
[09:59 15/5/2009 Bioinformatics-btp203.tex] Page: i253 i253–i258

BIOINFORMATICS Vol. 25 ISMB 2009, pages i253–i258
doi:10.1093/bioinformatics/btp203

IsoRankN: spectral methods for global alignment of multiple
protein networks
Chung-Shou Liao1,2,3, Kanghao Lu3,4, Michael Baym3,4, Rohit Singh3

and Bonnie Berger3,4,∗
1Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2Institute
of Information Science, Academia Sinica, Nankang, Taipei 115, Taiwan, 3Computer Science and Artificial Intelligence
Laboratory and 4Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

ABSTRACT

Motivation: With the increasing availability of large protein–protein
interaction networks, the question of protein network alignment is
becoming central to systems biology. Network alignment is further
delineated into two sub-problems: local alignment, to find small
conserved motifs across networks, and global alignment, which
attempts to find a best mapping between all nodes of the two
networks. In this article, our aim is to improve upon existing global
alignment results. Better network alignment will enable, among other
things, more accurate identification of functional orthologs across
species.
Results: We introduce IsoRankN (IsoRank-Nibble) a global multiple-
network alignment tool based on spectral clustering on the induced
graph of pairwise alignment scores. IsoRankN outperforms existing
algorithms for global network alignment in coverage and consistency
on multiple alignments of the five available eukaryotic networks.
Being based on spectral methods, IsoRankN is both error tolerant
and computationally efficient.
Availability: Our software is available freely for non-commercial
purposes on request from: http://isorank.csail.mit.edu/
Contact: bab@mit.edu

1 INTRODUCTION
Almost every biological process is mediated by a network of
molecular interactions. A few examples of these include: genetic
regulatory networks, signaling networks, metabolic networks and
protein–protein interaction (PPI) networks. The structure of these
networks is becoming increasingly well known, especially with the
advent of high-throughput methods for network inference (Ito et al.,
2001; Krogan et al., 2006; Uetz et al., 2000). As with the genome,
there is significant conservation of network structure between
organisms (Matthews et al., 2001; Yu et al., 2004). Thus, knowledge
about the topology of a network in one organism can yield insights
about not only the networks of similar organisms, but also the
function of their components. A problem with accurate cross-species
comparison of such networks is that the known networks, however,
are both incomplete and inaccurate (Han et al., 2005; Huang et al.,
2007).

The specific problem we address is that of global alignment of
multiple PPI networks. A PPI network is an undirected collection of
pairwise interactions on a set of proteins, where an edge represents
interaction between two proteins. Given a pair of PPI networks,

∗To whom correspondence should be addressed.

and a list of pairwise sequence similarities between proteins in
the two networks, the pairwise alignment problem is to find an
optimal mapping between the nodes of the two networks that
best represents conserved biological function. We distinguish such
global network alignment from local alignment where the goal is to
find multiple network motifs, i.e. independent regions of localized
network similarity. In the multiple global network alignment case,
with k networks, the problem is extended to finding clusters of
proteins across the networks such that these clusters best represent
conserved biological function.

The search for such an alignment is motivated by the intuition that
evolution of genes occurs within the context of the larger cellular
system they are part of. Global network alignment can be interpreted
as an evolutionary analysis done at this systems level rather than in
a piecemeal, local fashion. Once a global network alignment has
been estimated, we can analyze it to gather more localized, granular
insights, e.g. estimating functional orthology across species.

Alignment of multiple networks poses two key problems. The first
is that the computational complexity (i.e. the number of possible
alignments) grows exponentially in the number of networks.
The second is that the genomes corresponding to the various
networks being aligned may vary widely in size (e.g. because of
differing degrees of gene duplication). Amultiple network alignment
algorithm must thus efficiently identify a biologically appropriate
mapping between the genes.

Here, we introduce IsoRankN (IsoRank-Nibble), which takes the
approach of deriving pairwise alignment scores between every pair
of networks, using the original IsoRank methodology (Singh et al.,
2007, 2008, Box 1); then finds alignment clusters based on these
scores. To find clusters, we use a spectral partitioning method that
is both efficient and automatically adjusts to the wide variation in
sizes of the species-specific networks. The algorithm is similar to
the recently developed PageRank-Nibble algorithm (Anderson
et al., 2006), which approximates the Personalized PageRank vector.
A PageRank vector (i.e. one that describes a ranking of graph nodes
for, say, search) is called a Personalized PageRank vector if, given
a particular graph node, its preference scores are concentrated on a
small set of vertices, the set being tailored to the given node. This
notion of vertex-specific rankings is applied in IsoRankN to find
dense, clique-like clusters of proteins when computing the global
alignment of multiple PPI networks.

