Original Article

(Check for updates

1 OPEN ACCESS

Received: Nov 11, 2019 Revised: Apr 18, 2020 Accepted: Apr 26, 2020

Correspondence to

Tatsuyuki Chiyoda

Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.

E-mail: chiyoda@keio.jp

*Tatsuyuki Chiyoda and Manabu Sakurai contributed equally to this work.

Copyright © 2020. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https:// creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ORCID iDs

Tatsuyuki Chiyoda b https://orcid.org/0000-0002-8214-2242 Manabu Sakurai b https://orcid.org/0000-0002-8541-4290 Toyomi Satoh b https://orcid.org/0000-0002-6929-5463 Satoru Nagase b https://orcid.org/0000-0001-5212-1128 Mikio Mikami b https://orcid.org/0000-0002-7496-3518 Hidetaka Katabuchi b https://orcid.org/0000-0002-2403-6134

https://ejgo.org

Tatsuyuki Chiyoda (b, ^{1,*} Manabu Sakurai (b, ^{2,*} Toyomi Satoh (b, ² Satoru Nagase (b, ³ Mikio Mikami (b, ⁴ Hidetaka Katabuchi (b, ⁵ Daisuke Aoki (b)

¹Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan ²Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan ³Department of Obstetrics and Gynecology, Yamagata University Faculty of Medicine, Yamagata, Japan ⁴Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan ⁵Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan

ABSTRACT

Objective: To assess the effectiveness of lymphadenectomy at primary debulking surgery (PDS) on the survival of patients with epithelial ovarian cancer (EOC).

Methods: We searched PubMed, Ichushi, and the Cochrane Library. Randomized controlled trials (RCTs) and retrospective cohort studies comparing survival of women with EOC undergoing lymphadenectomy at PDS with that of women without lymphadenectomy were included. We performed a meta-analysis of overall survival (OS), progression-free survival (PFS), and adverse events.

Results: For advanced-stage EOC, 2 RCTs including 1,074 women and 7 cohort studies comprising 3,161 women were evaluated. Meta-analysis revealed that lymphadenectomy was associated with improved OS (hazard ratio [HR]=0.80; 95% confidence interval [CI]=0.70–0.90). However, meta-analysis of 2 RCTs revealed no significant difference in OS between the lymphadenectomy and no-lymphadenectomy groups (OS: HR=1.02; 95% CI=0.85–1.22). For early-stage EOC, 1 RCT comprising 268 women and 4 cohort studies comprising 14,228 women were evaluated. Meta-analysis showed that lymphadenectomy was associated with improved OS (HR=0.75; 95% CI=0.68–0.82). A RCT of early-stage EOC reported that lymphadenectomy was not associated with improved OS (HR=0.85; 95% CI=0.49–1.47). Surgery-related deaths were similar in both groups (risk ratio [RR]=1.00; 95% CI=0.99–1.01); however, blood transfusion was required less frequently in the no-lymphadenectomy group (RR=0.74; 95% CI=0.63–0.86).

Conclusions: Meta-analysis of RCTs and observational studies suggest that lymphadenectomy was associated with improved OS in advanced- and early-stage EOC. However, results from RCTs demonstrate that lymphadenectomy was not associated with improved OS in advanced- and early-stage EOC.

Keywords: Ovarian Neoplasms; Lymph Node Excision; Meta-Analysis; Systematic Review

INTRODUCTION

Epithelial ovarian, fallopian tubal, and peritoneal cancer is one of the most common cancers in women, with over 295,000 new cases diagnosed worldwide each year [1]. About 70%–80%

JOURNAL OF GYNECOLOGIC ONCOLOGY

Daisuke Aoki ib https://orcid.org/0000-0002-9596-8326

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Author Contributions

Conceptualization: C.T., S.M., S.T., N.S., M.M.; Data curation: C.T., S.M.; Formal analysis: C.T., S.M.; Funding acquisition: M.M., K.H., A.D.; Investigation: C.T., S.M., S.T.; Methodology: C.T., S.M.; Project administration: C.T., S.M., S.T., N.S., M.M.; Supervision: S.T., N.S., M.M., K.H., A.D.; Writing - original draft: C.T., S.M.; Writing - review & editing: C.T., S.M., S.T. of epithelial ovarian cancers (EOCs) are of a serous histologic type. The less common types include endometrioid (10%), clear cell (10%), mucinous (3%–4%), transitional (Brenner) (<1%), and undifferentiated carcinomas (2%) [2]. The primary treatment includes staging laparotomy with maximal cytoreduction and adjuvant platinum-based chemotherapy. In advanced-stage EOC, no visible disease achieved by maximal cytoreduction is the most favorable prognostic factor, and thus is the main goal of primary debulking surgery (PDS) [3-5]. Although pelvic or para-aortic lymph node metastasis is reported in approximately 14% of clinical stage I or II EOC [6], the efficacy of lymphadenectomy on improved overall survival (OS) has not been established. Observational retrospective studies suggested that lymphadenectomy may be a favorable prognostic factor for OS in advanced- and early-stage EOCs. Therefore, the aim of this current study was to evaluate the role of lymphadenectomy in advanced- and early-stage EOCs.

MATERIALS AND METHODS

1. Search strategy

We searched the following databases from January 1967 to September 2018: PubMed, Ichushi, and the Cochrane Library. We identified all relevant articles found on PubMed and used the "related articles" feature to conduct a further search for newly published articles. We sought articles in all languages. The search strategy is described in **Supplementary Table 1**.

2. Study selection

RCTs and retrospective studies were included. The study participants comprised women with advanced- or early-stage EOC who had a confirmed pathological diagnosis from surgery. The primary surgical procedures included standard surgical staging with or without lymphadenectomy. PDS, including the pelvic region only, or pelvic and para-aortic lymphadenectomy was defined as the treatment group, whereas PDS without systematic lymphadenectomy was defined as the control group. PDS with lymph node biopsy was also included in the control group. The primary outcome was OS, survival until death from any cause. The secondary outcomes included progression-free survival (PFS) and adverse events (AEs).

3. Data extraction

To select the studies, we downloaded all titles and abstracts retrieved by electronic searching to a reference management database, BunKan, where 2 review authors (C.T. and S.M.) independently examined the references. We excluded those studies which clearly did not meet the inclusion criteria and obtained full text copies of potentially relevant references. The 2 authors independently assessed the eligibility of all retrieved papers, resolving disagreements by discussion, and we collected the following data: authors, year of publication, journal citation, country, setting, inclusion and exclusion criteria, study design and methodology, study population (total number enrolled, participant characteristics, age, size of residual tumors after primary surgery, stage, histology, and number of lymph nodes removed), interventions (expertise of surgeons and type of chemotherapy), risk of bias, duration of follow-up, and outcomes (OS, PFS, and AEs).

We extracted outcome data as follows:

- For OS and PFS data, we extracted the hazard ratio (HR) and its standard error from trial reports.
- For dichotomous outcomes (AEs), we extracted the number of participants in each group

who experienced the outcome of interest and the number assessed at the end point, to estimate a risk ratio (RR).

Where possible, all extracted data were relevant to an intention-to-treat analysis, in which participants were analyzed in the groups to which they were originally assigned.

4. Assessment of risk of bias in included studies

We assessed the risk of bias in the included RCTs using the Cochrane Collaboration's tool and the criteria specified in chapter 8 of the Cochrane Handbook [7]. This includes the following assessments: random sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, selective reporting, and other biases [7]. For observational studies, the sources of bias included selection bias, performance bias, detection bias, attrition bias, and others. Two review authors (C.T. and S.M.) independently applied the risk of bias tool, resolving differences by discussion. We interpreted the results of our meta-analysis in the light of the findings of the risk of bias assessments. We did not impute missing outcome data.

