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Abstract

A substantial body of knowledge suggests that exposure to adverse family environ-

ments – including violence and neglect – influences many aspects of brain develop-

ment. Relatively less attention has been directed toward the influence of

“normative” differences in parenting behaviors. Given the rapid brain reorganization

during late childhood, parenting behaviors are particularly likely to impact the struc-

ture of the brain during this time. This study investigated associations between

maternal parenting behaviors and the organization of structural brain networks in late

childhood, as measured by structural covariance. One hundred and forty-five typi-

cally developing 8-year-olds and their mothers completed questionnaire measures

and two observed interaction tasks; magnetic resonance imaging (MRI) scans were

obtained from the children. Measures of maternal negative, positive, and communica-

tive behavior were derived from the interaction tasks. Structural covariance networks

based on partial correlations between cortical thickness estimates were constructed

and estimates of modularity were obtained using graph theoretical analysis. High

levels of negative maternal behavior were associated with low modularity. Minimal

support was found for an association between positive maternal behaviors and mod-

ularity and between maternal communicative behaviors and modularity. Our findings

suggest that variation in negative maternal behavior is associated with the structural

organization of brain networks in children.
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1 | INTRODUCTION

The influence of environmental factors on the developing brain is

likely to be strongest during sensitive periods when neuronal proper-

ties are particularly receptive to acquiring certain kinds of information

and susceptible to modification by experience (Hensch, 2004). Identi-

fying environmental factors that impact on the brain during these sen-

sitive periods is important in furthering our understanding of what

drives neurodevelopmental trajectories to unfold in a particular way

and may inform prevention/intervention strategies for optimal brain

development (Lenroot et al., 2009). Parenting behaviors represent

critical environmental inputs that shape behavioral and emotional

development (Phua, Kee, & Meaney, 2019; Schwartz et al., 2016;

Whittle, Yap, et al., 2011; Wu & Lee, 2020; Yap & Jorm, 2015) how-

ever the underlying mechanisms are unclear. Parenting behaviors are

likely to be particularly important during late childhood (from approxi-

mately 8 years), as it is an important transition period with unique

neurodevelopmental patterns associated with the development of

internalizing and externalizing symptoms (Papachristou &

Flouri, 2019; Whittle, Vijayakumar, Simmons, & Allen, 2020) and this

occurs prior to the adolescent period when the influence of peers

becomes more prominent (Lamblin, Murawski, Whittle, &

Fornito, 2017). Given that childhood is a time of intensive brain reor-

ganization involving synaptic pruning, cortical thinning, and white

matter organization (Petanjek et al., 2011; Vértes & Bullmore, 2015;

Walhovd, Fjell, Giedd, Dale, & Brown, 2017), it is likely to be a sensi-

tive period where brain development may be shaped by parenting

behaviors.

Although the study of adverse family environments, generally

involving child maltreatment, on brain development has amassed a

substantial body of evidence, relatively little attention has been given

to the influence of “normative” differences in parenting behaviors

(Belsky & de Haan, 2011; Farber, Gee, & Hariri, 2020). Positive (warm

and supportive) parenting has been found to enhance child function-

ing (Landry, Smith, Swank, Assel, & Vellet, 2001; Landry, Smith,

Swank, & Guttentag, 2008; Phua et al., 2019) and has been associated

with changes in brain structure, including accelerated cortical thinning

in a number of regions (Luby, Belden, Harms, Tillman, & Barch, 2016;

Whittle, Simmons, et al., 2014). Negative (e.g., controlling, aggressive,

and hostile) parenting behavior, in contrast, has been prospectively

linked to increased risk of psychopathology (Ong et al., 2018), and has

been associated with attenuated cortical thinning (Schwartz

et al., 2016).

Recent research has suggested that looking at patterns of con-

nectivity may reveal additional insights into the relationship between

the brain and family environments. Investigations have begun shifting

from individual brain regions to whole brain networks, and evidence

for associations between childhood maltreatment (evaluated retro-

spectively) and structural network architecture is emerging (Ohashi

et al., 2017; Teicher, Anderson, Ohashi, & Polcari, 2014). Based on

structural covariance analysis of cortical thickness (CT), which pro-

vides a complementary source of neurodevelopmental information

compared to structural networks based on underlying fiber/tract

connections (Gong, He, Chen, & Evans, 2012), our group recently

demonstrated that high levels of negative affective maternal behav-

iors were associated with decreased local network efficiency in chil-

dren, whereas high levels of positive affective maternal behaviors

were associated with increased local efficiency (Richmond, Beare,

et al., 2019). No associations were found with global efficiency. These

findings suggest that parenting practices may impact the integration of

brain network organization, influencing the ability of the brain to

transmit information across distributed regions. Given that local effi-

ciency has been shown to decrease during late childhood (prior to

increasing in adolescence; Khundrakpam, Reid, et al., 2013), we specu-

lated that reduced local efficiency associated with less optimal parent-

ing may reflect an accelerated pattern of brain maturation, which may

be an adaptive mechanism.

In the present study, we applied a network neuroscience perspec-

tive to investigate associations between parenting behaviors and seg-

regation of structural covariance networks (which reflects the degree

to which specialized processing occurs within densely interconnected

groups of brain regions) in late childhood. Specifically, we build on our

previous investigation into the efficiency of childhood structural brain

networks (Richmond, Beare, et al., 2019) and a limited number of exis-

ting studies (Khundrakpam, Lewis, Jeon, et al., 2019; Khundrakpam,

Lewis, Zhao, Chouinard-Decorte, & Evans, 2016), by focusing on iden-

tifying communities or modules within networks to complement and

gain a fuller picture of parenting effects. Modularity was chosen

because (a) it is biologically meaningful and may offer insight into the

major building blocks of networks, and (b) has been investigated

across development and has been demonstrated to change with age.

