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Objective: The aim of this study was to develop and compare multimodal models for
predicting outcomes after endovascular abdominal aortic aneurysm repair (EVAR) based
on morphological, deep learning (DL), and radiomic features.

Methods: We retrospectively reviewed 979 patients (January 2010—December 2019)
with infrarenal abdominal aortic aneurysms (AAAs) who underwent elective EVAR
procedures. A total of 486 patients (January 2010–December 2015) were used
for morphological feature model development and optimization. Univariable and
multivariable analyses were conducted to determine significant morphological features
of EVAR-related severe adverse events (SAEs) and to build a morphological feature
model based on different machine learning algorithms. Subsequently, to develop
the morphological feature model more easily and better compare with other modal
models, 340 patients of AAA with intraluminal thrombosis (ILT) were used for automatic
segmentation of ILT based on deep convolutional neural networks (DCNNs). Notably,
493 patients (January 2016–December 2019) were used for the development and
comparison of multimodal models (optimized morphological feature, DL, and radiomic
models). Of note, 80% of patients were classified as the training set and 20% of patients
were classified as the test set. The area under the curve (AUC) was used to evaluate the
predictive abilities of different modal models.

Results: The mean age of the patients was 69.9 years, the mean follow-up was
54 months, and 307 (31.4%) patients experienced SAEs. Statistical analysis revealed
that short neck, angulated neck, conical neck, ILT, ILT percentage ≥51.6%, luminal
calcification, double iliac sign, and common iliac artery index ≥1.255 were associated
with SAEs. The morphological feature model based on the support vector machine
had a better predictive performance with an AUC of 0.76, an accuracy of 0.76, and
an F1 score of 0.82. Our DCNN model achieved a mean intersection over union
score of more than 90.78% for the segmentation of ILT and AAA aortic lumen. The
multimodal model result showed that the radiomic model based on logistics regression
had better predictive performance (AUC 0.93, accuracy 0.86, and F1 score 0.91) than
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the optimized morphological feature model (AUC 0.62, accuracy 0.69, and F1 score
0.81) and the DL model (AUC 0.82, accuracy 0.85, and F1 score 0.89).

Conclusion: The radiomic model has better predictive performance for patient status
after EVAR. The morphological feature model and DL model have their own advantages
and could also be used to predict outcomes after EVAR.

Keywords: abdominal aortic aneurysm, endovascular repair (EVAR), multimodal, morphologic features, deep
learning, radiomics

INTRODUCTION

Endovascular aneurysm repair (EVAR) for abdominal aortic
aneurysm (AAA) has some advantages in the minimal invasion,
rapid postoperative recovery, shorter hospital stay, and low
mortality and morbidity. However, long-term follow-up results
reveal a high risk of postoperative complications and re-
intervention, when compared with open surgical repair (OSR).
Thus, for patients who undergo EVAR, lifetime follow-up is
recommended by guidelines (1–4). However, close follow-up
may result in unexpected side effects, such as renal function
impairment, radiation exposure, and economic and time costs.
Therefore, an individualized follow-up protocol is needed
(5–9).

Morphological features have been widely used to evaluate
risk after EVAR. The operators first treat patients they do
not make an estimation of individual patient risk through
these adverse morphological features, such as the short neck,
angulated neck, intraluminal thrombosis (ILT), calcification,
and iliac artery tortuosity (9–11). Recently, Karthikesalingam
Alan used preoperative morphological features and artificial
neural network (ANN) to predict endograft complications,
and Ali Kordzadeh applied 26 preoperative attributes
and ANN for the detection of endoleaks (types I–III,
respectively). However, the limited number of patients with
different complications may have influenced the prediction
performance. Moreover, the above studies did not fully
exploit the morphological features and did not compare the
differences between different machine learning (ML) algorithms,
and the feature extraction process was time-consuming
(12, 13).