We tested IsoRankN on the five known eukaryotic PPI networks,
i.e. human, mouse, fly, worm, and yeast. Much of the related
previous work has focused on local network alignment; hence, a
direct comparative evaluation of our results was difficult. As a
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gold standard alignment does not yet exist, we instead evaluate our
alignment method on a variety of indirect criteria, including number
of clusters predicted, within-cluster consistency and GO/KEGG
enrichment (Ashburner et al., 2000; Kanehisa and Goto, 2000).
In order to measure within-cluster consistency, we introduce a
novel metric based on the entropy of the GO/KEGG annotations
of predicted clusters. We believe that the characteristic of a correct
global network alignment would be to preserve the relative functions
of various network parts; this can be well-measured by the various
GO enrichment analyses described above.

A number of related techniques for PPI network alignment exist.
Most notably, these include NetworkBLAST-M (Kalaev et al.,
2008), Græmlin 2.0 (Flannick et al., 2008) and IsoRank (Singh
et al., 2008), though a number of other techniques exist as well
(Berg and Lässig, 2006; Dutkowski and Tiuryn, 2007; Kelley et al.,
2003, 2004; Koyuturk et al., 2005; Sharan et al., 2005; Srinivasan
et al., 2006). NetworkBLAST-M computes a local alignment by
greedily finding regions of high local conservation based on inferred
phylogeny. Græmlin 2.0, in contrast, computes a global alignment
by training how to infer networks from phylogenetic relationships
on a known set of alignments, then optimizing the learned objective
function on the set of all networks.

IsoRank uses spectral graph theory to first find pairwise alignment
scores across all pairs of networks, the details of which are
provided later (Box 1); these pairwise scores, computed by spectral
clustering on the product graph, work well in capturing both the
topological similarity as well sequence similarity between nodes
of the networks. However, to find multiple network alignments,
IsoRank uses these scores in a time-intensive greedy algorithm.
Instead, IsoRankN uses a different method of spectral clustering on
the induced graph of pairwise alignment scores. The new approach
provides significant advantages not only over the original IsoRank
but also over other methods.

To test IsoRankN, we show that on the PPI networks from
five different eukaryotic species, IsoRankN produces an alignment
with a larger number of aligned proteins, higher within-cluster
consistency and higher biological similarity than existing methods,
as measured by GO/KEGG enrichment using GO TermFinder
(Boyle et al., 2004). While other techniques for measuring GO
enrichment exist (Segal et al., 2004; Schlicker et al., 2006), they did
not apply directly to the context in which we work. Additionally,
IsoRankN does not require training and does not rely on induced
phylogeny; thus it is not sensitive to errors in the phylogenetic tree.
While this is not a significant problem with eukaryotes, inference of
accurate bacterial phylogeny has proven far more difficult.

Contributions: We introduce the IsoRankN algorithm which uses
an approach similar to the PageRank-Nibble algorithm to
align multiple PPI networks. In so doing, we bring a novel
spectral clustering method to the bioinformatics community. We use
IsoRankN to align the known eukaryotic PPI networks and find that
it efficiently produces higher fidelity alignments than existing global
multiple-alignment algorithms.

2 METHODS

2.1 Functional similarity graph
The central idea of IsoRankN is to build a multiple network alignment
by local partitioning of the graph of pairwise functional similarity scores.

Box 1. The Original IsoRank Algorithm.

IsoRank works on the principle that if two nodes of different
networks are aligned, then their neighbors should be aligned as
well. In lieu of sequence similarity information, the functional
similarity score Rij between vertex vi and vj is the set of positive
scores which satisfies:

Rij =
∑

vu∈N(vi)
vw∈N(vj)

1

|N(vu)||N(vw)|Ruw,

where N(vi) is the neighborhood of vi within its own network.
This can also be viewed as the steady-state distribution of a
random walk on the direct product of the two networks.
To integrate a vector of sequence homologies, E, IsoRank
takes a parameterized average between the network-topological
similarity and the known sequence homology. It uses the power
method to find the unique positive R satisfying

R=αAR+(1−α)E, with 0≤α≤1,

where

Aij,uw =
{

1
|N(vu)||N(vw)| , vu ∈N(vi),vw ∈N(vj),

0, otherwise.