5. Assessment of heterogeneity and publication bias

We assessed heterogeneity between studies by visual inspection of forest plots and by estimation of the I² statistic. To evaluate the publication bias, we performed a funnel plot analysis. All studies were distributed evenly across the graph, indicating that no publication bias existed in the meta-analysis (**Supplementary Fig. 1**).

6. Data synthesis and analysis

We pooled the findings of the included studies into meta-analyses, using adjusted summary statistics when available and unadjusted results, otherwise. For time-to-event data, we produced and pooled HRs using the generic inverse variance facility of Review Manager 5. For dichotomous outcomes, we calculated the RR for each study and then pooled them. We used random-effects models for all meta-analyses.

RESULTS

1. Overview of the clinical trials included in the systematic review

We examined the titles and abstracts of 1,201 references identified by the original search (depicted in yellow cells, **Supplementary Table 1**) and determined that 45 studies were potentially relevant to this review. We obtained full text copies of the 45 studies, and 2 authors (C.T. and S.M.) assessed them independently for eligibility. Of the 45 studies, 33 were excluded during this process. The reasons for exclusion are presented in the characteristics of excluded studies table (**Supplementary Table 2**). We added an article from March 2019 which was already included in the Cochrane database [8] (**Fig. 1**). Ultimately, 3 randomized controlled trials (RCTs) and ten retrospective studies met all inclusion criteria (**Fig. 1**, **Table 1**).

2. Lymphadenectomy for advanced-stage ovarian cancer

For advanced-stage EOC, we identified 2 RCTs [8,9] and 7 observational studies, including one SEER database study [10-16] (**Table 1**). Two cohorts from the observational study of du Bois et al. [10] were selected: 1) no gross residual and 2) a residual tumor 1–10 mm. Regarding Panici et al.'s risk of bias [9], the selection bias of random sequence generation is high because more than two thirds of the included patients (61.8%) had residual postoperative

Fig. 1. Flow diagram of study selection.

HR, hazard ratio; RCT, randomized controlled trial.

intraabdominal tumor which may have affected the prognosis, and resection of bulky lymph nodes was allowed in the control group. Another source of bias was that participating centers were not assessed for surgical quality (Fig. 2, Supplementary Fig. 2). The LION trial [8] has a low risk of bias since patients could undergo randomization only if macroscopically complete resection had been achieved, which is an appropriate design to compare the effectiveness of lymphadenectomy on survival. In addition, only patients with clinically negative lymph nodes were included in the study, and surgical quality was assured [8]. For observational studies, the overall risk of bias was generally considered unclear to high (Fig. 2, Supplementary Fig. 2). The meta-analysis of RCTs and observational studies using a random-effects model revealed that lymphadenectomy improved OS (HR=0.80; 95% CI=0.70-0.90) (Fig. 3A); however, the meta-analysis of RCTs alone showed that lymphadenectomy did not improve OS (HR=1.02; 95% CI=0.85–1.22) (Fig. 3B). The meta-analysis of observational studies showed that lymphadenectomy improved OS (HR=0.74; 95% CI=0.66–0.82) (Fig. 3C). Furthermore, the meta-analysis revealed that lymphadenectomy did not improve PFS (both RCT and observational studies: HR=0.77; 95% CI=0.54-1.10; RCTs: HR=0.92; 95% CI=0.63-1.35; and observational studies: HR=0.68; 95% CI=0.35-1.31) (Fig. 3D-F). In the meta-analysis of PFS including observational studies, heterogeneity was high (I²=87%–90%) due to the results of Chang et al. [12]. It is not clear why the HR of lymphadenectomy on PFS was very low (HR=0.34), but lymphadenectomy was not a significant predictor of OS in their study [12].

3. Lymphadenectomy for early-stage ovarian cancer

For early-stage EOC, one RCT [17] and 4 observational studies, including one SEER database study [11,18-20], were included in the systematic review (**Table 1**). In the RCT [17], biases resulted because participating centers were not assessed for surgical quality, unilateral lymphadenectomy was allowed in unilateral tumors, and the primary endpoint of the study was the prevalence of patients with positive retroperitoneal nodes (**Fig. 2A**). Overall risk of bias in all 4 observational studies was not considered low (**Fig. 2B**). A meta-analysis of the RCT and retrospective early-stage EOC studies revealed that lymphadenectomy was associated with favorable OS (HR=0.75; 95% CI=0.68–0.82, without SEER study; HR=0.71; 95% CI=0.51–0.99) (**Fig. 4A and B**). The RCT of early-stage EOC reported no significant effects of lymphadenectomy on OS (HR=0.85;

