Supplemental Online Content

Yan K, Cheng G, Zhou W, et al; China Neonatal Neuro-Critical Care Network group. Incidence of neonatal seizures in China based on electroencephalogram monitoring in neonatal neurocritical care units. *JAMA Netw Open.* 2023;6(7):e2326301. doi:10.1001/jamanetworkopen.2023.26301

eFigure. Process Diagram of the Multicenter Study

eTable 1. Inclusion Criteria for Neonatal Seizure Screening Population

eTable 2. Monitoring Standards of cEEG for Neonates in Neonatal Neurocritical Care Units in China

eTable 3. Diagnostic Criteria for the Etiology of Neonates With Seizures

eTable 4. Seizure Burden in Neonates Under Different PMA and Etiologies

This supplemental material has been provided by the authors to give readers additional information about their work.

eFigure. Process Diagram of the Multicenter Study

Inclusion Criteria	Description			
1. Acute Neonatal Encephalopathy	Newborns showing depressive symptoms due to suspected perinatal asphyxia			
	(chronic or acute), particularly those who underwent cardiopulmonary			
	resuscitation after birth.			
2. Cardiac or	Newborns with significant respiratory conditions such as severe persistent			
Pulmonary Risks	pulmonary hypertension (PPHN), those needing ECMO, and newborns with			
for Acute Brain	congenital heart defects requiring early surgery using cardiopulmonary			
Injury and Clinical	bypass. PPHN and severe congenital heart diseases are both confirmed			
Encephalopathy	through bedside echocardiography.			
	Newborns with laboratory-confirmed meningoencephalitis, or suspected CNS			
3. CNS Infection	infection, such as clinical evidence in setting of maternal chorioamnionitis,			
	funisitis, group B streptococcus or HSV colonization.			
4. CNS Trauma	Newborns admitted with intracranial subarachnoid, subdural, or			
	intraventricular bleeding identified by ultrasound, or suspected CNS injury.			
5. Inborn Errors of	Newborns with clinical symptoms or family history, suspected or confirmed			
Metabolism	to have inborn errors of metabolism.			
6 Dominated Studies	Newborns with clinical symptoms, suspected or confirmed to have perinatal			
0. Permatar Subke	stroke, such as unilateral limb convulsions.			
7. Sinovenous	Newborns suspected or confirmed to have sinovenous thrombosis, which is			
Thrombosis	mainly detected by enhanced MRI or CTA in the early stage.			
9 Durante trans	Includes extremely low birth weight infants (weight less than 1000g) or			
8. Premature	gestational age less than 30 weeks, or preterm infants with other risks of brain			
Infants	damage, such as asphyxia, hypoxia-ischemia, metabolic disorders, infections.			
9. Genetic	Newborns with clinical symptoms or family history, abnormal features or			
Syndromes	multiple anomalies, suspected or confirmed to have genetic syndromes.			
10. Cerebral				
Dysgenesis or	Newdorns with cerebral dysgenesis or malformation identified by			
Malformation	neuronnaging.			

eTable 1. Inclusion Criteria for Neonatal Seizure Screening Population

eTable 2. Monitoring Standards of cEEG for Neonates in Neonateal Neur	ocritical Care	Units in
---	----------------	----------

01	•	
('I	11119	a
U.	11116	ı

Key Points	Description
Monitoring Target	The aim is to provide comprehensive, continuous, real-time brain
	function monitoring to offer necessary medical intervention. The
	ultimate goal is to achieve brain protection, reduce the incidence of
	cerebral palsy, and lower the mortality rate.
Spatial Construction	The space should meet the special needs of high-risk newborns,
	including appropriate temperature and humidity control, as well as
	noise and light management. Units with the capability should be
	equipped with ward units or room units. Bed units facilitating brain
	monitoring operations should also be provided. There should be
	enough space for medical staff to operate and for family members to
	accompany.
Monitoring Equipment	In addition to continuous EEG monitors with video recording, it
	should also include ECG monitors, pulse oximeters, continuous blood
	glucose monitors, non-invasive ventilators, invasive ventilators,
	bedside ultrasound, CT, and MRI equipment. This arrangement will
	provide real-time or regularly updated clinical management data,
	enabling researchers to timely discover and deal with any potential
	clinical issues.
Functional Modules	Including $\textcircled{1}$ Standard NICU configuration: ECG monitoring, pulse
	oximetry, temperature, blood pressure, jaundice, blood sugar, blood
	gas, trace biochemistry, transcutaneous oxygen and carbon dioxide
	pressure monitoring devices, resuscitation, non-invasive and invasive
	mechanical ventilation, and transport of critically ill newborns; (2)
	Essential NNICU equipment: Neurophysiological monitoring (at least
	3 sets of video EEG monitors), cerebral oxygen/cerebral blood flow
	monitor, hypothermia treatment device, and bedside Doppler
	ultrasound; \Im Supporting equipment for medical institutions:
	Large-scale neuroimaging diagnostic equipment such as CT and
	MRI, continuous blood glucose monitors, genetic and molecular
	diagnostics (second-generation gene sequencing technology, tandem
	mass spectrometry), peripheral nerve/muscle detection technology
	(surface electromyography, muscle pathology), neurodevelopmental
	assessment system, non-invasive cardiac output monitor.
Staffing	The nursing configuration of the monitoring unit should be 1.5 times
	that of the standard NICU. Team members of the monitoring unit
	must include several neonatologists, neonatal specialist nurses, a
	pediatric neurologist, a neuroimaging physician, two
	neurophysiologists, a genetic counselor, a developmental assessment

