60 mg/mL, the absorbance values at 700 nm of HACTs under the test
conditions are 2.020 ± 0.034, 3.018 ± 0.123, 4.017 ± 0.215, and 4.346 ± 0.296, respectively,
as the DS values of thioctate increase, which indicated that the content of disulfide bonds
had a direct positive influence on the reducing power.
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2.3.2. DPPH Radical Scavenging Activity

The purple DPPH radicals can turn into a yellow stable compound when reacted
with antioxidants and the DPPH radical scavenging assay is one of the most widely-used
methods for the measurement of a free radical’s ability to scavenge antioxidants, due to
their simplicity, rapidity, and sensitivity [8]. As shown in Figure 6, the test concentration
of samples ranges from 0.10 to 1.60 mg/mL, the scavenging rate of HACC is below 1%.
The prepared HACTs showed diverse abilities in scavenging DPPH radicals, and all of
their abilities were stronger than that of HACC, which might result from the incorpora-
tion of α-lipoic acid. Besides, the scavenging activities of HACTs against DPPH radicals
showed a concentration-dependent manner, and HACTs at maximum test concentration of
1.60 mg/mL exhibited the highest scavenging effect against DPPH radicals. Meanwhile,
as the DS values of thioctate increased, the scavenging activity against DPPH radicals of
HACTs also increased.
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2.3.3. Hydroxyl Radical Scavenging Activity

As highly reactive and harmful oxidants to living organisms, hydroxyl radicals can
cause serious damage to DNA, lipids, and proteins [40]. Therefore, it is essential to remove
hydroxyl radicals for protecting life systems. As can be seen from Figure 7, all samples
show the scavenging activity against hydroxyl radicals. When the test concentration
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was increased from 0.10 to 1.60 mg/mL, the dose–effect relationship was obvious and the
results indicated that, upon increasing the concentration to 1.60 mg/mL, the scavenging rate
reached the maximum. The hydroxyl radical scavenging activity of HACC was only about
10%, while the hydroxyl radical scavenging activities of HACTs were significantly increased
from 20% to 45% after grafting alpha lipoic acid. The increased radical scavenging activity
might be attributed to the property of alpha lipoic acid as an effective bio-antioxidant. In
addition, it was noticed that an increase in DS values (from 0.51 to 0.86) of thioctate in the
HACTs led to a significant increase in the scavenging activity against hydroxyl radicals.
The result of the antioxidant capacity evaluated by the scavenging assay against hydroxyl
radicals was very consistent with those determined by the reducing power assay and the
scavenging assay against DPPH radicals.
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3. Materials and Methods
3.1. Materials

Chitosan (molecular weight: 575 KDa, deacetylated degree: 95%) was supplied by
Zhejiang Golden-Shell Pharmaceutical Co., Ltd. (Yuhuan, China). Glycidyl trimethyl
ammonium chloride, (R)-(+)-lipoic acid, and sodium hydroxide were purchased from the
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Other chemicals of analytical-
reagent-grade were used as received.

3.2. Preparation of Chitosan Derivatives
3.2.1. Synthesis of Hydroxypropyltrimethyl Ammonium Chloride Chitosan (HACC)

Chitosan (3.22 g, 20 mmol of glucosamine), glycidyl trimethyl ammonium chloride
(9.58 g, 60 mmol), and deionized water (200 mL) were added to a 500 mL round-bottomed
flask equipped with a mechanical agitator and a condenser. The mixture was warmed
to 80 ◦C and vigorously stirred at reflux for 48 h. The reaction mixture was then cooled
down to room temperature. After being dialyzed against deionized water for 2 days to
remove the probable remaining reagents, the undissolved precipitate was discarded by
centrifugation and HACC was obtained by lyophilization of the supernatant overnight in a
vacuum. Yield: 49%. FTIR (KBr): 3405, 2921, 2881, 1647, 1479, and 1068 cm−1. 1H NMR
(D2O): δ 2.77, 2.90, 3.22, 3.41, 3.64, 3.96, 4.31, and 4.53 ppm. 13C NMR (D2O): δ 51.8, 54.3,
60.3, 62.4, 64.8, 69.2, 73.0, 74.9, 77.9, and 102.3.