Given the resulting vector of pairwise functional similarity
scores, R, a discrete network alignment is then greedily
generated.

Specifically, given k PPI networks, G1,G2,...,Gk , we first compute
the functional similarity scores of every pair of cross-species proteins
(vi,vj)∈ (Gl,Gm). This is done using the original IsoRank algorithm (Box
1), but without the final step of greedily selecting an alignment. The scores
generated by IsoRank have the advantage of being highly noise tolerant, a
result of using a spectral approach.

The result is a functional similarity graph, a weighted complete k-partite
graph on the k sets of proteins, where each edge is weighted by its functional
similarity score. If the PPI networks were complete and exact, the multiple
alignment problem would simply be to find maximally weighted cliques. As
the networks are not, we introduce the star spread method to find highly
similar near cliques, which yields a multiple alignment. In addition, in
contrast to the seed-path extension method used by NetworkBLAST-M, our
method is similar to the star aligned approach in multiple sequence alignment
introduced by Lipman et al. (1989) and CLUSTAL W (Thompson et al.,
1994).

2.2 Star spread
We first compute, for every protein v in a chosen species, every neighbor
connected to v by an edge with weight greater than a threshold; this is the
star, Sv of the protein (Fig. 1a). We greedily order the proteins v by the
total weight of Sv and for each find the subset S∗

v ⊂Sv such that S∗
v is a

highly weighted neighborhood of v (Fig. 1b). This is done using a spectral
local graph partitioning algorithm with approximate Personalized PageRank
vectors, similar to the PageRank-Nibble algorithm. The resulting S∗

v
represents a functionally conserved interaction cluster, a set of network-
aligned proteins. This is repeated for every protein in all species not already
assigned to an S∗

v , yielding assignments for all vertices. While it is not clear
exactly how the order of vertex choice affects the results, this ordering
performs better empirically than others we have tried, including random
ordering. The ordering of species is discussed below.
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Fig. 1. An example of star spread on the five known eukaryotic networks. (a) SYDR001C, the set of all neighbors of YDR001C with a similarity bounded by
a threshold β =0.01. The illustration emphasizes the key idea of star spread, that the neighborhood of a single protein, YDR001C, has many high-weight
neighbors in other networks, each of which are connected to others with varying weights. As the data are noisy, we seek a highly weighted subset of this
neighborhood, as opposed to a clique. (b) The shaded area is the resulting conserved interaction cluster S∗

YDR001C, containing YDR001C, as generated by our
local graph partition algorithm.

2.3 Spectral partitioning
The main algorithmic challenge in obtaining functionally conserved
interaction clusters S∗

v is uncertainty introduced by the incomplete and
inaccurate PPI network data. Thus instead of finding a maximally weighted
clique containing v, we find a low-conductance set containing v.

The conductance, �(S), of a subset S of a graph G is the ratio of
the size of the edge cut to separate S to the number of edges in the
larger of the two remaining sets, providing a very natural measure of
‘clusterness’ of a subset of vertices. Formally, �(S)= σ (S)

min{vol(S),2m−vol(S)} ,
where σ (S)=|{(vx,vy);vx ∈S,vy /∈S}|, vol(S)=∑

i deg(vi), and m is the
number of edges in G.

Anderson et al. (2006) showed that a low-conductance set containing
v can be computed efficiently via the personalized PageRank vector of v.
A personalized PageRank vector Pr(γ,v) is the stationary distribution of
the random walk on Sv in which at every step, with probability γ , the
walk ‘teleports’ back to v and otherwise performs a lazy random walk with
transition probabilities proportional to R, the vector of pairwise interaction
scores (i.e. with probability 1/2, the walk does not move). Thus in this case,
a personalized PageRank vector is the unique solution to:

Pr(γ,v)=γχv +(1−γ )Pr(γ,v)W , (1)

where γ ∈ (0,1], χv(x)=δx,v is the indicator vector of v, W = 1
2 (I +D−1R) is

the lazy random walk transition matrix and D is the diagonal of column
sums of R. For the purposes of this article, we instead use an efficient
approximation p :≈Pr(γ,v), the details of which can be found in (Anderson
et al., 2006).