	therapist, a pediatric rehabilitation therapist, a clinical nutritionist,		
	and a neurosurgeon. Optional staffing for capable medical institutions		
	can include pediatric otolaryngology and basic neuroscientists.		
Training and Assessment	The monitoring unit team, based on the neonatal neurocritical care		
	monitoring training course system of several children's specialty		
	hospitals in North America, should jointly participate in establishing		
	a routine business learning system, completing a cycle of training		
	every year.		
Follow-up Management	Capable institutions should consider and improve the accumulation of		
	real-world data in NNICU and the follow-up management system		
	outside the hospital, contributing to the construction of large-scale		
	brain development in newborns.		

Etiology	Diagnostic criteria			
Intracranial	Intracranial bleeding was detected through neuroimaging examinations (head			
hemorrhage	ultrasound, CT, or MRI) once the vital signs were stable.			
Central nervous	Infection was confirmed through cerebrospinal fluid examination, blood			
system infection	culture, and pathogen detection once the vital signs were stable.			
Transient	Abnormal metabolic indicators were detected through blood biochemistry			
metabolic disorder	tests, and returned to normal after treatment once the vital signs were stable.			
Constituent la sur	Diagnoses were confirmed through clinical manifestations, family history, and			
Genetic syndromes	genetic testing.			
Ischemic stroke	Ischemic changes were detected through neuroimaging examinations (cranial			
	ultrasound, MRI, or CTA) once the vital signs were stable.			
Central nervous system malformation	Structural abnormalities in the brain were detected through neuroimaging examinations (head MRI or CT) once the vital signs were stable.			
Inborn errors of metabolism	Diagnoses were confirmed through newborn screening and genetic testing.			
Acute Neonatal Encephalopathy (ANE)	After ruling out all the causes above, ANE was confirmed based on neonatal			
	birth history (Apgar score), clinical manifestations (coma, convulsions,			
	difficulty swallowing, respiratory distress, abnormal muscle tone, etc.),			
	postnatal laboratory indicators (umbilical artery blood gas), neuroimaging			
	examinations (edema, softening), and electroencephalograms. If the newborn			
	had a clear perinatal hypoxic-ischemic event, a 5-minute Apgar score of less			
	than 7, or an umbilical arterial blood gas pH of less than 7.0, ANE was given a			
	high consideration.			

eTable 3. Diagnostic Criteria for the Etiology of Neonates With Seizures

	РМА	Seizure burden			T: 4.1	D
Euology		Severe	Moderate	Mild	- Total	Р
	-	426	702	2295	3423	-
Total	Preterm	165	248	786	1199	
	Full-term	261	454	1509	2224	0.201
	Preterm	67	87	289	443	
Acute neonatal encephalopathy	Full-term	95	168	742	1005	0.001
Takan ana ist barrangkana	Preterm	40	55	199	294	0 909
intracraniai nemormage	Full-term	42	69	225	336	0.808
CNS infaction	Preterm	5	15	70	90	0.323
ens metion	Full-term	9	22	173	204	
Transiant matchalia	Preterm	2	13	121	136	0.601*
Transient inclatione	Full-term	3	8	120	131	
Genetic syndromes	Preterm	15	18	25	58	0.406
Schele syncholies	Full-term	34	52	44	130	0.400
Ischemic strokes	Preterm	9	22	26	57	0.885
ischeline suokes	Full-term	17	46	61	124	0.005
Unknown	Preterm	8	16	27	51	0.812
	Full-term	20	33	71	124	
CNS malformations	Preterm	7	9	8	24	0.795
erto manormatolis	Full-term	26	35	42	103	
Inborn-errors of metabolism	Preterm	12	13	21	46	0.885

eTable 4. Seizure Burden in Neonates Under Different PMA and Etiologies

Note: * Fisher's exact test