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Abstract
Computer vision as a fast, low-cost, noncontact, and online monitoring technology has

been an important tool to inspect product quality, particularly on a large-scale assembly

production line. However, the current industrial vision system is far from satisfactory in the

intelligent perception of complex grain images, comprising a large number of local homoge-

neous fragmentations or patches without distinct foreground and background. We attempt

to solve this problem based on the statistical modeling of spatial structures of grain images.

We present a physical explanation in advance to indicate that the spatial structures of the

complex grain images are subject to a representative Weibull distribution according to the

theory of sequential fragmentation, which is well known in the continued comminution of ore

grinding. To delineate the spatial structure of the grain image, we present a method of multi-

scale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier

based on sparse multikernel–least squares support vector machine is proposed to solve the

low-confidence classification problem of imbalanced data distribution. The proposed

method is applied on the assembly line of a food-processing enterprise to classify (or iden-

tify) automatically the production quality of rice. The experiments on the real application

case, compared with the commonly used methods, illustrate the validity of our method.

Introduction
The modern industry gradually advances with worldwide competition and cooperation toward
complicated, high-speed, and large-scale development. Product quality [1] is the driving force
for every enterprise to stay competitive. In industrial production, product appearance, includ-
ing the attributes of color, size, surface coarseness, and various defects on the product surface,
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is an effective visual indicator of internal quality, e.g., ingredient and durability, to a certain
extent. Thus, the appearance of a product greatly influences consumer preferences and, conse-
quently, the market value of an enterprise.

In earlier years, product quality was inspected manually through experience and naked-eye
observation, which was a time-consuming and labor-intensive task. However, such an inspec-
tion method is out of date. An increasing number of manufacturers search for economical and
effective ways to monitor and supervise product quality [2]. Effective, low-cost, and on-line
inspection technologies on the assembly production line are urgently needed in mass produc-
tion processes.

In the past decade, considerable efforts have been devoted to online product quality moni-
toring based on computer-vision systems, given that most types of products can be character-
ized with corresponding surface visual attributes [3] such as color, object shape and dimension,
and surface defects. Thus far, computer-vision systems have been successfully applied in auto-
mobile[4], aerospace [5], food processing [6], medical treatment [7,8], textiles [9], electronics
[10], nonferrous metallurgy[11,12],and many other industries [13].

In consideration of their functions, the existing computer-vision inspection systems can be
generally categorized into two types: quantitative measurement of the physical properties of
products and intelligent inspection of product qualities (or working conditions).

In quantitative measurement [14], common image processing techniques, e.g., image
enhancement, segmentation, and morphological feature extraction, are usually applied in
delineating target objects to measure their physical properties such as size, shape, and color. In
these applications, the captured images generally contain clear foreground(target objects) and
background regions with distinct contrastive difference. The target objects to be measured in
the majority of real applications even have regular geometric shapes. Thus, the commonly used
image processing techniques usually exhibit good processing performance in inspecting these
target objects.

Conversely, in qualitative inspection or production condition perception, the obvious fore-
ground or background cannot be always clearly distinguished from the captured images, such
as machine vision-based grain-quality classification [2] and textile-quality inspection [15]. Fig
1 displays two kinds of visual images captured from the assembly lines of rice processing and
corn processing. Fig 1 shows that these images are composed of a large number of local homo-
geneous fragmentations (or particles) without distinct foreground and background. Thus, pro-
posing effective image segmentation methods to delineate and analyze a single target object in
images is slightly difficult. The essential information from these visual images for product qual-
ity inspection should not be simply obtained from certain local fragmentations or a few parti-
cles but should be synthesized from the overall visual appearance reflected by the spatial
distribution or the organization of the local fragmentations in the entire observation field. This
kind of visual feature for product quality perception, which is widely known as the image tex-
ture, is inevitably related to the probabilistic distribution of the image pixels in some special

Fig 1. Complex grain images. (a) Rice image, (b) Corn image.

doi:10.1371/journal.pone.0146484.g001

Image Statistical Modeling for Product Quality Monitoring

PLOS ONE | DOI:10.1371/journal.pone.0146484 March 17, 2016 2 / 25

Scientific Research Foundation of Educational
Commission of Hunan Province of China under Grant
Number 13B065.