<u>)80</u>	JOURNAL OF GYNECOLOGIC ONCOLOGY
------------	---------------------------------------

additional implicit and control <	Table 1. Cli	nical characteristics	of RCIS and obs	ervational studies inci		אארבווומרור ובעוראי				oR
Advances study study <tudy< td=""> <tudy< td=""> <tudy< <="" th=""><th>stages</th><th>Author</th><th>Design of</th><th>Clinical stage</th><th>HISTOLOGY</th><th>Debulking status</th><th>No. of pa</th><th>tients</th><th>Definition of SL and control</th><th>Quality</th></tudy<></tudy<></tudy<>	stages	Author	Design of	Clinical stage	HISTOLOGY	Debulking status	No. of pa	tients	Definition of SL and control	Quality
Admotionelity Inter (at. [c]) Inter (at. [study				SL	Control		
International Control removal of 1 cmUN Sectional Control removal of 1 cmUN Sectional Harter et al. [3] RCT IB=V Various Complete 32 32 St: poloic and para-andics. Supplicational Harter et al. [3] RCT IB=V Various Optimal c F0 Control: into performed. Supplicational Absertal. [1] Observational III-V Various Optimal corresidual 59 St: policie and para-andics. Supplicational Absertal. [1] Observational III-V Various Optimal corresidual 59 St: policie and para-andics. Supplicational Statiat at [13] Observational III-V Various Optimal corresidual 59 St: policie and para-andics. Supplicational Statiat at [13] Observational III-V Various Optimal corresidual 59 Control: removal of a mU/or para-andics. Supplicational Statiat at [14] Observational III-V Various Various Optimal corresidual 59 Control: removal of a mU/or para-andics. S	Advanced- stage	Panici et al. [9]	RCT	IIIB-IV	Various	Optimal or residual tumors <2 cm	216	211	SL: pelvic and para-aortic SL	62.1% had residual postoperative intraabdominal tumor (R0 SL: 37.0%, Control: 37.4%)
Harter et al. RCT IIB-VV Various Complete 324 St.politic and para-antics. And atta and total para-antics. du Bois et al. Deservational IIB-VV Various Various Optimal E: politic and para-antics. Stephatasyot. Abservational IIB-VV Various Various Optimal or residual 294 Control: not performed. Supplications Abservational III-VV Various Various Optimal or residual 294 Control: not performed. Supplications Abservational III-VV Various Various Optimal or residual 294 Supplications Suplications <t< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Control: removal of ≥1 cm LN</td><td>Resection of bulky lymph nodes allowed in control Surgical quality not assessed</td></t<>)								Control: removal of ≥1 cm LN	Resection of bulky lymph nodes allowed in control Surgical quality not assessed
Image: description Description Image: description Stations Stations <t< td=""><td></td><td>Harter et al. [8]</td><td>RCT</td><td>IIB-IV</td><td>Various</td><td>Complete</td><td>323</td><td>324</td><td>SL: pelvic and para-aortic SL Control: not performed</td><td>All data available to study question (R0 SL: 99.4%, Control: 99.4%)</td></t<>		Harter et al. [8]	RCT	IIB-IV	Various	Complete	323	324	SL: pelvic and para-aortic SL Control: not performed	All data available to study question (R0 SL: 99.4%, Control: 99.4%)
Abe et al. [1] Observational III-UV Various Optimal or residual Controit not performed suggat qua suggat qua only sectional Abe et al. [1] Observational III-UV Various Optimal or residual 28 S1: pelvia and/or para-aortic SI. Suggat qua suggat qua only sectional S1: pelvia and/or para-aortic SI. Suggat qua suggat qua only sectional S1: pelvia and/or para-aortic SI. Suggat qua suggat qua suboptimal S1: pelvia and/or para-aortic SI. S2: pelvia and/or para-aortic SI. Suggat qua suggat qua suboptimal S1: pelvia and/or para-aortic SI. S0: pelvia and/or performed S0: pelvia and/or pelvia and/or para-aortic SI. S0: pelvia and/or para-aorti SI.		du Bois et al. [10]	Observational	IIB-IV	Various	Optimal	610	894	SL: pelvic and para-aortic SL	Exploratory analysis of 3 RCTs
Abe et al. [11] Obsenvational III-V various Optimal or residual 28 St.:polic and/or para-antic.S Straids candinational Straids candi									Control: not performed	Surgical quality not clear SL by discretion of surgeon
Change at life Observational Interview Mathematications Mathmathmations		Abe et al. [11]	Observational	NI–IN	Various	Optimal or residual	28	28	SL: pelvic and/or para-aortic SL	Small sample size
Image: control in the control in the control in the control in the performation of control in the performation in the performation of control in the performatin the performatin the performation of control in the performation		Chang et al. [19]	Observational	IIIC (node metastasis	Various	Ontimal or	135	54	SI : pelvic and/or para-aortic SI	surgicat quatity unctear Single center
Stead at at. [13] Observational III-V Various Optimal 87 93 St. pative and para-aortic SL Ratent char Pereira et al. [14] Observational III-V Various Optimal or suboptimal 30 53 St.: 400 resected pelvic and para-aortic LNs Surge contro sector biolic sector biolic Park et al. [15] Observational IIIC-V(peritonel implants 2 cm/wth positive nodes) Various Optimal or suboptimal 33 53 St.: 400 resected pelvic and para-aortic LNs Control und Stereton bio sector biolic Park et al. [15] Observational IIIC-VV Various Optimal or suboptimal 35 51 St.: 400 resected pelvic control und sector biolic Stereton bio sector biolic Eduty and resident of the sector bio sector sector sector sector bio sector bio sector sector sector sector bio sector bio sector bio sector bio bio sector bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sector bio bio sect				only excluded)	2	suboptimal	2	-	Control: not performed	22% of SL were pelvic only
Fertia et al. [r4] Observational implants 2 cm with positive nodes) Various suboptimal suboptimal suboptimal 30 53 51::40 resected pelvic and para-aortic.1Ns suboptimal subgeente selection bis control t-40 resected pelvic control und ana-aortic.1Ns supgeente selection bis suboptimal Faik et al. [15] Observational implants 2 cm with positive nodes) Various suboptimal 75 21::40 resected pelvic control t-40 resected pelvic control und arreadicitys Single cente selection bis suboptimal Faik et al. [15] Observational implants 2 cm only sector selection bis suboptimal 75 22 21::40 resected pelvic control t-40 resected pelvic control und arreadicitys Single cente selection bis selection bis sel		Sakai et al. [13]	Observational	NI-III	Various	Optimal	87	93	SL: pelvic and para-aortic SL	Patient characteristics was balanced
Fereira et al. [14] Observational implants .2 cm with positive nodes) Various suboptimal Optimal or control. x40 resected pelvic control usd selection bis and para-aortic LNs Stat-A0 resected pelvic and para-aortic LNs Palk et al. [15] Observational implants .2 cm with positive nodes) Various suboptimal 135 126 St.: x40 resected pelvic control usd and para-aortic LNs Selection bis selection bis genetion bis genetion bis resected LNs St. resected LNs Age and res Early-stage Magioni et al. [T] Rct L-I Various Optimal or suboptimal 367 321 St. resected LNs Age and res Early-stage Magioni et al. [T] Rct L-I Various Optimal or residual tumors .2 cm St. resolv or resected LNs Age and res Early-stade Magioni et al. [T] Not L-I Various Optimal or residual tumors .2 cm St. resolv or resected LNs St. resolv or resected LNs St. resolv or resected LNs									Control: removal of ≥1 cm LNs	Surgical quality unclear
Answer Suboptimat Suboptimat Suboptimat Selection bit		Pereira et al. [14]	Observational	IIIC-IV (peritoneal	Various	Optimal or	30	53	SL: >40 resected pelvic and	Single center
Image: server nodes) Control: 40 resected pelvic Control: 40 resected pelvic Control: 40 resected pelvic Control indocenected pelvic Control indocenected pelvic Control: 40 resected pelvic Control indocenected pelvic Contr				implants >2 cm with		suboptimal			para-aortic LNs	Selection bias