Convolutional neural networks (CNNs) extract non-linear,
entangled, and representative features from massive and high-
dimensional data from medical images. Benefiting from its
strong feature-learning ability, the deep learning (DL) model has
shown human expert-level performance in diagnosis, detection,
prognosis, and treatment selection (14–16). Unfortunately,
preoperative computed tomography angiography (CTA) DL
feature stratification methods for EVAR were still unavailable.
Radiomics has been widely used in the study of oncology
(17). Texture analysis, as a part of radiomics, has gradually
been used in AAA, such as predicting expansion, endotension,
regression of endoleaks, and aneurysm progression after EVAR
(18–21). Compared with texture analysis, radiomics can obtain
more features, which may potentially improve prognostic and
predictive accuracy in EVAR (22–24). Recently, Charalambous

Stavros used radiomics and support vector machines (SVM)
trained on 1-month and 6-month radiomic data after EVAR to
predict Type 2 endoleaks (T2ELs) leading sac expansion at 1 year
(25). Similarly, at present, preoperative CTA radiomic feature
stratification methods for EVAR were unavailable.

In this study, we first determined the significant
morphological features and developed a morphological feature
model based on different ML algorithms. We then used DL
algorithms to make the model development more convenient.
Subsequently, we studied the relationship between DL features,
radiomic features, and EVAR-related severe adverse events
(SAEs), to develop models and compare them with an optimized
morphological feature model.

MATERIALS AND METHODS

Data and Computed Tomography
Collection
From January 2010 to December 2019, 1,523 patients with
infrarenal AAAs who underwent elective EVAR at our
single center were retrospectively reviewed. Patients with
preoperative and postoperative CTA were enrolled in
this study. The exclusion criteria were abdominal aortic
dissecting aneurysm, ruptured AAA, isolated iliac artery
aneurysm, history of aortic surgery, fenestration, and chimney
technique. A total of 979 patients were included in this study.
Ethical approval was obtained from the ethics committee
of our hospital (B2021-063). The need to obtain informed
consent from patients was waived due to the retrospective
nature of the study.

Contrast-enhanced computed tomography (CT) was
performed using Toshiba Aquilion One-64 (Version 3.1; Toshiba
Medical Systems, Otawara, Japan) with 1-mm thickness slices.
Triple-phase CT was performed, which included a plain scan,
arterial phase, and portal venous phase. Arterial phase images
were acquired 20–30 s after injection of contrast agent (Ultravist,
Bayer Schering Pharma, Berlin, Germany).

End Points
Patients were scheduled for follow-up at 3, 6, and 12 months
and annually thereafter. CTA and color Doppler ultrasound
were routinely performed. Follow-up data were collected
until June 2021. The primary end points were EVAR-related
SAEs, including type I/III endoleaks, persistent type II
endoleaks (persist longer than 6 months), re-intervention,
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FIGURE 1 | Preoperative CTA reconstruction (A); AAA sac ROI (B); ILT ROI (C); AAA ROI (D); AAA original ROI CTA slice (F) was the combination between AAA ROI
CTA slicer (G) and original ROI CTA slice (E); CTA slicer (I) was the combination between AAA sac ROI CTA slicer (G) and ILT ROI CTA slicer (H). CTA, computed
tomography angiography; AAA, abdominal aortic aneurysm; ROI, region of interest; ILT, intraluminal thrombosis.

iliac limb occlusion or restenosis, stent-graft migration
(≥5 mm), stent-graft fracture, aneurysm sac enlargement
(≥5 mm), AAA rupture, and aneurysm-related mortality
(3, 4).

Morphological Feature Model
Development
Among the 979 patients, 486 patients (from January 2010 to
December 2015) were used for morphological feature model
development. Morphological features were extracted from the

preoperative CTA images (Figure 1A). All of these morphological
features were conducted with centerlines of flow by two
investigators in a Vitrea Workstation, with disagreements
resolved by a third one. All investigators were blinded to EVAR
outcomes. A total of 32 morphological features were used in this
study. The major morphological features included short neck
(less than 15 mm), conical neck (neck dilation over 10% within
15 mm below the most caudal renal artery), angulated neck
(at least 60◦ between the long axis of the aneurysm sac and
juxtarenal aorta), obvious thrombus (the widest part of thrombus
(≥2 mm thick) covering at least 50% of the circumference
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of the proximal neck), calcified neck (calcification accounting
for more than or equal to 50% of the proximal neck), ILT,
ILT percentage, common iliac artery index (CAI), and double
iliac sign (DIS) (26–28). The significant morphological features
were used to build a morphological feature model based on
different ML algorithms.