Competing Interests: The authors have declared
that no competing interests exist.



regions [16,17]. Image texture provides significant information for product quality inspection
and intelligent perception of the operating conditions in processing monitoring. This impor-
tant feature exists in nearly all kinds of natural images. However, it cannot be effectively
described with a computer.

Researchers have presented various image-texture analysis methods, which can be mainly
divided into three categories: simple statistical, structural expression, and model-based meth-
ods [18].

Simple statistical methods do not attempt to understand the hierarchical structure of image
texture. The most extensive methods among these approaches include gray level co-occurrence
matrix (GLCM)[19], gray level run length matrix (GLRM), and local binary pattern(LBP) [20]
based texture feature extraction methods, as well as their varieties. These methods cannot
achieve a meaningful description of the visual images because these extracted statistics are not
related to the human vision system; thus, applying them successfully in product quality moni-
toring is difficult [21].

Structural expression methods [22] represent image texture through well-defined primi-
tives. Therefore, an image can be described with a hierarchy of spatial arrangements of those
predefined primitives. These methods are used primarily for artificial texture analysis, and the
complex spatial structures of natural texture images cannot be characterized easily.

Model-based methods attempt to interpret image texture with some special stochastic mod-
els, which suppose that image pixels in a local region are equivalent to random sampling points
with independent identical distribution. They attempt to describe the relationship between a
special image pixel and its adjacent pixels through a certain probability model, such as hidden
Markov random field model [23]. Although model-based methods provide a promising idea
for the effective description of image texture, current model-based methods conduct limited
theoretical analyses of the latent spatial distribution characteristics of these complex grain
images. They also do not consider the characteristics of human visual perception adequately.
Thus, the visual appearance with respect to the microheterogeneity, spatial stochastic distribu-
tion, complexity, and uncertainty exhibited in natural images leads to a great challenge in
understanding visual information in a computer-vision inspection system [11].

The human vision system possesses a remarkably intelligent perceptual ability. Shape, size,
distance, color, surface roughness, and object motion can be effectively perceived with this
intelligent perceptual ability and semantic concepts can be quickly formed for a comprehensive
understanding of the observed objects with their environment. Intelligent decision and process
automation can be achieved if the visual inspection system can take advantage of the human
visual perception characteristics. Although the majority of the mechanisms and functions of
the biological vision system are not yet fully understood, many studies have proved that not all
of the information of the observed objects can be processed and retained in the biological visual
perception process, that is, only a small amount of information is essential to the biological
vision system. Studies have shown that the most important information for visual perception
in the biological vision system is mainly the information regarding the shapes of objects (or
local homogeneous patches or particles) with their spatial layouts, namely, the spatial structure
of the objects randomly piled in the vision field.

The statistical modeling of the spatial structure information (texture) plays a key role in the
biological vision perception [24]. With respect to visual images, the spatial structures or organi-
zations of local fragmentations are randomly distributed in the microcosmic perspective. How-
ever, they exhibit special structural characteristics in a macroscopic perspective, which can be
described with some special statistics. The corresponding statistical models[25,26] can also be
used as a priori model for image processing. Thus, intensive research on the statistical model-
ing of the visual image based on human visual perceptual characteristics should be conducted
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to deduce the corresponding high-level abstract information from a large number of redundant
image data for process monitoring.

This study analyzed intensively the statistical distribution characteristics of the spatial struc-
tures of complicated grain images with a large number of local homogeneous fragments and
particles to extend the perceptive ability of the industrial vision system. These statistical distri-
bution characteristics cannot be described with the traditional image-texture analysis method
effectively. The Weibull distribution(WD) process for the spatial organization and distribution
of the complex grain images was discussed and proved theoretically in advance based on the
theory of sequential fragmentation, which is well known in the processes of continued commi-
nution. A novel image filter based on multiscale and omnidirectional Gaussian derivative was
presented to characterize the omnidirectional spatial structure appearance under various
observation scales. The essential spatial structural appearance of the complex grain images was
characterized with the WDmodel. A kind of product quality classifier based on sparse multi-
kernel–least squares support vector machine (SMK–LSSVM) was established to solve the inac-
curate classification and recognition problem of imbalanced data distribution. The proposed
method was applied to a food-processing factory for automatic classification and recognition
of the rice quality on an assembly line. Extensive comparative experiments were conducted to
validate the effectiveness of the proposed method.