Modules may offer insight into the major building blocks of net-

works and increase our understanding of their functional role, and

therefore the detection of distinct network modules is biologically rel-

evant (Sporns, 2018; Sporns & Betzel, 2016). In brain networks, mod-

ules typically correspond to clusters of nodes that are densely

interconnected and sparsely connected to the rest of the network

(Sporns & Betzel, 2016). Modules are thought to have been shaped by

evolutionary constraints to allow the brain to communicate efficiently

with low wiring cost and enable functional specialization and complex

brain dynamics (for review see Sporns & Betzel, 2016). Developmen-

tal studies that have investigated modularity of structural covariance

networks suggest that non-random modular organization is detected

from infancy to young-adulthood (Alexander-Bloch, Raznahan,

Bullmore, & Giedd, 2013; Fan et al., 2011), and there is evidence that

modularity changes with age, with a significant decrease in late child-

hood, similarly to local efficiency (8–11-year-olds; Khundrakpam,

Reid, et al., 2013). More recently, higher modularity has been associ-

ated with higher verbal but not performance intelligence quotient in

children and adolescents (Khundrakpam, Lewis, Reid, et al., 2016).

The aim of this study was to investigate the relationship between

parenting behavior and the organization of structural brain networks,

constructed by structural covariance of cortical thickness in late child-

hood. Based on our previous findings, we might anticipate that, simi-

larly to local efficiency, more optimal parenting behaviors would be

linked to reduced modularity. However, given modularity enables
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networks to communicate efficiently and enables functional speciali-

zation, it is possible that parenting may have divergent associations

with network integration versus specialization, and as such we broadly

hypothesized that positive parenting behaviors would be associated

with increased modularity and negative parenting behaviors with

decreased modularity.

2 | MATERIALS AND METHOD

2.1 | Participants and recruitment

The data included in this study came the Families and Childhood Tran-

sitions Study (FACTS) conducted at The University of Melbourne,

Australia. The Human Research Ethics Committee at The University

of Melbourne approved the research. Written informed consent was

obtained from each child and a parent/guardian. Abbreviated summa-

ries relevant to the measures used in this analysis are provided below

and were previously described in Richmond, Beare, et al. (2019). Fur-

ther details can be sourced in the study protocol (Simmons

et al., 2017). Participating dyads comprised 145, 8-year-old typically-

developing children and their mothers (Table 1).

Although not applicable to all families, socioeconomic disadvan-

tage has been associated with suboptimal parenting practices

(Newland, Crnic, Cox, & Mills-Koonce, 2013; Pereira, Negr~ao,

Soares, & Mesman, 2013). To avoid recruiting a sample biased for high

socioeconomic advantage and subsequent low variation in negative

and positive parenting behaviors, participant recruitment focused on

suburbs of Melbourne that scored within the lowest tertile on the

Socioeconomic Indexes for Areas scale of advantage and disadvantage

(Australian Bureau of Statistics, 2013).

Eight-year-old typically developing children and their mothers

were invited to participate in the study. Participation was not

restricted to families with biological mothers and one mother not bio-

logically related to her child participated (0.69% of sample). Families

who indicated they wished to participate were contacted for a brief

telephone interview to assess the exclusion criteria, which included

significant motor or sensory impairments, and criteria related to hav-

ing a Magnetic Resonance Imaging (MRI) scan (Simmons et al., 2017).

2.2 | Procedure

Children and their mothers completed an assessment and videotaped

family interactions. Children only completed an MRI scan. Mothers

completed an interview comprising questions about the children's

demographics, health, and developmental histories.

2.3 | Questionnaire Measures

The Children's Depression Inventory 2 (CDI-2; Kovacs, 2011) is a

28 item self-report measure, based upon the previous two weeks, of

cognitive, affective, and behavioral signs of depression in children and

adolescents aged 7–17 years. The CDI-2 yields a Total score, two

scale scores (Emotional Problems, Functional Problems) and four sub-

scale scores (Negative Mood/Physical Symptoms, Negative Self-

Esteem, Interpersonal Problems, Ineffectiveness). Total and scale

scores were examined. The CDI-2 has normative data in the relevant

age range and reliability and validity evidence across community and

clinical populations (Kovacs, 2011).

The Spence Children's Anxiety Scale (SCAS; Spence, 1998) is a

44 item, self-report measure of anxiety symptoms for children aged

from 8 to 15 years. Participants rate the degree to which they have

experienced an event, on a four-point scale, ranging from never to

always. The SCAS yields a Total score and six sub-scale scores:

Obsessive–compulsive Problems, Separation Anxiety, Social Phobia,

Panic/Agoraphobia, Generalized Anxiety Symptoms, and Concerns of

Physical injury (Spence, 1998). Total score was examined. The SCAS

has been identified as a reliable and valid measure across diverse

childhood populations (Essau, Muris, & Ederer, 2002; Holly, Little,

Pina, & Caterino, 2014).

The Lifetime Incidence of Traumatic Events (LITE; Greenwald &

Rubin, 1999) is a 16-item parent-report screening instrument which

assesses the type of loss or trauma a child has experienced. The LITE

has good reliability and adequate validity (Greenwald &

Rubin, 1999). At the request of The University of Melbourne Ethics

Committee, two items on sexual abuse were removed and items

covering mother–child separations and domestic relocation were

added. The LITE parent report has no standardized scoring system

and was scored by summing the number of endorsed items

(Greenwald & Rubin, 1999).