Faik et al. [15] Observational II (node metasasis only excluded)-tv Various suboptimal 126 SL: pelvic and/or para-aortic's suboptimal Suboptimal				positive nodes)					Control: ≤40 resected pelvic and para-aortic LNs	Control underwent lymphadenectomy
And workstand Suboptimal Control: not performed Selection bis Early-stage Maggioni et al. [16] Observational IIIC-IV Various Optimal or suboptimal Ser Ser Serection bis Serection bis Early-stage Maggioni et al. [17] Rcr IIIC-IV Various Optimal or suboptimal Ser Serection bis Serection bis Early-stage Maggioni et al. [17] Rcr I-II Various Optimal or suboptimal Ser Serection bis Serection bis Early-stage Maggioni et al. [17] Rcr I-II Various Optimal or residual Ser Serection bis Serection bis Early-stage Maggioni et al. [19] Observational I-II Various Optimal or residual Serection bis Sortical us Early-stage Control: not performed Serection bis Control: not performed Serection bis Serection bis Foldiate at 1(19) Observational I-II Various Unknown 284 38 Suble section bis Serection bis		Paik et al. [15]	Observational	III (node metastasis	Various	Optimal or	135	126	SL: pelvic and/or para-aortic SL	Single center
Zhou et al. [16] Observational IIIC-IV Various Optimal or suboptimal S57 S21 SL: 320 resected LNs SE study Studiatury Studiatury <td></td> <td></td> <td></td> <td>only excluded)–IV</td> <td></td> <td>suboptimal</td> <td></td> <td></td> <td>Control: not performed</td> <td>Selection bias</td>				only excluded)–IV		suboptimal			Control: not performed	Selection bias
Image: The section of the sectin of the section of the section of the section of the sec										SL group younger than control
Zhou et al. [16] Observational IIIC-IV Various Optimal of suboptimal Sci suboptimal Sci suboptimal of suboptimal control in the performed control in the period quality in the performed control in the		2 - - -					100			Unity a removed LINS IN SE group exists
Bandrates Control not performed Age and resident Early-stage Maggioni et al. [17] RCT I-II Various Optimal 138 130 Sl: pelvic and para-aortic Surgical qua Early-stage Maggioni et al. [17] RCT I-II Various Optimal 138 130 Sl: pelvic and para-aortic Surgical qua Abe et al. [11] Observational I-II Various Optimal or residual 40 22 Sl: pelvic and/or para-aortic Sl. Small sampling Abe et al. [13] Observational I-II Various Optimal or residual or 22 Sl: pelvic and/or para-aortic Sl. Small sampling Svolgaard et al. [13] Observational I-II Various Unknown 284 138 Sl: pelvic and para-aortic Sl. Selection bi Svolgaard et al. [19] Observational I Various Unknown 284 138 Sl: pelvic and para-aortic Sl. Selection bi Matsuo et al. [19] Observational I Various Unknown 216 411 Sl: pelvic and para-aortic Sl. Selection bi Matsuo et al. [20] Observati		Zhou et al. [16]	Observational	IIIC-IV	Various	Optimal or	367	521	SL: >20 resected LNs	SEER study
Early-stage Maggioni et al. [17] RCT I-II Various Optimal 138 130 SL: pelvic and para-aortic Surgical qua Abe et al. [11] Observational I-II Various Optimal or residual 40 22 SL: pelvic and/or para-aortic Surgical qua Unilateral ly Abe et al. [11] Observational I-II Various Optimal or residual 40 22 SL: pelvic and/or para-aortic SL Small sampling Oshita et al. [13] Observational I-II Various Unknown 284 138 SL: pelvic and para-aortic SL Small sampling Svolgaard et al. [19] Observational I Various Unknown 284 138 SL: pelvic and para-aortic SL Selection bi Matsuo et al. [20] Observational I Various Unknown 216 411 SL: pelvic sL or para-aortic SL Selection bi Matsuo et al. [20] Observational I-II Various Unknown 216 411 SL: pelvic sL or para-aortic SL Selection bi Matsuo et al. [20] Observational I-II Various Unknown 8,489						supopulmat			Control: not performed	Age and residual tumor different between SL and control
Abe et al. [11] Observational 1-II Various Optimal or residual 40 22 SL: pelvic and/or para-aortic SL Small sampling Abe et al. [13] Observational 1-II Various Optimal or residual 40 22 SL: pelvic and/or para-aortic SL Small sampling Oshita et al. [18] Observational 1-II Various Unknown 284 138 SL: pelvic and para-aortic SL Selection bit Svolgaard et al. [19] Observational 1 Various Unknown 284 138 SL: pelvic and para-aortic SL Selection bit Matsuo et al. [20] Observational 1 Various Unknown 216 411 SL: pelvic SL or para-aortic SL Selection bit Matsuo et al. [20] Observational 1-II Various Unknown 8,489 4,628 SL:s12 resected pelvic LNs SEER study	Early-stage	Maggioni et al. [17]	RCT	=	Various	Optimal	138	130	SL: pelvic and para-aortic SL (unilateral pelvic	Surgical quality not assessed Unilateral lymphadenectomy allowed
Abe et al. [11] Observational I-II Various Optimal or residual 40 22 SL: pelvic and/or para-aortic SL Small sampling Abservational I-II Various Optimal or residual 40 22 SL: pelvic and/or para-aortic SL Small sampling Oshita et al. [18] Observational I-II Various Unknown 284 138 SL: pelvic and para-aortic SL Selection bi Svolgaard et al. [19] Observational I Various Unknown 216 411 SL: pelvic and para-aortic SL Selection bi Svolgaard et al. [19] Observational I Various Unknown 216 411 SL: pelvic SL or para-aortic SL Selection bi Matsuo et al. [20] Observational I-II Various Unknown 8,489 4,628 SL: SL resected pelvic LNs SEER sudy									lymphadenectomy allowed in unilateral tumors)	
Abe et al. [11] Observational I-II Various Optimal or residual 40 22 SL: pelvic and/or para-aortic SL Small sample Residual tur tumors <2 cm		-			-		:	;	Control: random sampling	
Oshita et al. [18] Observational I-II Various Unknown 284 138 SL: pelvic and para-aortic SL Selection bic Svolgaard et al. [19] Observational 1 Various Unknown 216 411 SL: pelvic SL or para-aortic SL Selection bic Svolgaard et al. [19] Observational 1 Various Unknown 216 411 SL: pelvic SL or para-aortic SL Selection bic Matsuo et al. [20] Observational 1 Various Unknown 8,489 4,628 SL: s12 resected pelvic LNs SEER study		Abe et al. [11]	Observational	-	Various	Optimal or residual	40	22	SL: pelvic and/or para-aortic SL	Small sample size
Svolgaard et al. [19] Observational 1 Various Unknown 216 411 SL: pelvic SL or para-aortic SL selection bit Svolgaard et al. [19] Observational 1 Various Unknown 216 411 SL: pelvic SL or para-aortic SL selection bit No backgrou or both or both Or both Or both Pelvic SL 44 Matsuo et al. [20] Observational 1–II Various Unknown 8,489 4,628 SL: s12 resected pelvic LNs SEER study		Oshita et al. [18]	Ohservational	=	Various	tumors <2 cm Unknown	984	138	Control: not performed SL: nelvic and nara-aortic SL	Residual tumor different between SL and control Selection hias
Svolgaard et al. [19] Observational 1 Various Unknown 216 411 SL: pelvic SL or para-aortic SL Selection bit No backgrou or both or both No backgrou Ratio Control: not performed Pelvic SL 44 Matsuo et al. [20] Observational I-II Various Unknown 8,489 4,628 SL: 212 resected pelvic LNs SEER study									Control: not performed	Surgical quality unclear
or both No backgrou Control: not performed Pelvic SL 44 Matsuo et al. [20] Observational I-II Various Unknown 8,489 4,628 SL: 212 resected pelvic LNs SEER study		Svolgaard et al. [19	Observational	_	Various	Unknown	216	411	SL: pelvic SL or para-aortic SL	Selection bias
Control: not performed Pelvic SL 44' Matsuo et al. [20] Observational I–II Various Unknown 8,489 4,628 SL: 212 resected pelvic LNs SEER study									or both	No background information of each group
Matsuo et al. [20] Observational I-II Various Unknown 8,489 4,628 SL: 212 resected pelvic LNs SEER study									Control: not performed	Pelvic SL 44%, para-aortic SL 7%, both 48%
		Matsuo et al. [20]	Observational	II -I	Various	Unknown	8,489 2	1,628	SL: ≥12 resected pelvic LNs	SEER study
Control: <12 resected pelvic LNs Details of ly.									Control: <12 resected pelvic LNs	Details of lymphadenectomy not clear