To compute the minimal conductance cut, we consider the sets Tp
j ={

vi

∣∣∣ p(vi)∑
k Rik

≥ p(vj )∑
k Rjk

}
, or those vertices which contain at least as much of

the mass of p, normalized by R. As in (Anderson et al., 2006), we then find
the set S∗

v as:

S∗
v =minj�

(
Tp

j

)
. (2)

2.4 Star merging
While highly efficient, the star spread method has the limitation of not
assigning other members of the original network to the neighborhood Sv, and
so S∗

v by necessity does not contain any other proteins in the same network
as v, even if it is appropriate to do so. To get around this, we introduce a

procedure for merging stars, by looking at the neighbors of the neighbors of
v. For two stars, S∗

v1
and S∗

v2
, where v1 and v2 are in the same PPI network,

if every member of S∗
v1

\{v1} has v2 as a neighbor and vice versa, we merge
S∗

v1
and S∗

v2
.

2.5 The IsoRankN algorithm
Given k PPI networks G1,G2,...,Gk , and a threshold β, IsoRankN proceeds
as follows:

(1) Run the original IsoRank on every pair of networks to obtain scores
Rij on all edges of the functional similarity graph.

(2) For every protein v, compute the star
Sv ={

vj ∈N(v)|w(v,vj)≥βmaxj
(
w(v,vj)

)}
, where N(v) is the

neighborhood of v in the functional similarity graph.

(3) Pick an arbitrary remaining PPI network G	 and order the proteins
v∈G	 by the sum of edge weights in the induced graph on Sv. In order,
excluding proteins already assigned to clusters, spectrally partition Sv

to obtain S∗
v .

(4) Merge every pair of clusters S∗
v1

and S∗
v2

in which ∀vi ∈
S∗

v2
\{v2},w(v1,vi)≥βmaxj

(
w(v1,vj)

)
and ∀vj ∈S∗

v1
\{v1},w(v2,vj)≥

βmaxj
(
w(v2,vj)

)
.

(5) Repeat steps 3 and 4 until all proteins are assigned to a cluster.

3 RESULTS
Experimental datasets: We tested IsoRankN on five eukaryotic
PPI networks: Homo sapiens (human), Mus musculus (mouse),
Drosophila melanogaster (fly), Caenorhabditis elegans (worm) and
Saccharomyces cerevisiae (Yeast). IsoRankN requires two forms
of data as input: PPI networks and sequence similarity scores.
The PPI networks were constructed by combining data from
the DIP (Xenarious et al., 2002), BioGRID (Stark et al., 2006)
and HPRD (Mishra et al., 2006) databases. In total, these five
networks contained 87 737 proteins and 98 945 known interactions.
The sequence similarity scores of pairs of proteins were the BLAST
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Table 1. Comparative consistency on the five eukaryotic networks

IsoRankN IsoRank Græmlin1K Græmlin2K NetworkBLAST-M

Mean entropy 0.274 0.685 0.857 0.552 0.907
Mean normalized entropy 0.179 0.359 0.451 0.357 0.554
Exact cluster ratioa 0.380 (3079 of 8095) 0.253 (2166 of 8539) 0.306 (843 of 2754) 0.355 (1135 of 3198) 0.291 (441 of 1518)
Exact protein ratiob 0.261 (9284 of 35 604) 0.165 (6408 of 38 706) 0.159 (2393 of 15 047) 0.248 (2906 of 11 729) 0.142 (1150 of 8092)

Mean entropy and mean normalized entropy of predicted clusters. Note that the boldface numbers represent the best performance with respect to each measure.
aThe fraction of predicted clusters which are exact., i.e. all contained proteins have the same KEGG or GO group ID.
bThe fraction of proteins in exact clusters.

Bit-values of the sequences as retrieved from Ensembl (Hubbard
et al., 2007). We evaluated the biological relevance of our results
against two gene ontology databases, GO (Ashburner et al., 2000)
and KEGG (Kanehisa and Goto, 2000). For this article, we set
α=0.6 and β =0.01, and used human, mouse, fly, worm and yeast
as the order of species that are at the center of the star spread. We
further investigated other species permutations as discussed later.