TABLE 1 Participant Demographics (N = 145)

Characteristic M (SD) or n (%)

Child age, M(SD), years 8.42 (0.33)

Males, No. (%) 68 (46.90)

CDI-2, M(SD)a 8.32 (6.07) T-Score 55, “Average or

Lower”

SCAS, M(SD)b 26.27 (13.07) T-Score 52, “Normal”

LITE, M(SD)c 3.82 (2.33)

Child ethnicity

Caucasian, No. (%) 102 (71.03)

Other, No. (%) 30 (20.70)

Maternal age, M(SD), years 40.25 (5.5)

Maternal Occupational Status,

M(SD)d
62.38 (19.94)

aImputed data, The Children's Depression Inventory 2, maximum T-Score

for boys and girls 7–12 years (Kovacs, 2011).
bImputed data, The Spence Children's Anxiety Scale maximum T-Score for

boy and girls aged 8–11 years (Spence, 1998).
cLifetime Incidence Traumatic Events, n = 143 (Greenwald & Rubin, 1999).
dSocioeconomic Index 2006 (AUSEI06), n = 138 (McMillan, Beavis, &

Jones, 2009).
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The Australian Socioeconomic Index 2006 (AUSEI06) was used

to assess maternal occupational status (McMillan et al., 2009). The

AUSEI06 is based upon 2006 Australian Census data and is a continu-

ous measure of occupational status, ranging from 0, low status, to

100, high status (McMillan et al., 2009).

2.4 | Family interaction assessment and measures

Mother–child dyads completed two 15-min laboratory-based interac-

tion tasks, which were video recorded for subsequent coding using a

modified version of The Family Interaction Macro-coding system

(FIMS, see supplemental information; Holmbeck, Zebracki, Johnson,

Belvedere, & Hommeyer, 2007). First, dyads were asked to plan

enjoyable activities together, such as vacations or birthday parties

(event-planning interaction [EPI]; MacPhillamy & Lewinsohn, 1982).

The EPI was followed by a problem-solving interaction (PSI), where

the dyads were asked to discuss and try to resolve areas of conflict

chosen (Gilboa & Revelle, 1994; Prinz, Foster, Kent, & O'Leary, 1979).

The EPI and PSI tasks were intended to differentially elicit positive

and negative behaviors, respectively.

To identify different aspects of maternal behavior, an exploratory

principal components analysis was conducted using the FIMS

mother–child data (Richmond, Schwartz, et al., 2018). The PCA was

run for 155 mother–child dyads (10 of whom did not have MRI data)

to obtain composite maternal parenting behavior scores. A four-factor

solution explained a total of 56.76% of the variance, with components

comprising (1) Negativity EPI - negative maternal behaviors during the

EPI, such as negative and aggressive affect; (2) Warmth - codes

related to positive affect, such as humor and warmth; (3) Negativity

PSI - negative maternal behavior during the PSI, such as negative and

aggressive affect; and (4) Communication - codes related to listening,

structuring dialogue, and clarity of thought (see Tables S1 and S2).

Participant scores for each parenting component were estimated

(Harman, 1976) and divided into tertiles: low-, moderate-, and high-.

Structural covariance analysis is based on correlations and therefore

requires groups for analysis. That is, networks are produced for a

group of participants (rather than for each individual).

2.5 | MRI acquisition and processing

Before the MRI procedure, children completed a mock scan in a rep-

lica MRI to minimize the likelihood of movement artefact and partici-

pant anxiety. Neuroimaging data were acquired on the 3T Siemens

TIM Trio scanner at the Murdoch Children's Research Institute, Royal

Children's Hospital, Melbourne. Participants were positioned supine

with their head supported in a 32-channel head coil. T1- weighted

images were acquired during a 5:19 min sequence (MPRAGE: repeti-

tion time = 2,530 ms; multiple echo times = 1.74; 3.6; 5.5; 7.3 ms; flip

angle = 7�, field of view = 256 × 256 mm2) and produced 176 contigu-

ous 1.0 mm thick slices (voxel dimensions = 1.0 mm3). A radiographer

inspected image quality at the time of acquisition and if movement

artefact was detected the sequence was repeated with the partici-

pant's consent.

2.6 | Structural image processing

Cortical surfaces and thickness were generated by FreeSurfer

(Version 5.3; Fischl, 2012) from the T1-weighted images. The

processing steps have been described in detail elsewhere (Dale, Fis-

chl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999). All T1-weighted

images were subject to a manual quality assessment procedure which

involved visual inspection of all image slices per participant. Manual

edits were made where cortical surfaces were under- or over-

estimated on four or more image slices. In short, editing comprised

correcting errors related to the standard FreeSurfer pipeline: (1) skull

stripping; (2) white matter intensity normalization; and (3) topological

errors, for example, white matter and pial (Waters, Mace, Sawyer, &

Gansler, 2019). Of the 153 acquired scans, manual edits were made

to 55 and one was excluded due to excessive motion.

2.7 | Missing data

There was no missing family interaction data. For CDI-2 and SCAS

data, 19% and 18% of participants, respectively, had missing data on

at least one item. The mechanism for missing data was investigated

for both questionnaire measures (CDI-2 and SCAS; see Appendix S1

for details). To predict missing values, multiple imputation was carried

out at the item level; five imputed data sets were generated, and

pooled results were reported (Enders, 2010; van Buuren & Groothuis-

Oudshoorn, 2011). Each imputed data set was visually inspected per

CDI-2 and SCAS variable for errors related to the imputation model,

no errors were found (e.g., extreme outliers, refer to Figures S1 and

S2; White, Royston, & Wood, 2011). For SCAS data, one participant

did not complete any items and was removed. For the LITE data, two

participants did not complete any items and were removed. Missing

items on the LITE were not imputed as the measure is a screen only,

missing items were assumed as not endorsed. Similarly, missing mater-

nal occupational data (n = 7) was not imputed.