Morphological Feature Model
Optimization
To create a morphological feature model easier and compare
it with other modal models, we used deep convolutional
neural networks (DCNNs) to fully automatically segment ILT
in preoperative CTA and realized automatic computation of
ILT percentage (29, 30). To apply the DCNN model, AAA
segmentation was performed in the preoperative CTA using
ITK-SNAP (version 3.8.01). The AAA sac region of interest
(ROI: from the lowest renal artery to the aortic bifurcation)
and ILT ROI were manually segmented by a junior vascular
surgeon and adjusted by a senior vascular surgeon. We then
combined the AAA sac ROI (Figures 1B,G) and the ILT ROI
(Figures 1C,H). The combined ROI (Figure 1I) was resized
to 512 × 512 pixels by third-order spline interpolation in
each CTA slice and fed into the DCNN model. The software
MATLAB (Version 2021a; MathWorks, Natick, Massachusetts)
based on NVIDIA GeForce RTX 3090 was used to create the
DCNN model.

We designed the relevant parameters and used a fully
convolutional network named DeepLabv3+ semantic
segmentation model (31) combined with a backbone
convolutional feature extractor, the ResNet-50 network for
transfer learning (32, 33), with the aim of automatic segmentation
of the ILT and AAA aortic lumen (AL). A 4-fold cross-validation
was employed to provide more robustness (34).

Development and Comparison of
Multimodal Models
The remaining 493 patients, from January 2016 to December
2019, were used for the development and comparison of
multimodal models. To fully determine the nature of
the training set and build a reliable classification model
for further prediction, we used a 5-fold cross-validation
technique (34).

An Optimized Morphological Feature Model
Based on previous statistical analysis results (significant
morphological features) and the DCNN model (fully automatic
segmentation ILT and realized automatic computation ILT
percentage), in this section, we created a morphological feature
model based on different ML algorithms, which became easier
and more convenient.

Deep Learning Model Development
Segmentation of the AAA ROI (ROI: from the renal artery
to the common femoral artery bifurcation) was performed in
the same manner as the AAA sac ROI and ILT ROI. Since

1http://www.itksnap.org

TABLE 1 | Clinical characteristics and outcomes of patients with EVAR.

Variable Patients (n = 979)

Age (years) 69.9 ± 8.1

Male sex n (%) 779 (79.6)

Coronary heart disease n (%) 168 (17.2)

Hypertension n (%) 698 (71.3)

Hyperlipidemia n (%) 501 (51.2)

Diabetes mellitus n (%) 87 (8.9)

Chronic obstructive pulmonary disease n (%) 275 (28.1)

Chronic renal failure n (%) 59 (12.1)

Peripheral artery disease n (%) 115 (11.7)

Endurant n (%) 457 (46.7)

Excluder n (%) 281 (28.7)

Zenith n (%) 241 (24.6)

Maximal aneurysm diameter (mm) 56.9 ± 15.3

Type Ia endoleak n (%) 35 (3.6)

Type Ib endoleak n (%) 37 (3.8)

Type III endoleak n (%) 7 (0.7)

Persistent type II endoleak n (%) 78 (8.0)

Iliac limb occlusion or restenosis n (%) 82 (8.4)

Sac enlargement n (%) 47 (4.8)

Aneurysm-related mortality n (%) 21 (2.1)

EVAR, endovascular aneurysm repair.

the AAA ROI (Figures 1D,G) represented less of the entire
image, we normalized the non-ROI of the original images
(Figure 1E) using MATLAB to obtain better predictions. Later,
the AAA original ROI CTA slices (Figure 1F) were resized
to 224 × 224 pixels by third-order spline interpolation
in each CTA slice and fed into the DL model. The DL
model development had the same environment as that
of the DCNN model.

The ResNet-50 network was used for transfer learning
(32, 33), and we only needed to modify the last number
class to 2 and add the Sigmoid activation function after the
fully connected layer. To make a robust prediction, each
patient’s CTA slices of the AAA original ROI CTA slices
were fed into the DL model, and the average probability
was treated as the result of the probability of EVAR-
related SAEs.