Testing: In the results that follow, we have aimed to evaluate
our method along two key dimensions: coverage and consistency.
Coverage is the set of genes for which our algorithm makes non-
trivial predictions. It is thus a proxy for sensitivity; a higher coverage
would be desirable in that it suggests our algorithm can explain a
larger amount of data. The other dimension, consistency, measures
the functional uniformity of genes in each cluster. The intuition here
is that each cluster should correspond to a set of genes with the
same function; higher consistency is better. This measure serves as
a proxy for the specificity of our method.

There currently exists no gold standard for network alignment
quality, so in order to evaluate the predictions of IsoRankN we tested
two properties of its predictions that we expect an optimal prediction
to have. First, we tested within-cluster consistency of GO/KEGG
annotation on the reasoning that predicted orthologs in an orthology
should likely have similar function. Second, we tested coverage, on
the reasoning that an ideal alignment should assign most proteins to
a cluster. As local alignment may have ambiguous, inconsistent or
overlapping clusters, we primarily compare IsoRankN to IsoRank
and Græmlin 2.0. We also compare to local aligners (such as
NetworkBLAST-M), however, these will have lower coverage as
they only consider conserved modules.

3.1 Functional assignment
We tested IsoRankN as compared with IsoRank, Græmlin 2.0 and
NetworkBLAST-M on the five available eukaryotic networks and
found that it outperformed the other methods in terms of number
of clusters predicted, within-cluster consistency and GO/KEGG
enrichment.

Græmlin 2.0 requires a training set to learn the parameters of its
scoring function. As in Flannick et al. (2008), we train Græmlin
2.0 on training sets of multiple sizes. The versions of Græmlin 2.0
trained on 1000 and 2000 KEGG clusters are denoted Græmlin1K
and Græmlin2K , respectively. We additionally attempted to train
Græmlin 2.0 on 4000 clusters, but have not included the data, as it
showed strong evidence of over-fitting.

Consistency: We first measured the consistency of the predicted
network alignment by computing the mean entropy of the predicted
clusters. The entropy of a given cluster S∗

v is:

H(S∗
v )=H(p1,p2,...,pd )=−

d∑
i=1

pi logpi, (3)

where pi is the fraction of S∗
v with GO or KEGG group ID i. We

also computed the mean entropy normalized by cluster size; i.e.
H̄(S∗

v )= 1
logd H(S∗

v ). Thus, a cluster has lower entropy if its GO

and KEGG annotations are more within-cluster consistent. While a
cluster with one element would have entropy 0, this is to be expected,
as such a cluster is perfectly consistent with itself.

IsoRankN’s predicted clusters have much lower entropy than
IsoRank, Græmlin 2.0 and NetworkBLAST-M (Table 1). That is,
the clusters obtained by IsoRankN have higher consistency of
annotation. For the purpose of this measure, proteins without a GO
or KEGG group ID were withheld.

We additionally measure as in Flannick et al. (2008) the fraction
of clusters which are exact, i.e. those in which all proteins have the
same GO or KEGG ID. For GO annotation, we restrict to the deepest
categories, removing questions of multiplicity and specificity of
annotations. We find that IsoRankN predicts significantly more exact
clusters than existing techniques, and that a higher fraction of the
predicted clusters are exact (Table 1). We note that only 60–70%
of the proteins in any of the aligned networks have an assigned
GO or KEGG ID, comparable to the fraction of all known proteins
included in GO or KEGG. Additionally, the relative performance
under either consistency measure does not change when restricted
to GO or KEGG individually.