3.2.2. Synthesis of Hydroxypropyltrimethyl Ammonium Chitosan Derivatives Bearing
Thioctate (HACTs)

Hydroxypropyltrimethyl ammonium chitosan derivatives bearing thioctate, with
various degrees of substitution of thioctate, were synthesized according to the following
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procedure: HACC (1.50 g) was dissolved completely in deionized water (100 mL) and
added to a 250 mL round-bottomed flask equipped with a mechanical agitator. The thioctate
aqueous solution was prepared by dissolving α-lipoic acid (molar ratios of α-lipoic acid to
HACC were 1:1, 1:2, 1:3, and 1:5, respectively), in an equivalent amount of 40% (w/v) NaOH
aqueous solution under constant stirring for 0.5 h at 25 ◦C. Then, the different dosages of
the above mixture were added slowly to the HACC aqueous solution, respectively, followed
by stirring vigorously for 12 h at 25 ◦C. After that, the reaction solution was purified by
dialysis (molecular weight cutoff: 500, MD77, USA) in deionized water for 2 days. Finally,
the purified HACTs were obtained by freeze-drying overnight in a vacuum. The four
different products were named as HACT1, HACT2, HACT3, and HACT4, respectively.

HACT1: FTIR (KBr): 3387, 2923, 2867, 1567, 1477, 1399, 1068 cm−1. 1H NMR (D2O):
δ 1.41, 1.57, 1.75, 1.89, 2.16, 2.50, 2.78, 2.91, 3.22, 3.40, 3.62, 3.69, 4.30, 4.52 ppm. 13C NMR
(D2O): δ 25.7, 28.5, 34.0, 37.5, 38.2, 40.4, 52.0, 54.3, 56.8, 60.5, 62.4, 64.8, 69.2, 73.4, 74.9, 78.1,
102.3, and 183.6.

HACT2: FTIR (KBr): 3400, 2923, 2861, 1568, 1479, 1400, 1072 cm−1. 1H NMR (D2O):
δ 1.41, 1.57, 1.65, 1.91, 2.16, 2.47, 2.78, 2.91, 3.22, 3.39, 3.61, 3.69, 4.29, 4.51 ppm. 13C NMR
(D2O): δ 25.7, 28.5, 34.0, 37.5, 38.2, 40.4, 51.9, 54.3, 56.7, 60.3, 63.1, 64.8, 69.3, 74.9, 78.1, 102.3,
and 183.6.

HACT3: FTIR (KBr): 3384, 2923, 2861, 1567, 1479, 1398, 1070 cm−1. 1H NMR (D2O):
δ 1.42, 1.57, 1.65, 1.92, 2.18, 2.47, 2.78, 2.91, 3.22, 3.40, 3.61, 3.69, 4.29, 4.51 ppm. 13C NMR
(D2O): δ 25.7, 28.5, 34.0, 37.5, 38.1, 40.4, 52.0, 54.3, 56.7, 60.6, 62.7, 69.0, 73.1, 75.0, 78.4, 102.6,
and 183.3.

HACT4: FTIR (KBr): 3398, 2925, 2857, 1568, 1479, 1398, 1068 cm−1. 1H NMR (D2O):
δ 1.42, 1.57, 1.65, 1.91, 2.17, 2.47, 2.78, 2.90, 3.22, 3.39, 3.61, 3.69, 4.29, 4.51 ppm. 13C NMR
(D2O): δ 25.7, 28.5, 34.0, 37.5, 38.2, 40.4, 52.0, 54.3, 56.7, 60.3, 62.9, 64.8, 69.3, 73.3, 75.0, 78.1,
102.3, and 183.3.