Radiomic Model Development
Radiomic features were extracted using Python (version
3.8.52) through preoperative CTA images and the AAA ROI
(Figure 1D). The Python packages used were SimpleITK
(2.0.0), Sklearn (0.24.2), Pyradiomics (3.0.1), and PyWavelets
(1.1.1). First, the Pearson correlation analysis excluded radiomic
features with high reproducibility. We then used analysis of
variance (ANOVA) to exclude features that had no significant
influence on EVAR-related SAEs. Finally, the least absolute
shrinkage and selection operator (LASSO) regression was used
to determine the features related to SAEs after EVAR. The
selected radiomic features were used to build models using
different ML algorithms.

2http://www.python.org
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FIGURE 2 | The AUC of CAI and SAEs after EVAR. The red dotted circle represents the optimal cutoff point. AUC, area under the curve; CAI, common iliac artery
index; SAEs, severe adverse events.

TABLE 2 | Predictors of SAEs after EVAR by multivariate analyses and predictive performance of different models.

Predictors of SAEs after EVAR by multivariate analyses Predictive performance of different model in training set and test set

Variable OR 95% CI P-value AUC Accuracy Precision Recall F1 score

Age 1.005 0.978–1.033 0.714 LR Training set 0.79 0.76 0.90 0.79 0.84

Neck length 1.009 0.995–1.022 0.214 Test set 0.79 0.73 0.90 0.73 0.81

Short neck 0.598 0.364–0.983 0.042 KNN Training set 0.78 0.76 0.95 0.76 0.84

Angulated neck 1.079 1.020–1.142 0.009 Test set 0.75 0.69 0.98 0.67 0.80

Conical neck 2.440 1.465–4.064 0.001 DT Training set 0.78 0.74 0.92 0.77 0.84

ILT 0.425 0.206–0.874 0.020 Test set 0.72 0.68 0.90 0.68 0.77

ILT percentage ≥ 51.6% 8.024 2.715–23.71 0.000 SVM Training set 0.78 0.76 0.91 0.79 0.85

Luminal calcification 0.542 0.344–0.852 0.008 Test set 0.76 0.76 0.90 0.75 0.82

DSI 0.334 0.161–0.692 0.003 RF Training set 0.88 0.81 0.90 0.84 0.87

Common iliac calcification 0.573 0.296–1.109 0.099 Test set 0.66 0.66 0.83 0.68 0.75

CAI max 0.981 0.912–1.141 0.501 AdaBoost Training set 0.81 0.76 0.89 0.79 0.84

CAI (≥1.255) 2.404 1.394–4.148 0.002 Test set 0.79 0.73 0.88 0.74 0.80

SAEs, severe adverse events; EVAR, endovascular aneurysm repair. The SVM had better predictive performance in the test set.
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TABLE 3 | The segmentation performance in the validation set and test set.

Validation set Test set

ILT IOU (mean ± SD) 0.8791 ± 0.0028 0.8650 ± 0.0033

AAA AL IOU (mean ± SD) 0.9108 ± 0.0050 0.8595 ± 0.0085

Mean IOU (mean ± SD) 0.9298 ± 0.0022 0.9078 ± 0.0029

ILT weight IOU (mean ± SD) 0.9981 ± 0.0001 0.9976 ± 0.0001

Statistics Analysis
Descriptive analyses were performed to assess the clinical
characteristics and outcomes of the cohort. Values are presented
as frequencies or percentages for categorical features and
as mean ± SD for continuous variables. Univariable and
multivariable analyses were conducted to determine the
significant morphological features of EVAR-related SAEs and
to build a morphological feature model based on different
ML algorithms. Based on the presence of EVAR-related SAEs,
patients were randomly divided, 80% were used as the training
set and 20% as the test set. The morphological feature model
and radiomic model development were based on ML using
Python. ML algorithms include logistics regression (LR), Naive
Bayes (NB), k-nearest neighbors (KNN), decision tree (DT),
SVM, random forest (RF), AdaBoost, Xgboost, and LightGBM.
The DCNNs and DL models were developed using MATLAB
software. The area under the curve (AUC) from the receiver-
operating characteristic (ROC) curve was used to evaluate the
predictive effect and select the best performing model in the
training set. Applying the selected model, the AUC from the
ROC curve was used to evaluate the predictive effect in the test
set. Statistical significance was set at P < 0.05. Statistical analyses
were performed using SPSS (Version 23, IBM, Armonk, NY,
United States), Python, and MATLAB.