2.8 | Structural covariance network: Node and
edge definition

The structural covariance networks, previously described in Rich-

mond, Beare, et al. (2019), were generated as follows. Network nodes

(74 per hemisphere) were defined by the FreeSurfer parcellation of

the cortical gray matter into regions in accordance with the Destrieux

atlas (Destrieux, Fischl, Dale, & Halgren, 2010). Network edges were

defined by partial correlations of cortical thickness between pairs of

nodes (Alexander-Bloch, Raznahan, et al., 2013). A sparse partial cor-

relation estimation procedure was applied to identify significant, non-

zero partial correlations (Lasso, least absolute shrinkage and selection
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operator; Tibshirani, 1996, see Appendix S1 for details). Sparse

inverse covariance estimates have been applied recently to character-

ize functional and structural networks in clinical populations and to

identify statistically significant group differences (Lefort-Besnard

et al., 2018). A regularization parameter for the sparse estimation pro-

cedure was selected by cross-validation based on the data for all par-

ticipants and applied to all groups. All networks were analyzed as

binary and undirected, which assumes the edges have no orientation

(Sporns, 2012).

2.9 | Structural covariance network analysis

2.9.1 | Parenting component characteristics

To establish whether there were any variables confounding associa-

tions between parenting and brain network parameters, we investi-

gated between-group differences for the low-, moderate, and high-

groups for each of the four parenting components for the following

six variables using ANOVA: child age, sex, incidence of traumatic

events, and maternal occupational status. We applied an FDR (5%) to

adjust for the multiple comparisons across the four parenting compo-

nents (i.e., 24 in total).

2.9.2 | Network parameters

The binarized graphs were used to calculate modularity and related

parameters (all modularity related findings are unique). As the equa-

tions for these graph metrics are defined elsewhere only brief defini-

tions are provided.

2.9.3 | Modularity

Modules were detected using modularity maximization, which parti-

tions a network's nodes into communities to maximize the modularity

function, Q, using the Louvain heuristic (Betzel & Bassett, 2016;

Blondel, Guillaume, Lambiotte, & Lefebvre, 2008). Modularity maximi-

zation is subject to biases and limitations which we endeavored to

address by considering the resolution limit and applying consensus

clustering (Sporns & Betzel, 2016).

2.9.4 | Resolution Limit

Under certain conditions modularity maximization is unable to detect

modules below a certain size even if those communities are otherwise

well-defined: this problem is known as the resolution limit of modular-

ity (Fortunato & Hric, 2016). In a practical sense, this implies that a

network that is maximized for Q could potentially be divided further,

into smaller, better-defined communities (Sporns & Betzel, 2016). To

address the resolution limit, we used the Louvain algorithm with a

multiresolution technique incorporated into the measure (Reichardt &

Bornholdt, 2006).

To investigate the influence of the resolution parameter, it was

varied from 0.5 to 1.5, in increments of 0.05. We obtained the mean

modularity for the empirical and randomized networks, Qempirical and

Qrandom. For the modularity analysis, we chose the scale at which the

quality of the empirical partitions exceeded that of the random parti-

tions by the greatest amount (Sporns & Betzel, 2016). The comparison

was carried out for the network of the whole group and 20 random

networks, matched on the degree of the empirical network.

2.9.5 | Consensus clustering

To improve the stability of the assignment of nodes to communities,

we ran the Louvain algorithm (at the scale selected for the resolution

limit) 100 times to identify average or consensus communities for

each network (Blondel et al., 2008; Sporns & Betzel, 2016).

2.9.6 | Differences in modular organization

To determine if differences in the modular organization existed

between the three networks (low-, moderate -, and high-) for each

parenting component, we calculated the normalized mutual informa-

tion for the three pairwise comparisons (NMI; Alexander-Bloch, Lamb-

iotte, et al., 2012; Kuncheva & Hadjitodorov, 2004). The NMI ranges

from 0 to 1, when the NMI is close to zero, the two partitions (the

assignments of nodes to modules) are independent and when it

approaches one, the two partitions are identical. We applied an FDR

of 5% to adjust for multiple comparisons.

2.9.7 | Differences in modular segregation

We applied a similar approach to quantifying segregation as outlined

by Baum et al. (2017). Two measures were considered, the participa-

tion coefficient and the modularity quality index, Q. The participation

coefficient, which quantifies the diversity of a brain's region's connec-

tion across modules and has been described as a measure of inter-

modular connectivity, was the primary measure (Guimerà &

Amaral, 2005). A high participation coefficient indicates regions with

strong connections to many modules, and conversely a low participa-

tion coefficient indicates regions with strong connections to few mod-

ules. Subsequently, networks with high participation coefficients tend

to display less segregation between modules than networks with low

participation coefficients (Baum et al., 2017).

We quantified the segregation of specific modules, by averaging

Pi across brain regions (nodes) assigned to the same modules. Global

network segregation was quantified by averaging Pi across all the

nodes in the network.

The modularity quality index (Q) was also calculated for all net-

works as a secondary measure of segregation. The index Q, measures
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how well a given network partition maximizes the strength of within-

module connections relative to a specified null model, and therefore,

Q, increases in more segregated networks (Baum et al., 2017). We

applied an FDR of 5% to adjust for multiple comparisons.