Fig. 2. Methodological quality summary: Review authors' judgements about each methodological quality item for each RCT (A) and observational studies (B). Green: low risk of bias; yellow: unclear risk of bias; red: high risk of bias. RCT, randomized controlled trial.

95% CI=0.49–1.47) [17] (**Fig. 4C**). A meta-analysis of the observational studies showed that lymphadenectomy was associated with favorable OS (HR=0.74; 95% CI=0.68–0.82, without SEER study; HR=0.64; 95% CI=0.42–0.97) (**Fig. 4D and E**). Meta-analysis of the RCT and retrospective early-stage EOC studies revealed that lymphadenectomy was not associated with favorable PFS (HR=0.71; 95% CI=0.47–1.07) (**Fig. 4F**). The RCT reported no significant effects of lymphadenectomy on PFS (HR=0.72; 95% CI=0.46–1.13) [17] (**Fig. 4G**).

4. Risk of AEs

Using 3 RCTs and one observational study, AEs associated with lymphadenectomy were analyzed [8,9,17,18]. Lymphadenectomy was not associated with mortality related to surgery (RR=1.00; 95% CI=0.99–1.01) (**Fig. 5A**), although the LION trial reported that lymphadenectomy was significantly associated with mortality within 60 days following surgery [8]. Patients without lymphadenectomy required blood transfusion less frequently than the lymphadenectomy group (RR=0.74; 95% CI=0.63–0.86) (**Fig. 5B**).

DISCUSSION

Pelvic and para-aortic lymphadenectomy has been routinely performed at PDS in both advancedand early-stage EOCs relying on data from retrospective studies. In advanced-stage EOC, pelvic and para-aortic lymphadenectomy, which can contribute to maximal cytoreduction, has been performed as an important surgical procedure [3-5]. One RCT [9], which did not exhibit an advantage to lymphadenectomy, has been criticized on several points: surgical quality was not

A OS: RCT + Observational studies

Study or subgroup		<u>сг</u>	Lymphodonootomy	Control	Weight	HR	Voor		H	3	
study of subgroup	гобіцкі	SE	Lymphadenectomy	Control	(%)	IV, Random, 95% CI	rear		IV, Randon	n, 95% Cl	
Panici et al. [9]	-0.0305	0.1381	216	211	12.5	0.97 (0.74–1.27)	2005		-	-	
du Bois et al. [10] No gross residual	-0.3425	0.1303	387	338	13.3	0.71 (0.55-0.92)	2010				
Abe et al. [11]	-0.0408	0.2936	28	28	4.1	0.96 (0.54-1.71)	2010				
du Bois et al. [10] Residual tumor 1-10 mm	-0.2231	0.0982	223	556	17.5	0.80 (0.66-0.97)	2010		-		
Sakai et al. [13]	-0.1031	0.2505	87	93	5.3	0.90 (0.55-1.47)	2012			_	
Chang et al. [12]	-0.3147	0.2139	135	54	6.9	0.73 (0.48-1.11)	2012			-	
Pereira et al. [14]	-0.6539	0.2979	30	53	4.0	0.52 (0.29-0.93)	2012				
Paik et al. [15]	-0.5276	0.1869	135	126	8.4	0.59 (0.41-0.85)	2016				
Zhou et al. [16]	-0.3243	0.1240	367	521	14.1	0.72 (0.57-0.92)	2018				
Harter et al. [8]	0.0583	0.1248	323	324	14.0	1.06 (0.83-1.35)	2019		-	-	
Total (95% CI)			1,931	2,304	100.0	0.80 (0.70-0.90)			•		
Heterogeneity: τ^2 =0.01; χ^2 =14.0	06, df=9 (p=	0.12); I ² =36	i%					0.01	0.1	1 10	100

Heterogeneity: τ^2 =0.01; χ^2 =14.06, df=9 (p=0.12); I²=36% Test for overall effect: Z=3.52 (p=0.0004)

B OS: RCT

Study or subgroup	Log[HR]	SE	Lymphadenectomy	Control	Weight (%)	HR IV, Random, 95% CI	Year		IV, Ran	HR dom,	95% CI	
Panici et al. [9]	-0.0305	0.1381	216	211	45.0	0.97 (0.74–1.27)	2005			+		
Harter et al. [8]	0.0583	0.1248	323	324	55.0	1.06 (0.83-1.35)	2019			+		
Total (95% CI)			539	535	100.0	1.02 (0.85–1.22)				•		
Heterogeneity: τ^2 =0.00; χ^2 = Test for overall effect: Z=0.2	0.23, df=1 (p=0 20 (p=0.84)	0.63); l ² =0 ⁴	%					0.01 Favours	0.1 ymphadened	1 tomy	10 Favours cont	100 rol

C OS: Observational studies

Otudu ar aubgraup		05	Lumphadanastamu	Control	Weight	HR	Veer	HR	
Study of subgroup	LOG[HK]	SE	Lymphadenectomy	Control	(%)	IV, Random, 95% CI	rear	IV, Random, 95%	o CI
Abe et al. [11]	-0.0408	0.2936	28	28	3.7	0.96 (0.54-1.71)	2010		
du Bois et al. [10] Residual tumor 1-10 mm	-0.2231	0.0982	223	556	32.7	0.80 (0.66-0.97)	2010	-	
du Bois et al. [10] No gross residual	-0.3425	0.1303	387	338	18.6	0.71 (0.55-0.92)	2010	-	
Chang et al. [12]	-0.3147	0.2139	135	54	6.9	0.73 (0.48-1.11)	2012		
Sakai et al. [13]	-0.1031	0.2505	87	93	5.0	0.90 (0.55-1.47)	2012		
Pereira et al. [14]	-0.6539	0.2979	30	53	3.6	0.52 (0.29-0.93)	2012		
Paik et al. [15]	-0.5276	0.1869	135	126	9.0	0.59 (0.41-0.85)	2016		
Zhou et al. [16]	-0.3243	0.1240	367	521	20.5	0.72 (0.57–0.92)	2018	+	
Total (95% CI)			1,392	1,769	100.0	0.74 (0.66-0.82)		•	
Heterogeneity: τ^2 =0.00; χ^2 =5.0 Test for overall effect: Z=5.39 (05, df=7 (p=0 (p<0.00001)	0.65); l ² =0 ⁰	%					0.01 0.1 1 Favours lymphadenectomy Fav	10 100 vours control

Fig. 3. Forest plots for the lymphadenectomy vs. control studies of the OS (A-C) and PFS (D-F) in advanced-stage ovarian cancer. The test for heterogeneity is indicated with the I² value.

CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; RCT, randomized controlled trial; SE, standard error. (continued to the next page)

^{0.01} 01 1 Favours lymphadenectomy Favours control

D PFS: RCT + Observational studies

	[Weight	HR				HR		
Study or subgroup	LOG[HR]	SE	Lymphadenectomy	Control	(%)	IV, Random, 95% CI	Year		IV, Ra	ndom,	95% CI	
Panici et al. [9]	-0.2877	0.1224	216	211	21.3	0.75 (0.59-0.95)	2005					
Chang et al. [12]	-1.0788	0.1994	135	54	18.4	0.34 (0.23-0.50)	2012		-	-		
Sakai et al. [13]	-0.1009	0.2108	87	93	17.9	0.90 (0.60-1.37)	2012			_		
Paik et al. [15]	-0.0111	0.1535	135	126	20.2	0.99 (0.73-1.34)	2016			-		
Harter et al. [8]	0.1044	0.0958	323	324	22.2	1.11 (0.92–1.34)	2019			-		
Total (95% CI)			896	808	100.0	0.77 (0.54–1.10)						
Heterogeneity: τ^2 =0.14; χ^2 =	=30.87, df=4 (p<0	0.00001);	² =87%					0.01	0.1	1	10	100
Test for overall effect: Z=1.	42 (p=0.16)							Favours	lymphadene	ectomv	Favours con	trol

E PES: RCT

Study or subgroup	Log[HR]	SE	Lymphadenectomy	Control	Weight (%)	HR IV. Random, 95% CI	Year		IV. Ra	HR ndom.	95% CI	
Panici et al. [9]	-0.2877	0.1224	216	211	48.1	0.75 (0.59-0.95)	2005		,			
Harter et al. [8]	0.1044	0.0958	323	324	51.9	1.11 (0.92–1.34)	2019			-		
Total (95% CI)			539	535	100.0	0.92 (0.63-1.35)				•		
Heterogeneity: τ^2 =0.06; χ^2 =0 Test for overall effect: Z=0.4	6.36, df=1 (p=0 3 (p=0.67)	0.01); l²=84	%					0.01 Favours	0.1 lymphadene	1 ectomy	10 Favours contr	100 ol