RESULTS

Patient Characteristics and Outcomes
The mean age of the patients was 69.9 years (range: 41–
89 years), and 779 of them were men (79.6%). Comorbidities
included coronary heart disease (17.2%), hypertension (71.3%),
hyperlipidemia (51.2%), and diabetes mellitus (8.9%). Of
note, three types of modular devices were used in these
patients, namely, 457 Endurant (Medtronic, Santa Rosa, CA,
United States), 281 Excluder (W. L. Gore & Associates,
Flagstaff, AZ, United States), and 241 Zenith (Cook Medical,
Bloomington, IN, United States). The baseline demographic data
were summarized in Table 1.

The mean follow-up was 54 months, including 307 (31.4%)
patients who had EVAR-related SAEs, including 35 (3.6%) type
Ia endoleak; 37 (3.8%) type Ib endoleak; 7 (0.7%) type III
endoleak; 78 (8.0%) persistent type II endoleak; 82 (8.4%) iliac
limb occlusion or restenosis; 47 (4.8%) sac enlargement; and 21
(2.1%) aneurysm-related mortality (Table 1).

Morphological Feature Model
Development and Test
In a total of 486 patients with a maximal Youden’s index
of 0.364 (sensitivity: 0.848 and specificity: 0.484), the optimal
cutoff value of the CAI was 1.255 (Figure 2). Multivariate
analyses showed that short neck, angulated neck, conical neck,
ILT, ILT percentage ≥51.6%, luminal calcification, DSI, and
CAI (≥1.255) were significant morphological features of EVAR-
related SAEs (Table 2).

A total of 388 patients were randomly assigned to the training
set (No SAEs, 269; SAEs, 119); 98 patients were collected to the
test set (No SAEs, 66; SAEs, 32). The AUC of the morphological

FIGURE 3 | The AUC of the optimized morphological feature model for predicting EVAR-related SAEs in the training set. AUC, area under the curve; SAEs, severe
adverse events; EVAR, endovascular aneurysm repair.
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FIGURE 4 | The AUC of the multimodal models for predicting EVAR-related SAEs in the test set. AUC, area under the curve; SAEs, severe adverse events; EVAR,
endovascular aneurysm repair. (A) AdaBoost ROC curve with test dataset. (B) Fold 3 ROC curve with test dataset. (C) LogisticRegression ROC curve with test
dataset.

FIGURE 5 | The AUC of the DL model for predicting EVAR-related SAEs in the
training set. AUC, area under the curve; DL, deep learning; SAEs, severe
adverse events; EVAR, endovascular aneurysm repair.

feature model for predicting EVAR-related SAEs in the test
set was as follows: LR 0.79, KNN 0.75, DT 0.72, SVM 0.76,
RF 0.66, and AdaBoost 0.79. The accuracy for the test set

was LR 0.73, KNN 0.69, DT 0.68, SVM 0.76, RF 0.66, and
AdaBoost 0.73. The F1 scores in the test set were LR 0.81,
KNN 0.80, DT 0.77, SVM 0.82, RF 0.75, and AdaBoost 0.80.
The quantitative performance indicated that the morphological
feature model based on SVM had a better predictive performance
with an AUC of 0.76, an accuracy of 0.76, and an F1 score of
0.82 (Table 2).

Morphological Feature Model
Optimization
From January 2010 to December 2015, 340 patients of
infrarenal AAAs with ILT were used for morphological feature
model optimization. By training in 34,760–35,652 CTA images
(n = 204) and validation in 6,968–7,860 CTA images (n = 68),
our DCNN model achieved a mean intersection over union
(IOU) more than 90.78% for ILT and AAA AL in test set
(Table 3). The manual segmentation of ILT volume, AAA
AL volume, and ILT percentage were 48.6 ± 9.779 cm3,
112.5 ± 77.63 cm3, and 30.18 ± 11.32%, respectively. Our
DCNN model results were 46.8 ± 12.11 cm3, 107.1 ± 99.25 cm3,
and 34.29 ± 10.70%. The ILT volume, AAA AL volume,
and ILT percentage differences were less than 5% (3.81,
4.81, and 4.11%).
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TABLE 4 | The predictive performance of multimodal models in the training set and test set.