2.9.8 | Intra-modular connectivity

Intra-modular connectivity was assessed by the normalized intra-

modular degree (Zi), which is a measure of the connectivity from a

given vertex to other vertices in the same module/community

(Guimerà & Amaral, 2005). We classified nodes with Zi greater than

1 as hubs.

2.9.9 | Network parameter differences between
parenting groups

To determine if differences in modularity existed between the three

parenting Groups (low-, moderate-, high-) for each of the four compo-

nents (Negativity EPI, Warmth, Negativity PSI, Communication) a non-

parametric permutation test procedure was carried out (Bullmore,

Suckling, et al., 1999; He, Chen, & Evans, 2007). First, for each parent-

ing component, the networks properties were calculated for each

group using the whole group regularization parameter. Next, to test

the null hypothesis that differences between the low-, moderate-, and

high- groups might occur by chance, participants were randomly allo-

cated to one of three groups and networks were constructed per the

sparse partial correlation estimation procedure detailed previously.

Next, for each network property, the absolute minimum difference for

the three pairwise comparisons was determined. The random alloca-

tion procedure was repeated 5,000 times (per network property) and

the 95 percentile points for each distribution were used as the critical

values for a two-tailed test of the null hypothesis with a probability of

type 1 error of 0.05.

In addition, difference between the distribution of participation

coefficients across the regions (nodes) was investigated using the

Kolmogorov–Smirnov two-sample test, which tests the hypothesis

that two independent samples have been drawn for the same sample

(Scheff, 2016).

Key analysis resources are listed in Table S5. Raw data is available

by contacting the corresponding author.

3 | RESULTS

3.1 | Parenting group characteristics

The descriptive statistics for the low-, moderate, and high- groups of

each parenting component are listed in Table 2 and the distributions

presented graphically in Figures S3–S6. Correlations between the par-

enting components are presented in Table S3. For each parenting com-

ponent (Negativity PSI, Warmth, Negativity EPI, and Communication) T
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no significant between-group differences were found for the low-,

moderate-, and high- groups for child age, sex, depression symptoms,

anxiety symptoms, incidence of traumatic events, or maternal occupa-

tional status (FDR 5%; Table S4). As such, these variables were not

incorporated into the analysis and partial correlations of cortical thick-

ness were used to generate the networks. Ethnicity was not included as

a covariate because the majority of children were Caucasian (Table 1).

3.2 | Resolution parameter

The empirical partitions exceeded the random partitions by the

greatest amount for γ = 1.0 (see Figure S7), and therefore, community

structure was reported for a resolution parameter of one. A resolution

parameter of one indicates there is no failure of the modularity opti-

mization to resolve small modules. It is plausible given the resolution

limit is more problematic for very large networks, that the resolution

parameter of one is due to the relatively small size of our networks

which is related to the size of the Destrieux parcellation (148 nodes;

Fortunato & Hric, 2016).

3.3 | Structural network modules for whole group

Prior to investigating group differences in modular structure, we con-

structed a structural covariance network containing all participants to

provide a baseline. The density of the baseline network, calculated as

the ratio of the number of edges to the number of possible edges was

0.123 (Bullmore & Sporns, 2009). Five modules were identified, from

which hub nodes (Zi > 1; defined above) were identified (see Figure 1

and Table 5 for details). Module 1 was approximately symmetrical

with two hubs located in the left anterior transverse temporal gyrus

and left pericallosal sulcus, participation coefficients ranged from .627

to .720. Module 2 was the largest module with 50 nodes and approxi-

mately symmetrical. Module 2 had eight hub nodes, located in the

frontal gyrus and sulcus and anterior cingulate gyrus, participation

coefficients ranged from .403 to .538. Module 3 had six nodes and

did not contain any hubs. Module 4 had six hub nodes, five of which

were located in the left hemisphere; all hubs were located around the

temporal and parietal lobes and participation coefficients ranged from

.496 to .631. Module 5 had seven hub nodes, the majority located

within the occipital lobe, participation coefficients ranged from .349

to .650. The average participation coefficient for the baseline network

was .561 (SD .135). For the hub nodes, the correlation between the

participation coefficients and the intra-modular connectivity (normal-

ized intra-modular degree, Zi) was .26, p > .05.

3.4 | Network parameter differences between
parenting groups

Comparative analyses (nonparametric permutation tests) of modular

organization (NMI) and segregation (participation coefficient and

modularity quality index) were performed for each of the four parent-

ing components (Negativity EPI, Warmth, Negativity PSI, and Commu-

nication) between the three groups (low-, moderate-, and high-;

Bullmore & Sporns, 2009; He, Chen, & Evans, 2008).

3.4.1 | Parenting and modular organization

Given that an NMI of 1.0 indicates identical modular structure, the

NMI comparisons within each parenting component (maximum NMI

.161, see Table 3) suggest the nodal compositions of the modules for

the low-, moderate- and high- groups were dissimilar. The nonpara-

metric permutation tests revealed that for four of the comparisons,

for example the modules for the Low Warmth group compared to the

High Warmth group were more similar than expected if random

groups were used; eight comparisons were comparable to the result

for random groups (see Table 3). These results were further investi-

gated through a visual inspection check of the nodal composition,

refer to the Appendix S1, Figure S8 for further details. As an example,

the NMI comparisons for the low-, moderate- and high-Negativity EPI

groups were all low, that is, less than or equal to 0.10. The inspection

of the modules for the groups demonstrated a limited number of com-

mon nodes across modules (e.g., for the “frontal” module the follow-

ing nodes were common: the left cuneus, the right anterior part of the

cingulate gyrus and sulcus [ACC], the right triangular part of the infe-

rior frontal gyrus, and the right Superior frontal gyrus), however often

instead of containing the same nodes, the modules contained differ-

ent but spatially adjacent nodes. To illustrate the low- Negativity EPI

module contained node 5 (Transverse frontopolar gyri and sulci), the

moderate-Negativity EPI module contained node 1 (Fronto-marginal

gyrus [of Wernicke] and sulcus), and the high- Negativity EPI contain

nodes 1 and 5 where the parcellations for nodes 1 and 5 are adjacent

to each other (Destrieux et al., 2010).