F PFS: Observational studies

Ctudu ar aubgraup		0.5	Lumanhadanaatamu	Control	Weight	HR	Veer			HR		
study of subgroup	LOG[HK]	SE	Lymphadenectomy	Control	(%)	IV, Random, 95% CI	rear		IV, F	andom,	95% CI	
Sakai et al. [13]	-0.1009	0.2108	87	93	32.5	0.90 (0.60–1.37)	2012					
Chang et al. [12]	-1.0788	0.1994	135	54	32.9	0.34 (0.23-0.50)	2012					
Paik et al. [15]	-0.0111	0.1535	135	126	34.6	0.99 (0.73–1.34)	2016			+		
Total (95% CI)			357	273	100.0	0.68 (0.35–1.31)						
Heterogeneity: τ^2 =0.31; χ^2 = Test for overall effect: Z=1.	19.60, df=2 (p<0 16 (p=0.25)	0.0001); l ^{2,}	=90%					0.01 Favours	0.1 lymphade	1 nectomy	10 Favours cor	100 htrol

Fig. 3. (Continued) Forest plots for the lymphadenectomy vs. control studies of the OS (A-C) and PFS (D-F) in advanced-stage ovarian cancer. The test for heterogeneity is indicated with the I² value.

CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; RCT, randomized controlled trial; SE, standard error.

assessed, bulky lymph node dissection was allowed in the control group, and approximately 60% of the cases with lymphadenectomy had residual intraabdominal tumor. The LION study is considered to be a well-designed trial to measure the benefit of lymphadenectomy, because randomization was performed only after complete surgical resection of intraabdominal lesions has been achieved, surgical quality was assured, and cases with only clinically negative lymph node metastasis were included in the study. The trial revealed that 55.7% of the cases in the lymphadenectomy group had lymph node metastasis pathologically, and lymphadenectomy did not provide any survival benefit [8]. This may indicate that adjuvant chemotherapy can eliminate the effect of micro-metastases in the lymph nodes on survival. Meta-analysis of advanced-stage EOC including observational studies showed that lymphadenectomy improved OS (RCT and observational studies: HR=0.80; observational studies: HR=0.74) (Fig. 3A and C). However, a meta-analysis of 2 RCTs revealed that lymphadenectomy did not improve OS (HR=1.02) (Fig. 3B). The heterogeneity of the retrospective studies was low ($I^2=0\%$) (Fig. 3C). The difference between the result of retrospective studies and RCTs may be attributed to several biases, including selection bias for patients with older age, low performance status, or preexisting disorders who did not undergo lymphadenectomy. A meta-analysis of RCTs and observational studies did not reveal a benefit of lymphadenectomy on PFS in advanced-stage EOC (Fig. 3D-F). It is not known

whether chemotherapy would be effective in the case of grossly apparent lymph node metastasis. At present, removing apparently clinically metastatic lymph nodes may be the most realistic

A OS: RCT + Observational studies

Study or subgroup		<u>сг</u>	Lumphadapaatamu	Control	Weight	HR	Voor	HR	
study of subgroup	LOG[HK]	SE	Lymphadenectomy	Control	(%)	IV, Random, 95% CI	rear	IV, Random, 95% CI	
Maggioni et al. [17]	-0.1625	0.2810	138	130	2.9	0.85 (0.49–1.47)	2006	;	
Oshita et al. [18]	-0.3486	0.3185	284	138	2.3	0.71 (0.38-1.32)	2013	3	
Svolgaard et al. [19]	-0.5310	0.2901	216	411	2.7	0.59 (0.33-1.04)	2014	1	
Matsuo et al. [20]	-0.2877	0.0500	8,489	4,628	92.1	0.75 (0.68-0.83)	2018	3	
Total (95% CI)			9,127	5,307	100.0	0.75 (0.68-0.82)		•	
Heterogeneity: τ^2 =0.00; χ^2 =	0.93, df=3 (p=0	0.82); I ² =0	%					0.01 0.1 1 10 1	100
Test for overall effect: Z=6.0	09 (p<0.00001)	1						Favours lymphadenectomy Favours control	

Test for overall effect: Z=6.09 (p<0.00001)

B OS: RCT + Observational studies (without SEER study)

Study or subgroup	Log[HR]	SE	Lymphadenectomy	Control	Weight (%)	HR IV, Random, 95% CI	Year		⊢ IV, Rando	IR m, 95% CI	
Maggioni et al. [17]	-0.1625	0.2810	138	130	36.8	0.85 (0.49-1.47)	2006			-	
Oshita et al. [18]	-0.3486	0.3185	284	138	28.7	0.71 (0.38–1.32)	2013			+	
Svolgaard et al. [19]	-0.5310	0.2901	216	411	34.5	0.59 (0.33-1.04)	2014			-	
Total (95% CI)			638	679	100.0	0.71 (0.51–0.99)			•		
Heterogeneity: $\tau^2=0.00$; $\chi^2=0$ Test for overall effect: Z=2.0	0.83, df=2 (p=0 1 (p=0.04)	0.66); l ² =0	%					0.01 Favours	0.1 lymphadenector	1 10 ny Favours cor	100 trol

C OS: RCT

Study or subgroup		\$F	Lymphadenectomy	Control	Weight	HR	Voar			HR		
Study of Subgroup	Log[IIII]	32	Lymphadenectomy	Control	(%)	IV, Random, 95% CI	ieai		IV, Ra	ndom,	95% CI	
Maggioni et al. [17]	-0.1625	0.2810	138	130	100.0	0.85 (0.49-1.47)	2006					
Total (95% CI)			138	130	100.0	0.85 (0.49-1.47)				-		
Heterogeneity: Not applicable Test for overall effect: Z=0.58	e (p=0.56)							0.01 Favours l	0.1 ymphadene	1 ectomy	10 Favours contr	100 rol

D OS: Observational studies

					Weight	HR				HR	
Study or subgroup	Log[HR]	SE	Lymphadenectomy	Control	(%)	IV, Random, 95% CI	Year		IV, Rand	om, 95% CI	
Oshita et al. [18]	-0.3486	0.3185	284	138	2.3	0.71 (0.38-1.32)	2013			•	
Svolgaard et al. [19]	-0.5310	0.2901	216	411	2.8	0.59 (0.33-1.04)	2014			_	
Matsuo et al. [20]	-0.2877	0.0500	8,489	4,628	94.8	0.75 (0.68-0.83)	2018				
Total (95% CI)			8,989	5,177	100.0	0.74 (0.68-0.82)				•	
Heterogeneity: τ^2 =0.00; χ^2 =	=0.71, df=2 (p=0	0.70); l ² =0º	/o					0.01	0.1	1 10	100
Test for overall effect: Z=6.	08 (p<0.00001)	0.0001) Favours lymphadenectomy Fav					omy Favours o	ontrol			

E OS: Observational studies (without SEER study)

Study or subgroup	Log[HR]	SE	Lymphadenectomy	Control	Weight (%)	HR IV, Random, 95% CI	Year		IV, Rand	HR lom, 9	95% CI	
Oshita et al. [18]	-0.3486	0.3185	284	138	45.3	0.71 (0.38-1.32)	2013		_	•+		
Svolgaard et al. [19]	-0.5310	0.2901	216	411	54.7	0.59 (0.33-1.04)	2014			-		
Total (95% CI)			500	549	100.0	0.64 (0.42-0.97)			•			
Heterogeneity: τ²=0.00; χ²=0.18, df=1 (p=0.67); l²=0% Test for overall effect: Z=2.09 (p=0.04)								0.01 Favours	0.1 ymphadenect	1 omy	10 Favours conti	100 ol

Fig. 4. Forest plots for the lymphadenectomy vs. control studies of the OS (A-E) and PFS (F, G) in early-stage ovarian cancer. The test for heterogeneity is indicated with the I² value.

CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; RCT, randomized controlled trial; SE, standard error. (continued to the next page)

F PFS: RCT + Observational studies

Study or subgroup	Log[HR]	SE	Lymphadenectomy	Control	Weight (%)	HR IV, Random, 95% CI	Year		HR IV, Random,	95% CI	
Maggioni et al. [17]	-0.3285	0.2286	138	130	84.3	0.72 (0.46-1.13)	2006		+		
Abe et al. [11]	-0.4308	0.5301	40	22	15.7	0.65 (0.23-1.84)	2010			_	
Total (95% CI)			178	152	100.0	0.71 (0.47–1.07)			•		
Heterogeneity: $\tau^2=0.00$; $\chi^2=0$ Test for overall effect: Z=1.64	.03, df=1 (p=0 (p=0.10)	//o					0.01 Favours lym	0.1 1 phadenectomy	10 Favours cont	100 rol	

G PFS: RCT

Study or subgroup	l og[HB]	SE	Lymphadenectomy	Control	Weight	HR	Vear			HR			
Study of Subgroup	Log[IIII]			controt	(%)	IV, Random, 95% CI	icai		IV, Ra	ndom,	95% CI		
Maggioni et al. [17]	-0.3285	0.2286	138	130	100.0	0.72 (0.46-1.13)	2006			-			
Total (95% CI)			138	130	100.0	0.72 (0.46-1.13)							
Heterogeneity: Not applicable Test for overall effect: Z=1.44 (p=0.15)								0.01 Favours	0.1 lymphadene	1 ectomy	10 Favours co	ontrol	100

Fig. 4. (Continued) Forest plots for the lymphadenectomy vs. control studies of the OS (A-E) and PFS (F, G) in early-stage ovarian cancer. The test for heterogeneity is indicated with the I² value.

CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; RCT, randomized controlled trial; SE, standard error.

A Mortality related to surgery

Ctudu or oulogroup	Lymphade	enectomy	Control		Weight	RR (Non-event)	Veer	RR (Non-event)					
study of subgroup	Events	Total	Events	Total	(%)	M-H, Random, 95% Cl	rear		RR (Non-event) M-H, Random, 95% CI	CI			
Panici et al. [9]	0	216	0	211	32.2	1.00 (0.99–1.01)	2005			•			
Maggioni et al. [17]	0	138	0	130	23.7	1.00 (0.99–1.01)	2006			+			
Oshita et al. [18]	0	284	0	138	29.0	1.00 (0.99–1.01)	2012			4			
Harter et al. [8]	10	323	3	324	15.1	0.98 (0.96-1.00)	2019						
Total events	10		3										
Total (95% CI)		961		803	100.0	1.00 (0.99–1.01)							
Heterogeneity: τ^2 =0.00; χ^2 =7.98, df=3 (p=0.05); I ² =62% Test for overall effect: Z=0.61 (p=0.54)								0.01 Fa	0.1 vours control	1 Favours lyn	10 1phadei	100 nectomy	

B Blood transfusion

Study or subgroup	Lymphade	enectomy	Control		Weight	RR (Non-event)	Voor	RR (Non-event)					
Study of Subgroup	Events	Total	Events	Total	(%)	M-H, Random, 95% CI	fear		RR (Non-event) M-H, Random, 95% Cl	% CI			
Panici et al. [9]	155	216	125	211	17.5	0.69 (0.53-0.91)	2005						
Maggioni et al. [17]	49	138	28	130	27.5	0.82 (0.71-0.96)	2006			-			
Oshita et al. [18]	124	284	16	138	31.0	0.64 (0.57-0.72)	2012						
Harter et al. [8]	205	322	181	323	24.0	0.83 (0.68-1.00)	2019			-			
Total events	533		350										
Total (95% CI)		960		802	100.0	0.74 (0.63-0.86)				•			
Heterogeneity: τ ² =0.02; χ ² =9.41, df=3 (p=0.02); I ² =68%								0.01	0.1	1	10	100	
Test for overall effect: Z=3.90 (p<0.0001)								Favours control Favours lymp			lymphader	nectomy	

Fig. 5. RR of adverse events. Mortality related to surgery (A) and blood transfusion (B). Cl, confidence interval; RR, risk ratio.

approach; however, whether it is necessary to remove grossly apparent metastatic lymph nodes has not been elucidated yet.

In early-stage EOC, lymphadenectomy is believed to be an important procedure to remove micrometastases which may contribute to improved survival and to find cases in which adjuvant chemotherapy can be omitted. In fact, a review of 14 retrospective studies of pT1 or pT2 EOC showed lymph node metastases were found in an average of 14.2% (range 6.1%–29.6%) of

cases, 2.9% in only a pelvic lymph node, 7.1% in only a para-aortic lymph node, and 4.3% in both pelvic and para-aortic lymph nodes [6]. One RCT of early-stage EOC, which did not exhibit any survival benefit to lymphadenectomy, has been criticized for its small number of cases and the allowance of lymph node biopsy in the control group [17]. In that study, 18% of the lymphadenectomy group and 4% of the control group with stage I disease at randomization had lymph node metastasis. Moreover, 31% of the lymphadenectomy group and 20% of the control group with stage II disease had lymph node metastasis. Although many more lymph nodes with metastasis had been removed in the lymphadenectomy group, lymphadenectomy did not exhibit a benefit in either OS or PFS [17]. A meta-analysis of RCTs and observational studies showed that lymphadenectomy improved OS but did not improve PFS in early-stage EOC (Fig. 4). The risk of bias of the RCT and observational studies of early-stage EOC ranged from unclear to high (**Fig. 2**). Thus, as suggested by the former meta-analysis [21], the efficacy of lymphadenectomy on survival is still unknown because of the lack of a well-designed RCT in early-stage ovarian cancer. Based on the LION study of advanced-stage EOC [8], the effects of occult lymph node metastasis can be reversed by adjuvant chemotherapy. Thus, it can be said that the main purpose of systematic lymphadenectomy in early-stage EOC is to identify the patients who can avoid adjuvant chemotherapy. Lymphadenectomy can be possibly omitted with improvements in diagnostic imaging or with sentinel lymph node biopsy.

Regarding the histologic subtypes, clear cell ovarian cancer is more chemoresistant than serous histologic-type cancer [22]. The study of Panici et al. [9] includes only 16 cases (3.7%), and the LION trial only includes 14 cases (2.2%) of clear cell histologic type. The SEER database study of early-stage EOC showed that an effective lymphadenectomy was associated with a survival benefit for serous, endometrioid, and clear cell but not for mucinous tumors [20]. In a retrospective cohort study of 240 patients with clear cell ovarian cancer, lymphadenectomy was a strong prognostic factor [23]. Therefore, it may be too early to conclude that lymphadenectomy has no impact on survival for clear cell ovarian cancer. A RCT of adequate clear cell EOC cases is necessary to provide evidence that lymphadenectomy improves the survival of clear cell ovarian cancer patients.