Training set Test set

AUC Accuracy AUC Accuracy Precision Recall F1 score

Optimized
morphological
feature model

LR 0.67 ± 0.05 (0.60–0.73) 0.63 ± 0.05 (0.56–0.69) 0.63 0.60 0.75 0.62 0.68

KNN 0.62 ± 0.04 (0.55–0.67) 0.67 ± 0.05 (0.59–0.73) 0.56 0.71 0.71 0.99 0.82

DT 0.64 ± 0.04 (0.60–0.70) 0.68 ± 0.04 (0.62–0.72) 0.56 0.68 0.69 0.97 0.80

SVM 0.62 ± 0.05 (0.55–0.69) 0.59 ± 0.05 (0.51–0.65) 0.58 0.55 0.74 0.51 0.61

RF 0.59 ± 0.07 (0.48–0.70) 0.58 ± 0.05 (0.51–0.65) 0.53 0.56 0.70 0.62 0.66

AdaBoost 0.67 ± 0.05 (0.60–0.74) 0.68 ± 0.02 (0.65–0.71) 0.62 0.69 0.70 0.94 0.81

Deep learning
model

Fold 0 0.85 0.86 0.81 0.83 0.90 0.84 0.87

Fold 1 0.89 0.89 0.81 0.84 0.89 0.87 0.88

Fold 2 0.86 0.87 0.79 0.79 0.86 0.82 0.84

Fold 3 0.90 0.90 0.82 0.85 0.88 0.90 0.89

Fold 4 0.85 0.84 0.81 0.81 0.86 0.87 0.86

Radiomics model LR 0.93 ± 0.02 (0.90–0.95) 0.87 ± 0.03 (0.82–0.91) 0.93 0.86 0.94 0.89 0.91

NB 0.80 ± 0.03 (0.76–0.84) 0.77 ± 0.04 (0.73–0.83) 0.77 0.76 0.78 0.85 0.81

SVM 0.93 ± 0.02 (0.89–0.95) 0.87 ± 0.04 (0.82–0.92) 0.92 0.86 0.93 0.88 0.90

RF 0.93 ± 0.04 (0.87–0.97) 0.86 ± 0.04 (0.80–0.91) 0.90 0.89 0.96 0.89 0.92

Xgboost 0.94 ± 0.03 (0.88–0.97) 0.87 ± 0.04 (0.81–0.92) 0.90 0.85 0.88 0.90 0.89

LightGBM 0.94 ± 0.03 (0.89–0.97) 0.87 ± 0.04 (0.80–0.91) 0.90 0.86 0.88 0.91 0.89

The AdaBoost, Fold 3 and LR had better predictive performance in the test set.

FIGURE 6 | Significant radiomic features and feature coefficients.

Development and Comparison of
Multimodal Models
A total of 493 patients were used for the development
of multimodal models, 394 patients were allocated to the
training set (No SAEs, 269; SAEs, 125), and 99 patients were
allocated to the test set (No SAEs, 68; SAEs, 31). Multimodal
models include optimized morphological features, DL, and
radiomic models.

An Optimized Morphological Feature Model
The AUC of the optimized morphological feature model for
predicting EVAR-related SAEs in the test set was as follows: LR

0.63, KNN 0.56, DT 0.56, SVM 0.58, RF 0.53, and AdaBoost
62. The accuracy for the test set was LR 0.60, KNN 0.71, DT
0.68, SVM 0.55, RF 0.56, and AdaBoost 0.69. The F1 score for
the test set was LR 0.68, KNN 0.82, DT 0.80, SVM 0.61, RF
0.66, and AdaBoost 0.81. The ROC curves (Figures 3, 4A) and
quantitative performance (Table 4) indicated that the optimized
morphological feature model based on AdaBoost had a better
predictive performance with an AUC of 0.62, an accuracy of 0.69,
and an F1 score of 0.81.