3.4.2 | Parenting and global participation
coefficient

Group comparisons for the participation coefficient are discussed

below (see Table 4 for complete listing). For Negativity EPI, the

moderate group had increased mean PC compared to the low

group. For Negativity PSI, the moderate- group had increased mean

PC compared to the low group and the high group also had

increased mean PC compared to the low group. For Warmth and

Communication there were no significant group comparisons (see

Figure 2).

3.4.3 | Parenting and modularity quality index

Group comparisons for the modularity quality index, Q, are discussed

below (see Table 4). For the four parenting components there were

no significant group comparisons (see Figure 2).
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F IGURE 1 Modular organization for whole group (N = 145)
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3.4.4 | Parenting and local participation coefficient
per region (node)

The results for global participation coefficient were based on net-

work averages. Given the significant differences identified (three

comparisons; Table 4) for the global participation coefficient

between low-, moderate, and high- groups of two negative parent-

ing components, we investigated participation coefficients for the

regions (nodes). The Kolmogorov–Smirnov test identified six com-

parisons (e.g., low-Warmth compared to moderate-Warmth) where

there was a significant difference between the pairs (Table 3, FDR

5%). The group comparisons identified using the Kolmogorov–

Smirnov test were the same as the permutation based approach

with three additional comparisons: Moderate to High for Negativity

EPI, Low – Moderate Warmth, and Low – Moderate Communication

(Table 3).

For the six comparisons, the regional (nodal) participation coeffi-

cients were further investigated (FDR 5%). For Negativity EPI, com-

parisons indicated differences in the cingulate gyrus, frontal gyrus,

insular gyri, straight gyrus/subcallosal gyrus, anterior occipital sulcus

and preoccipital notch, and a parietal region incorporating the angular

gyrus, supramarginal gyrus, sulcus intermedius primus, and

intraparietal sulcus. For Warmth, differences were indicated in the

cingulate gyrus and sulcus (middle-anterior and middle-posterior), sub-

callosal gyrus, superior frontal sulcus, intraparietal sulcus, and a region

in the temporal lobe comprising the temporal pole, temporal sulcus

and gyrus. For Negativity PSI, differences were indicated in the cingu-

late gyrus and a parietal region comprising the angular gyrus and

superior parietal lobule. For Communication, differences were

indicted in the cingulate gyrus (middle-posterior and posterior-dorsal),

cuneus, parieto-occipital sulcus, a parietal region comprising the sup-

ramarginal gyrus, superior parietal lobule, and intraparietal sulcus, and

TABLE 3 Normalized mutual
information and Kolmogorov–Smirnov
test for equality of local participation
coefficient distributions

Parenting Component Low – Moderate Low - High Moderate – High

Normalized mutual information

Negativity EPI .070 .081 .100

Warmth .110 .145* .097

Negativity PSI .110 .161** .140*

Communication .152** .102 .111

Kolmogorov–Smirnov test

Negativity EPI .277*** .142 .196*

Warmth .189* .101 .142

Negativity PSI .514*** .595*** .162

Communication .182* .135 .074

Note: FDR (5%) adjusted p-values.

Abbreviations: EPI, event-planning interaction; PSI, problem-solving interaction.
*p < .05;
**p < .01;
***p < .001.

TABLE 4 Global participation index, Modularity quality index (Q), and absolute group differences

Parenting Component Low Moderate High Low – Moderate Low - High Moderate – High

Global participation index

Negativity EPI .700 .744 .723 .044* .023 .021

Warmth .740 .730 .729 .010 .011 .001

Negativity PSI .642 .730 .750 .088*** .108*** .020

Communication .737 .718 .721 .019 .017 .002

Modularity quality index (Q)

Negativity EPI 0.242 0.227 0.229 .015 .013 .002

Warmth 0.230 0.223 0.233 .007 .003 .010

Negativity PSI 0.231 0.223 0.222 .007 .008 .001

Communication 0.227 0.230 0.221 .003 .006 .009

Note: FDR (5%) adjusted p-values.

Abbreviations: EPI, event-planning interaction; PSI, problem-solving interaction.
*p < .05.
***p < .001.
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F IGURE 2 Global participation coefficient
(PC) and modularity (Q) for maternal parenting
components. Abbreviations: EPI, event-
planning interaction; PSI, problem-solving
interaction
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a temporal region comprising the superior temporal gyrus, temporal

pole, and temporal plane of the superior temporal gyrus.

4 | DISCUSSION

This study examined associations between variations in normative

parenting behaviors and the organization of structural brain networks

in late childhood. We chose to measure organization using a sophisti-

cated estimate of brain network structure, modularity. We hypothe-

sized that positive parenting behaviors would be associated with

increased modularity and negative parenting behaviors would be asso-

ciated with decreased modularity. We found that high levels of

observed negative maternal behaviors were associated with low mod-

ularity. We found no relationship between positive maternal behav-

iors and modularity and maternal communication and modularity.