3.3. Characterization of Chitosan Derivatives
3.3.1. Fourier Transform Infrared (FTIR) Spectroscopy

The functional groups of the pristine chitosan, HACC, and HACTs were analyzed by
FT-IR spectra. The spectra were recorded using Nicolet iS50 instrument (Thermo, Waltham,
MA, USA) at 25 ◦C using the transmittance mode in the wavenumber range from 4000 to
400 cm−1 with a resolution of 4.0 cm−1. All the tested samples were made into tablets by
mixing with analytical grade KBr for the observations. The scan was performed against a
blank KBr pellet background with accumulation of 32 scans.

3.3.2. Nuclear Magnetic Resonance (1H NMR and 13C NMR) Spectroscopy

The chemical structures of the pristine chitosan, HACC, and HACTs were further
confirmed by 1H NMR and 13C NMR spectra. These spectra were carried out on an
AVANCE IIITM 500 Spectrometer (Bruker, Zurich, Switzerland) under a static magnetic
field of 500 MHz and 125 MHz at 25 ◦C. Pristine chitosan was dissolved in 2% trichloroacetic
acid deuterium oxide (D2O) mixtures, and the chitosan derivatives were dissolved in D2O,
but α-lipoic acid was dissolved in (CD3)2SO (DMSO-d6). Chemical shifts were depicted as
δ (ppm) and reported relative to the solvent peaks. Meanwhile, the degrees of substitution
(DS) of the prepared chitosan derivatives were obtained by the integral areas in 1H NMR
spectra and calculated by the following Equations (1) and (2).

DS1 (%) = ((5 ×
∫

Hb)/
∫

H3–6) × 100 (1)

DS2 (%) = (
∫

He/(2 ×
∫

Hb)) × DS1 × 100 (2)

where DS1 is the degree of substitution of hydroxypropyltrimethyl ammonium in HACC,
DS2 is the degree of substitution of thioctate in HACTs,

∫
H3–6 is the integral area of H3–H6

(δ = 3.53–4.12 ppm) in the glucosamine unit,
∫

Hb is integral area of Hb (singlet at 4.30 ppm)



Molecules 2022, 27, 2682 10 of 13

in hydroxypropyltrimethyl ammonium salt and
∫

He is integral area of He (multiplet at
2.17 ppm) in the thioctate group.

3.4. Water Solubility

The method of turbidimetric titration was used to determine the solubility of the chi-
tosan derivatives at different pH ranges. The pristine chitosan and the chitosan derivatives
(20 mg) were dissolved in a 1% acetic acid solution (20 mL) at 25 ◦C, respectively. Then
the pH of solutions was gradually regulated by a 1 M NaOH solution and its value was
obtained using an FE28-Standard pH meter (METTLER TOLEDO, Uster, Switzerland),
followed by the transmittance at λ = 600 nm, recorded by a Lambda 265 UV–visible spec-
trometer (PerkinElmer, Waltham, MA, USA). Furthermore, test samples (500 mg) were
stirred in deionized water (10 mL) at 25 ◦C for 12 h, respectively, and the insoluble parts
were then collected by centrifugation, washed with absolute ethanol, freeze-dried, and
weighed. The water solubility was calculated according to the following Equation (3):

Water solubility (mg/mL) = (500 − W)/10 (3)

where W (mg) is the weight of undissolved parts.

3.5. Evaluation of Antioxidant Activity In Vitro
3.5.1. Reducing Power Assay

The capacity of the prepared chitosan derivatives to reduce iron (III) was measured
according to the reported method [41]. A total of 1.0 mL of the sample solutions with
various concentrations (0.60, 1.20, 2.40, 4.80, and 9.60 mg/mL) were mixed with 1.0 mL of
potassium ferricyanide (K3[Fe(CN)6], 1.0% (w/v)) and incubated at 50 ◦C for 20 min. The
reaction was stopped by the addition of 1.0 mL of trichloroacetic acid solution (CCl3COOH,
10% (w/v)), followed by centrifugation at 3000 rpm for 5 min. A total of 1.5 mL of each
supernatant was mixed with 0.3 mL of ferric chloride solution (FeCl3, 0.1% (w/v)) and
1.2 mL of distilled water, and then incubated at room temperature for 10 min. Finally, the
absorbance of the resultant solution was measured at 700 nm. Higher absorbance of the
reaction mixture showed a stronger reducing power. The experiments were carried out
in triplicate.