Deep Learning Model
By training in 92012-93925 CTA images (n = 315), the DL
model showed excellent predictive performance in validation
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FIGURE 7 | The AUC of the radiomic model for predicting EVAR-related SAEs in the training set. AUC, area under the curve; SAEs, severe adverse events; EVAR,
endovascular aneurysm repair.

set (n = 79) by 5-fold cross-validation with an AUC of
0.87 ± 0.03, accuracy of 0.87 ± 0.02, and F1 score of
0.90 ± 0.02. This performance was further confirmed in the
test set (n = 79) with an AUC of 0.81 ± 0.01, an accuracy
of 0.82 ± 0.02, and an F1 score of 0.87 ± 0.02. The ROC
curves (Figures 4, 5) and quantitative performance (Table 4)
indicated that the DL model (Fold 3) had a better predictive
performance with an AUC of 0.82, an accuracy of 0.85, and an
F1 score of 0.89.

Radiomic Model
We extracted 1,223 radiomic features from each patient, and
30 features were preserved and used for radiomic model
development. The significant radiomic features and feature
coefficients are shown in Figure 6. The AUC of the radiomic
model for predicting EVAR-related SAEs in the test set was as
follows: LR 0.93, NB 0.77, SVM 0.92, RF 0.90, Xgboost 0.90,
and LightGBM 0.90. The accuracy for the test set was LR 0.86,
NB 0.76, SVM 0.86, RF 0.89, Xgboost 0.88, and LightGBM
0.88. The F1 score for the test set was LR 0.91, NB 0.81, SVM
0.90, RF 0.92, Xgboost 0.89, and LightGBM 0.89. The ROC
curves (Figures 4, 7) and the quantitative performance (Table 4)
indicated that the radiomic model based on LR had a better
predictive performance with an AUC of 0.93, an accuracy of 0.86,
and an F1 score of 0.91.

DISCUSSION

Existing risk score models, such as the Glasgow Aneurysm Score
(GAS), Vascular Biochemical and Hematological Outcome Model
(VBHOM), the National Surgical Quality Improvement Project

(NSQIP), the Vascular Study Group of New England (VSGNE),
the Vascular Governance North West model (VGNW), the
Medicare model, and the EVAR Risk Assessment (ERA) model,
cannot accurately predict complications and re-intervention in
the era of EVAR (35–41). Fortunately, when studying the risk
factors for model development, we found that morphological
features were highly correlated with complications and re-
intervention after EVAR. In addition, we also found that
conventional statistical models could not fully exploit complex
and subtle relationships between features for prediction.
These findings were confirmed by Karthikesalingam Alan
and Ali Kordzadeh. Karthikesalingam Alan applied ANN and
19 preoperative morphological features to predict endograft
complications, and in external validation, the 5-year rates of
freedom from aortic complications, limb complications, and
mortality in low- and high-risk groups were 95.9 vs. 67.9%,
99.3 vs. 92.0%, and 87.9 vs. 79.3%, respectively (10). Ali
Kordzadeh used ANN and 26 preoperative attributes (of which
five morphological features) for the detection of endoleaks
(types I–III, respectively), and the overall accuracy of the model
was >86% (11). To avoid the limited number of patients
with different complications that influenced the prediction
performance and fully exploited morphological features, the
prediction performance between different ML algorithms and
model development was easier. A total of 486 patients were
used for morphological feature model development, of which
151(31.1%) patients had SAEs. We identified 8 significant
morphological features from 32 morphological features and
developed a morphological feature model based on different
ML algorithms. Our morphological feature model based on
SVM had better performance than other ML algorithms, with
an AUC of 0.76, an accuracy of 0.76, and an F1 score of
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0.82. Later, we proposed the DCNN model for fully automatic
segmentation of the ILT in preoperative CTA images. Distinct
from traditional thrombus segmentation methods, which have
been addressed with intensity-based semiautomatic algorithms
combined with shape priors (42, 43). Our DCNN model
fully automatically segmented ILT and achieved a mean IOU
score of more than 90.78% for segmentation of ILT and
AAA AL. The volume difference between the segmentation
obtained with the proposed DCNNs and the ground truths was
within the experienced human observer variance (P > 0.05).
Both the ILT segmentation performance and ILT volume
difference were better than the currently available models
(44, 45).

Development and comparison of multimodal models showed
that the optimized morphological feature model based on
AdaBoost had a better predictive performance with an AUC
of 0.62, an accuracy of 0.69, and an F1 score of 0.81. The
AUC, accuracy, and F1 score decreased when compared with
our previous studies (AUC 0.76, accuracy 0.76, and F1 score
0.82). We assumed that the main reason was that, in this
section, we performed a 5-fold cross-validation, and the limited
amount of data affected the model prediction performance (30).
However, it did not prevent the morphological feature model as
a useful adjunct tool for predicting outcomes after EAVR under
the condition of sufficient data. In addition, the morphological
feature model may be more acceptable for clinicians.