The findings, based on the global participation coefficient, display

patterns of association between modularity and negative (affective)

parenting. Overall, as levels of negative parenting behaviors increased

the global participation coefficient also increased. Given a high partici-

pation coefficient indicates regions with strong connections to many

modules, the networks for High- and Moderate Negativity PSI have

less segregation between modules, that is, the networks are less mod-

ular than the network for Low- Negativity PSI.

There was however a distinction between negative parenting in a

positive context compared to a negative context. For negative parent-

ing in a negative context (Negativity PSI), as described above, the

association with modularity was evident when comparing low levels

to moderate and high. For negative parenting in a positive context

(Negativity EPI), the negative association with modularity was only

evident for the comparison between low and moderate levels – not

high. Although the global participation coefficient was greater for high

levels of negative parenting in a positive context compared to low

levels this result was not significant. This finding was surprising given

previous research has demonstrated that maternal behavior counter

to interaction task demands (e.g., aggressive during a typically positive

event-planning task) is linked with particularly poor child outcomes

(Schwartz et al., 2016). Further, our previous work showed that nega-

tive maternal behavior counter to task demands was more consis-

tently linked to decreased local efficiency of structural networks.

Considering these findings, the stronger pattern of association was

expected for negative parenting in a positive context, particularly

when high levels of negative behaviors and incongruence are experi-

enced by a child. The current results suggest that negative maternal

behavior consistent with task demands may have a specific effect on

modularity.

Although the primary measure for modular segregation was the

global participation coefficient, the modularity quality index (Q) of net-

work partitions was employed as an alternative. There were no associ-

ations demonstrated between modular segregation based on the

quality index and the four parenting components. In contrast to the

participation coefficient, the quality index increases in more segre-

gated brain networks and therefore given the increase in participation

coefficient for negative parenting, the quality index was expected to

decrease for these same parenting components. Although the quality

index decreased as levels of negative parenting increased, these

changes did not survive corrections for multiple comparisons.

In contrast to the findings for maternal negative behaviors, no

support was found for an association between positive maternal

behaviors or maternal communicative behaviors and modular segrega-

tion (for the participation coefficient and modularity quality index).

Given positive (warm and supportive) parenting has been linked to

structural brain changes (Luby et al., 2016; Whittle, Simmons,

et al., 2014) this was also an unexpected finding. As the global partici-

pation coefficient and the modularity quality index provide measures

for whole networks it is possible that differences were not evident

due to “averaging.” This idea is supported by the comparisons of the

participation coefficients at the regional (or nodal) level where there

was a difference between low to moderate levels for positive and

communicative maternal behaviors. Differences in the cingulate gyrus

(middle-anterior, middle-posterior, and posterior dorsal), the sub-

callosal area, the anterior and superior temporal gyrus, temporal pole,

and intraparietal sulcus were found. Brain regions such as the cingu-

late gyrus and temporal regions have been implicated in social cogni-

tion and may be influenced by parenting (Pratt, Goldstein, &

Feldman, 2018; Valadez, Tottenham, Tabachnick, & Dozier, 2020).

Taken together, this suggests a potential association between positive

and communicative maternal behaviors and modularity.

Five modules were identified for the whole group structural

covariance network and, in general, for each module the associated

hubs were co-located within a lobe (e.g., the hubs of module 5 were

located within the occipital lobe). The findings suggest a correspon-

dence between the structural modules and the functional roles of the

brain lobes. Given that we did not make any assumptions about the

composition of the SC networks (i.e., we did not generate networks

from the seeds of functional networks), this finding adds to the valid-

ity of the structural covariance analytical approach.

We also explored the number of modules identified across the

low-, moderate-, and high- groups, and observed fluctuations (typi-

cally +/−1 module) in the number of modules within all four parenting

components. In general, changes in the number of modules for a

group were also reflected in changes in modular segregation. For

example, as levels of negative parenting in a negative context increase

so also do the number of modules and modular segregation decreases.

Given that networks appear to become more modular with age, it is

possible that development may involve a reduction in the number of

modules. However, diffusion data, also based on modularity maximiza-

tion using the Louvain heuristic, has identified nine structural modules

which were stable across childhood and adolescence (Baum

et al., 2017). Furthermore, Baum et al. (2017) main finding of

increased segregation with age was robust to the number of modules

in the structural partitions. Potentially, in the current study, the num-

ber of modules is less salient than measures of modularity.

Comparisons of the nodal compositions of the modules between

the groups of the parenting components indicated very little similarity

(as measured by NMI). This was confirmed by a visual inspection
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check for the Negativity EPI component, where a core group of nodes

could not be identified across groups for either component. Further-

more, when we restricted the comparison to “hub” nodes, a consis-

tent set of nodes could not be identified across the low-, medium-,

and high- groups. This finding was surprising, given that for the com-

munity sample only modest changes in the nodes contained within

each module were anticipated between low-, medium-, and high-

groups. Further investigation, however, demonstrated that modules

that did not contain exactly the same nodes, and hence the compari-

son had a low NMI, often contained nodes that were located in the

same brain region (i.e., adjacent parcellations; Destrieux et al., 2010).