3.5.2. DPPH Radical Scavenging Assay

The ability of the chitosan derivatives to scavenge DPPH radicals was measured
according to the previous literature [38]. Briefly, 1.0 mL of the sample solutions at various
concentrations (0.3 mg/mL, 0.6 mg/mL, 1.2 mg/mL, 2.4 mg/mL, and 4.8 mg/mL) were
added into 2.0 mL of the DPPH solution (0.18 mM in absolute ethanol) and kept at room
temperature in the dark for 20 min before measuring in a UV–vis spectrophotometer
at 517 nm. Then, deionized water, rather than sample solution, was used as a blank,
and absolute ethanol was used instead of the DPPH solution was used as the control.
The calculation used to report on the scavenging of the DPPH radicals was given by
Equation (4):

Scavenging effect (%) = [1 − (A1 − A2)/A0] × 100 (4)

where A0 is the absorbance of the blank group, A1 is the absorbance of the sample group,
and A2 is the absorbance of the control group.

3.5.3. Hydroxyl Radical Scavenging Assay

The hydroxyl radical scavenging activity was measured based on the generation of
hydroxyl radicals from a Fenton reaction between ferrous ions and H2O2, according to
a previously described method [42]. A total of 1.0 mL of sample solutions with various
concentrations (0.45, 0.90, 1.80, 3.60, and 7.20 mg/mL) were mixed with 3.5 mL of a sodium
phosphate buffer (pH 7.4, 150 mM), which contained 0.5 mL of EDTA-Fe2+ (2.0 mM), 1.0 mL
of safranine T (1.0 mM), and 1.0 mL of H2O2 (3%, (v/v)). The reaction solutions were incu-
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bated at 37 ◦C for 30 min, and the absorbance was read at 520 nm by a spectrophotometer.
A deionized water displaced sample was used as a blank and the sodium phosphate buffer
replaced H2O2 as the control for all assays. The scavenging activity against hydroxyl
radicals was calculated using Equation (5):

Scavenging effect (%) = (A1 − A2)/(A0 − A2) × 100 (5)

where A0 is the absorbance of the control group, A1 is the absorbance of the test group, and
A2 is the absorbance of the blank group.

3.6. Statistical Analysis

All antioxidant experiments in this study were done in triplicate and data were pre-
sented as the mean ± standard deviations. Statistical significance (p < 0.05) was determined
by a one-way analysis of variance and graphing was dealt with using Origin 8.0 (Northamp-
ton, MA, USA).

4. Conclusions

In this study, the preparation of hydroxypropyltrimethyl ammonium chitosan deriva-
tives bearing thioctate, with four different degrees of substitution of thioctate, via an ion
exchange method, was described. FTIR, 1H NMR, and 13C NMR spectroscopy confirmed
the successful synthesis of the prepared chitosan derivatives, and the degrees of substitution
of thioctate were calculated by the integral areas in the 1H NMR spectra. The antioxidant
activity evaluated by the reducing power, DPPH, and hydroxyl radical scavenging ac-
tivity assays showed that, compared with HACC, the final products HACTs exhibited a
stronger radical scavenging capacity and reducing power, which further enhanced as the
test concentrations and the degrees of substitution of thioctate increased. The increased
antioxidant property of HACTs might be attributed to the property of the disulfide bond
to act as an electron donor. The results demonstrated that the hydroxypropyltrimethyl
ammonium chitosan derivatives bearing thioctate could have great potential application as
antioxidant agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27092682/s1, Figure S1: FTIR, 1H NMR, and 13C NMR
spectra of chitosan; Figure S2: FTIR, 1H NMR, and 13C NMR spectra of HACC; Figure S3: FTIR, 1H
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Figure S5: FTIR, 1H NMR, and 13C NMR spectra of HACT3; Figure S6: FTIR, 1H NMR, and 13C NMR
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