Coverage: We first measure coverage by the number of clusters
containing proteins from k species. We find that for k ≥3, IsoRankN
predicts more clusters with more proteins (Table 2) than other
methods. Thus, as it has higher consistency, it is likely that
IsoRankN is detecting more distant multiple network homology. For
k =2, IsoRank has greater coverage; however, this is likely due to
IsoRankN having a strict threshold for edge inclusion. Note that
as a result of the star spread approach, all clusters obtained by
IsoRankN contain at least two species. Thus IsoRankN does not
find paralogs within a species without there existing at least one
homolog in another species. Of the 87 737 total proteins, IsoRankN
is able to find network homologs for 48 978 (55.8%), more than
any technique but IsoRank. When restricted to clusters containing
at least three species, i.e. the multiple alignment case, IsoRankN
predicts the most clusters.
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Table 2. Number of clusters/proteins predicted containing exactly k species

Number of
species (k)

IsoRankN IsoRank Græmlin1K Græmlin2K

1 −/−a 155/402 1418 /4001 1521/2910
2 3844/8739 6499/20 580 1354/ 4650 2034/5899
3 4022/13 533 3036/13 391 947/5414 1116/5072
4 2926/13 991 2446/15 422 529/5371 310/2067
5 2056/12 715 773/9744 58/1467 11/78

Total 12 848/48 978 12 909/59 539 4306/20 903 4992/16 026

The k-th row contains, for each program, the number of predicted clusters for covering
exactly k species and number of constituent proteins in those clusters. Note that
the boldface numbers represent the best performance with respect to each row.
NetworkBLAST-M is not included, as it always outputs k =5 species in each cluster.
aAll clusters obtained by IsoRankN contain at least two species.

Table 3. Comparative GO/KEGG enrichment performance

Species IsoRankN IsoRank Græmlin1K Græmlin2K NB-Ma

Total 712/2490 537/1760 296/772 432/1010 107/261
p-valueb 1.28 e-90 1.31 e-68 5.47 e-38 6.87 e-54 2.19 e-14

Human 632/2200 478/1551 194/545 272/811 66/182
Mouse 605/2124 383/1371 191/538 268/794 65/178
Fly 574/1787 398/924 208/533 261/771 41/135
Worm 552/1698 376/901 104/257 140/389 32/124
Yeast 368/938 257/554 208/486 137/316 45/136

The number of GO/KEGG categories enriched by each method. Note that the boldface
numbers represent the best performance w.r.t. each row.
aNetworkBLAST-M is denoted NB-M for convenience.
bAs computed by GO TermFinder. We remark that this excludes those proteins tagged
IEA (inferred from electronic annotation).

We further measure as in Kalaev et al. (2008) coverage by the
enrichment of predicted groups with respect to known ontology as
derived from GO and KEGG. We find that IsoRankN enriches more
GO and KEGG categories in every species, with a lower overall
p-value [computed by GO TermFinder Boyle et al. (2004)], than
any other technique (Table 3).

Ordering: While we chose a particular order of genomes in the
multiple alignment to report our general results, we also include
results on different orderings of genomes and demonstrate that any
ordering outperforms other methods (Fig. 2). The particular order
of genomes used above was chosen to have the minimum mean
normalized entropy.

While it may appear that yeast, as the best annotated network,
should be the first network chosen in the star spread, it is sufficiently
dissimilar to the other species as to cause inaccurate network
alignments on such a small set of species.

Running time: Given the weighted similarity graph, the star spread
component of IsoRankN (Section 2.5, steps 2–5) took under 5 min
for the five eukaryotic networks above. The computation of the
graph, given by the original IsoRank (Section 2.5, step 1), took
∼7 h on a single processor, though can be easily 10-way parallelized.
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Fig. 2. The consistency and coverage performance of IsoRankN under
species permutations in the star spread. Each dot represents one of the 120
possible permutations of the five species. (a) and (b) Report the consistency
and coverage of the network fit as a function of the species first at the center
of the star spread. (c) The relationship between mean normalized entropy
and number of clusters.

All computations were run on a 64 bit 2.4 GHz Linux system with
2GB RAM.

4 CONCLUSION
In this article, we present an efficient method for computing
multiple PPI network alignments. Based on spectral clustering on the
induced graph of pairwise alignment scores, our program IsoRankN
automatically handles noisy and incomplete input data. Our method
differs from others in that it does not require training or phylogeny
data and seeks vertex-specific rankings in the spectral clustering.

We demonstrate the effectiveness of this technique on the
five available eukaryotic PPI networks. Our results suggest that
IsoRankN has higher coverage and consistency compared to existing
approaches, which should lead to improved functional ortholog
prediction.

In future work, we plan to more fully explore and evaluate
the database of functional orthologs as predicted by IsoRankN.
Additionally, it may be possible to modify the star spread to account
for existent gold standard network homology data, yielding even
higher fidelity multiple network alignments.
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