In conclusion, this systematic review and meta-analysis suggest that pelvic and para-aortic lymphadenectomy at PDS has no additional effect on survival and appears to increase the rate of AEs.

ACKNOWLEDGMENTS

This systematic review is conducted as a project of the "Ovarian Cancer Treatment Guideline 2020" edited by the Japan Society of Gynecologic Oncology. The authors thank Sho Sasaki and Toshio Morizane at Minds; Japan Council for Quality Health Care for guidance and assistance, and Shinichi Abe at Jikei University for the literature survey.

SUPPLEMENTARY MATERIALS

Supplementary Table 1

Search strategies for the PubMed, Ichushi, and Cochrane Library

Click here to view

Supplementary Table 2

Characteristics of excluded studies

Click here to view

Supplementary Fig. 1

The funnel plot for 10 cohorts (9 studies) of advanced-stage ovarian cancer (A) and 5 studies of early-stage ovarian cancer (B).

Click here to view

Supplementary Fig. 2

Methodological quality graph: review authors' judgements about each methodological quality item presented as percentages across all included RCTs (A) and observational studies (B).

Click here to view

REFERENCES

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.

PUBMED | CROSSREF

- 2. Gilks CB, Prat J. Ovarian carcinoma pathology and genetics: recent advances. Hum Pathol 2009;40:1213-23. PUBMED | CROSSREF
- Winter WE 3rd, Maxwell GL, Tian C, Sundborg MJ, Rose GS, Rose PG, et al. Tumor residual after surgical cytoreduction in prediction of clinical outcome in stage IV epithelial ovarian cancer: a Gynecologic Oncology Group Study. J Clin Oncol 2008;26:83-9.
 PUBMED | CROSSREF
- Chi DS, Eisenhauer EL, Lang J, Huh J, Haddad L, Abu-Rustum NR, et al. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol Oncol 2006;103:559-64.
 PUBMED | CROSSREF
- Eisenhauer EL, Abu-Rustum NR, Sonoda Y, Aghajanian C, Barakat RR, Chi DS. The effect of maximal surgical cytoreduction on sensitivity to platinum-taxane chemotherapy and subsequent survival in patients with advanced ovarian cancer. Gynecol Oncol 2008;108:276-81.
 PUBMED | CROSSREF
- Kleppe M, Wang T, Van Gorp T, Slangen BF, Kruse AJ, Kruitwagen RF. Lymph node metastasis in stages I and II ovarian cancer: a review. Gynecol Oncol 2011;123:610-4.
 PUBMED | CROSSREF
- Higgins JP, Green GS. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011] [Internet]. London: The Cochrane Collaboration; 2011 [cited 2019 May 11]. Available from: http://handbook.cochrane.org.
- Harter P, Schouli J, Lorusso D, Reuss A, Vergote I, Marth C, et al. A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N Engl J Med 2019;380:822-32.
 PUBMED | CROSSREF
- Panici PB, Maggioni A, Hacker N, Landoni F, Ackermann S, Campagnutta E, et al. Systematic aortic and pelvic lymphadenectomy versus resection of bulky nodes only in optimally debulked advanced ovarian cancer: a randomized clinical trial. J Natl Cancer Inst 2005;97:560-6.
 PUBMED I CROSSREF
- du Bois A, Reuss A, Harter P, Pujade-Lauraine E, Ray-Coquard I, Pfisterer J, et al. Potential role of lymphadenectomy in advanced ovarian cancer: a combined exploratory analysis of three prospectively randomized phase III multicenter trials. J Clin Oncol 2010;28:1733-9.
 PUBMED | CROSSREF

- Abe A, Furumoto H, Irahara M, Ino H, Kamada M, Naka O, et al. The impact of systematic para-aortic and pelvic lymphadenectomy on survival in patients with optimally debulked ovarian cancer. J Obstet Gynaecol Res 2010;36:1023-30.
 PUBMED | CROSSREF
- Chang SJ, Bristow RE, Ryu HS. Prognostic significance of systematic lymphadenectomy as part of primary debulking surgery in patients with advanced ovarian cancer. Gynecol Oncol 2012;126:381-6.
 PUBMED | CROSSREF
- Sakai K, Kajiyama H, Umezu T, Shibata K, Mizuno M, Suzuki S, et al. Is there any association between retroperitoneal lymphadenectomy and survival benefit in advanced stage epithelial ovarian carcinoma patients? J Obstet Gynaecol Res 2012;38:1018-23.
 PUBMED | CROSSREF
- Pereira A, Pérez-Medina T, Magrina JF, Magtibay PM, Millan I, Iglesias E. The role of lymphadenectomy in node-positive epithelial ovarian cancer. Int J Gynecol Cancer 2012;22:987-92.
 PUBMED | CROSSREF
- Paik ES, Shim M, Choi HJ, Lee YY, Kim TJ, Lee JW, et al. Impact of lymphadenectomy on survival after recurrence in patients with advanced ovarian cancer without suspected lymph node metastasis. Gynecol Oncol 2016;143:252-7.
 PUBMED | CROSSREF
- Zhou J, Zhang WW, Zhang QH, He ZY, Sun JY, Chen QH, et al. The effect of lymphadenectomy in advanced ovarian cancer according to residual tumor status: a population-based study. Int J Surg 2018;52:11-5.
 PUBMED | CROSSREF
- Maggioni A, Benedetti Panici P, Dell'Anna T, Landoni F, Lissoni A, Pellegrino A, et al. Randomised study of systematic lymphadenectomy in patients with epithelial ovarian cancer macroscopically confined to the pelvis. Br J Cancer 2006;95:699-704.
- Oshita T, Itamochi H, Nishimura R, Numa F, Takehara K, Hiura M, et al. Clinical impact of systematic pelvic and para-aortic lymphadenectomy for pT1 and pT2 ovarian cancer: a retrospective survey by the Sankai Gynecology Study Group. Int J Clin Oncol 2013;18:1107-13.
 PUBMED | CROSSREF
- Svolgaard O, Lidegaard O, Nielsen ML, Nedergaard L, Mosgaard BJ, Lidang M, et al. Lymphadenectomy in surgical stage I epithelial ovarian cancer. Acta Obstet Gynecol Scand 2014;93:256-60.
 PUBMED | CROSSREF
- Matsuo K, Machida H, Mariani A, Mandelbaum RS, Glaser GE, Gostout BS, et al. Adequate pelvic lymphadenectomy and survival of women with early-stage epithelial ovarian cancer. J Gynecol Oncol 2018;29:e69.
 PUBMED | CROSSREF
- Kim HS, Ju W, Jee BC, Kim YB, Park NH, Song YS, et al. Systematic lymphadenectomy for survival in epithelial ovarian cancer: a meta-analysis. Int J Gynecol Cancer 2010;20:520-8.
 PUBMED | CROSSREF
- 22. Sugiyama T, Kamura T, Kigawa J, Terakawa N, Kikuchi Y, Kita T, et al. Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer 2000;88:2584-9.
 PUBMED | CROSSREF
- Magazzino F, Katsaros D, Ottaiano A, Gadducci A, Pisano C, Sorio R, et al. Surgical and medical treatment of clear cell ovarian cancer: results from the multicenter Italian Trials in Ovarian Cancer (MITO) 9 retrospective study. Int J Gynecol Cancer 2011;21:1063-70.
 PUBMED | CROSSREF