Based on DL algorithms and graphics processing units (GPUs)
that power their training, the DL model has shown human
expert-level performance in prognosis (12, 25). Our proposed
DL model (Fold 3) predicts the outcome after EVAR with
an AUC of 0.82, an accuracy of 0.85, and an F1 score of
0.89. Through a hierarchical neural network structure, the DL
model extracted multilevel features from visual characteristics to
abstract mappings that were directly related to SAEs after EVAR
(29). The DL model was fast and easy to use. Since our method
was an end-to-end pipeline that requires only the manually
selected AAA region and image preprocessing, the CTA slice was
input to predict the status after EVAR directly without further
human input. It was easier than the morphological feature model
and radiomic method. Besides, the DL model only required CTA
images, without increasing the cost. In addition, CTA was easy to
acquire throughout the course of treatment; therefore, this model
could be used multiple times.

Radiomic methods used CT images to quantify AAA
information at the macroscopic level, and radiomic analysis
provides quantitative features to mine high-dimensional
information and may build the relationship between AAA
images and EVAR-related SAEs (20–22). Reviewing the current
literature, few radiomic studies have been carried out in patients
with AAA. However, there have been many studies about
texture analysis, and Carl W. Kotze used CT texture analysis
and 18F-fluorodeoxyglucose positron emission tomography to
predict AAA dilatation (16). García G developed a computer-
supported endotension detection method based on texture
analysis for EVAR (17). García G also evaluated the texture
features and classification of AAA endoleak after EVAR, gray-
level co-occurrence matrix (GLCM), gray-level run-length

matrix (GLRLM), and gray-level dependence matrix (GLDM)
were able to distinguish favorable or unfavorable regression
with an accuracy of 93.41 ± 0.024%, 90.17 ± 0.077%, and
81.98 ± 0.045%, respectively (18). Ding N applied GLCM,
GLRLM, and GLDM for predicting aneurysm expansion after
EVAR with accuracy (85.17, 87.23, and 86.09%) and AUC
(0.90, 0.86, and 0.83) (19). Recently, Charalambous Stavros
used radiomics and the SVM classifier trained on 6-month
radiomic features to predict T2ELs leading sac expansion
at 1 year with an AUC of 89.3%, and the SVM classifier
developed with 6-month radiomic features showed an AUC
of 95.5% at 1 year (23). Our radiomic model is based on LR
to preoperative prediction outcomes after EVAR with AUC
0.93, accuracy 0.86, and F1 score 0.91. Although, compared
with other modal models, the radiomic model had better
prediction performance. We suggest that the morphological
feature, DL, and radiomic models all can be used to predict
outcomes after EVAR.

Our study has some limitations. First, due to the retrospective
single-center nature of the study, selective bias could not be
avoided. Despite internal validation and testing, it was necessary
to estimate these multimodal models at other institutions.
Second, the limited data affected the prediction performance for
the development of multimodal models. Besides, the relatively
small sample size limited the possibility of conducting a subgroup
predicting different SAEs after EVAR. Third, the morphological
feature model development was still time-consuming under the
condition of fully automatically segmenting ILT and computing
ILT percentage. The DL model showed effective performance
for predicting outcomes after EVAR. A high environment was
required for DL model development. At present, radiomics lacks
a standardized methodology for radiomic analyses, a universal
lexicon to denote features that are semantically equivalent, and
lists of feature values alone do not sufficiently capture the
details of feature extraction that might nonetheless strongly affect
feature values (43, 44). Finally, the combination of morphological
features, DL, and radiomic features was unclear. In the future
study, we will aim to improve prediction performance by
combining different modal models.

CONCLUSION

Applying morphological features, DL, and radiomic models, we
can evaluate the risk of postoperative outcomes after EVAR.
Using these models, operators can more accurately estimate
individual patient risk after EVAR and identify subgroups of
patients who require more intensive follow-up. This might
affect both patient selection and surveillance after EVAR, which
remained important for prognosis after EVAR.
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