In the current study pairs of networks were compared (e.g., low-

Negativity EPI and moderate-Negativity EPI) to determine a similarity

score. Although many studies have compared modularity scores

between groups at a global level (as has been done in the current

study; Baum et al., 2017) fewer studies have explored these differ-

ences at the node and edge level particularly for structural covariance

networks. In the current study, the normalized mutual information

measure was used however other algorithms may have provided a dif-

ferent interpretation (e.g., hamming distance and the graph edit dis-

tance; Mheich, Wendling, & Hassan, 2020). Given the visual

inspection discussed above, it is important to note that the normalized

mutual information measure does not account for the spatial location

of nodes, which can be key information when measuring similarity

between networks (e.g., SimiNet algorithm; Mheich et al., 2020). In

addition, the current study used sparse partial correlation estimation

for the identification of network edges which will have influenced our

findings. Overall, as the methodology for network similarity compari-

son is evolving these results should be interpreted with caution and it

would be of interest for future work to replicate these finding using

alternative algorithms and edge selection strategies (Mheich

et al., 2020).

In many brain networks modularity and global network efficiency

are inversely related, as a highly modular topology is likely to require

long communication paths to integrate information across nodes

(Baum et al., 2017). For the networks in the current study, we can

compare the modularity findings to local and global efficiency values

for the same networks detailed in Richmond, Beare, et al. (2019).

Although there were no changes observed for the parenting compo-

nents and global efficiency, high levels of negative affective maternal

behaviors were associated with decreased local efficiency. Comparing

across the two studies, the results suggest that high levels of negative

affective behaviors are associated with less segregated and less locally

efficient networks. While we previously interpreted our local effi-

ciency findings as reflecting accelerated brain maturation in children

experiencing poor parenting, combined with the current results, it is

possible that these atypical network properties indicate disrupted

neurodevelopment and may impact critical neural functions, such as

emotion regulation and cognitive control thereby placing individuals

at risk of mental disorders. Parenting behaviors may shape the neural

underpinnings of emotion processing in children (Gee, 2016; Pozzi

et al., 2019). The same parenting dimensions as used in the current

article have been linked to alterations in the neural function

underlying emotion regulation (Pozzi et al., 2019). These functional

alterations may represent a possible mechanism between parenting

and later depression symptoms or disorders in adolescents (Callaghan

et al., 2017). Similar structural network alterations, that is, decreased

local efficiency/clustering and atypical modularity, including decreased

modularity based on the modularity index Q, have been demonstrated

in adults with obsessive–compulsive disorder (Peng et al., 2014; Reess

et al., 2018) and children with conduct disorder (Jiang et al., 2016). The

observed network changes associated with parenting behaviors in the

current study represent a potential framework for assessing the neuro-

biological mechanism which underlies the development of internalizing

and externalizing problems in childhood and adolescence (Phua

et al., 2019; Schwartz et al., 2016; Wu & Lee, 2020).

A limitation of this study was our inability to examine the relative

contribution of fathers' behavior due to budget constraints. Fathers

play a significant role in the emotional development of their children

and the findings relating to mother's affective parental behaviors may

not generalize to fathers (Cassano, Zeman, & Sanders, 2014; Schwartz

et al., 2016). We did not investigate the bi-directional nature of the

dyadic interactions and we cannot rule out that the association

between parenting and structural brain networks in offspring is based

on genetic factors. The study was also restricted to a between-subjects

design and power may have been an issue. A power analysis would be

difficult to conduct because, to the best of our knowledge, the available

meta-analyses generally assess difference between groups with dis-

ease/disorder and healthy controls (e.g., Ioannidis, 2011 for brain vol-

ume abnormalities) and would be likely to overestimate effect size in

typical development. In addition, given that covariance analysis does

not provide network metrics for individuals it was not possible to calcu-

late a standard measure of effect size. Estimating plausible effect sizes

is important for reproducibility and is an area of exploration for

future work. Finally, structural covariance in general, and more spe-

cifically the sparse partial correlation estimation applied in the cur-

rent study, is a relatively new methodology for constructing

structural brain networks and therefore the results should be inter-

preted with caution. Ultimately, exploring structural covariance

using different methodologies is likely to increase our understanding

but it is also important to consider underlying assumptions and limi-

tations. We analyzed the data based on the Destrieux parcellation

and it is possible that the results would be impacted if an alternative

parcellation scheme was considered (Zalesky et al., 2010). Further-

more, we restricted the analysis to binary graphs and it is possible

that the results would be impacted if weighted graphs, where the

edges represent the strength of the partial correlation between

regions, were applied (Fornito, Zalesky, & Bullmore, 2016). Future

work in this area might include comparisons across multiple

parcellation schemes and between binary and weighted graphs.

Previous work has typically accounted for the impact of multiple

scanners, age, and sex though the use of linear regression with the

resulting residuals then used to calculate the correlations between

regions (Khundrakpam, Lewis, Zhao, et al., 2016; Teicher et al., 2014).

In the current study, group differences on key participant variables

were checked and given that there were none, we proceeded to use
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partial correlations to generate the networks (i.e., correlations of corti-

cal thickness after removing variance shared with other nodes; He

et al., 2008; Teicher et al., 2014). In addition, age was tightly con-

trolled and all scans were conducted on the same scanner, so neither

of these variables warranted attention. It is likely though that sex may

be related to structural covariance networks, given the findings for

sex differences in brain structure (Cosgrove, Mazure, & Staley, 2007).

Here the impact of sex was not investigated because under the cur-

rent design, had we grouped by sex, the number of participants in the

low-, moderate- and high- parenting groups would have been small

(approximately 20 participants per group) and we were concerned the

findings would have been under-powered. Future work in this area

could evaluate the use of residual variances on our analytic approach,

sparse partial correlation estimation.

This study is one of the first to explore the association between

normative variations in parenting behavior and structural brain net-

works in childhood. The results provide preliminary evidence that vari-

ations in the emotional climate of typical family environments are

associated with the modularity of structural covariance networks. It

would be of interest for future research to explore whether these

associations are related to the development of structural covariance

networks.
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