Statistical Modeling of Image Spatial Structures

WDProcess of Grain Image
Given the statistical organization of the texture elements, the essential visual appearance of an
image is determined with the spatial distribution of the microscopic structures. For example,
an object in the viewing field inevitably fragments the scene into two regions, e.g., an internal
region and an external region. The visual scene remains stable until sufficient objects randomly
distribute and fragment the scene into a great number of fragmentations or local homogeneous
particles [27].

The collected visual images contain abundant local fragmentations or particles if the resolu-
tion power of the visual sensors is sufficiently high. Each tiny local fragmentation or particle
has a consistent spatial tone. The decrease of the power resolution results in the integration of
adjacent local fragment structures; thus, coarse fragmentations or particles are generated in the
images. On the contrary, the increase of the power resolution leads to the fragmentations of
coarse particles to multiple fine particles. Therefore, given the local fragmentation organization
of the images, the distribution of the local fragment particles in the visual image is equivalent
to a continued fragmentation process of continued comminution in the ore grinding process.
According to the theory of sequential fragmentation, the probability distribution of the illumi-
nation intensity for a local patch (fragmentation) in an image shows a power-law distribution,
which can be described by the following formula[28,29]:

f ðx0 ! xÞ ¼ x
b

� �l�1

ð1Þ

where x0!x represents the process of decomposing a coarse fragment structure x0 into a fine
fragment structure x; β is the average mass (or volume) of the particles in the mill of the ore
grinding processes, which can be represented in this study by the average illuminant contrast
of the local fragment structures (particles) in the image; and λ is a free parameter, which satis-
fies λ�0. The visual image is composed of multiple local fragments; thus, the pixel contrast sta-
tistical distribution of the fragment structures (particles) is the result of an integral over various
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power-law distributed patches caused by each particle [27].

nðxÞ ¼ c
Z 1

x

nðx0Þf ðx0 ! xÞdx0 ð2Þ

where n(x) represents the histogram distribution of the pixels whose illuminant intensity is
between x and x+dx. Thus, n(x) applies the statistics of all the particles with the contrast of

x0>x. Formula (1) is substituted into Formula (2), and let c = 1/β. Then, n(x) can be attained
by solving the following equation:

nðxÞ ¼ x
b

� �l�1 Z 1

x

nðx0Þd x0

b

� �
ð3Þ

By solving Eq 3, the integration over a sufficient number of power laws yields a typical WD
[27,29].

nðxÞ ¼ NT

x
b

� �l�1

� e�1
l

x
bð Þl ð4Þ

where NT ¼ R1
0
nðmÞdm is a normalized parameter.

The resolution power of the visual sensor in the real application cannot be infinite. Thus,
the fragmentation process of the local particles in the grain image inevitably ceases, and the
particle details always tend to be stable. The statistical distribution of the spatial structure of
the grain images merely corresponds to the debris particles with a local contrast larger than x.
Therefore, the statistical distribution of the spatial structure of the grain image can be described
with the WDmodel of integral form. It is given by

Nð> xÞ ¼
Z 1

x

nðx0Þdx0 ¼ Ce
�1
l

x
bj jl ð5Þ

where C ¼ 1=
R þ1
�1 e

�1
l

x
bj jldx ¼ l

2l
1
lbG 1

lð Þ
is a normalized constant, which is only related to the

model parameters λ and β. Γ(x) is a gamma function and GðxÞ ¼ R1
0

tx�1e�tdt.

Parameter Estimation
The probability density function of the WDmodel of the integral form is as follows:

pðxjl; bÞ ¼ l

2l
1
lbG 1

l

� � e�1
l

x
bj jl ð6Þ

The most important information regarding this model is the model parameters λ and β, which
can be estimated with the maximum likelihood estimation (MLE) method.

Given that X = {x1,x2,� � �,xn} is the sampling data, which obeys the integral-formWD
model, the corresponding log-likelihood function ln L(X|λ, β) indicates how well the model
describes the sampling data, which is shown as follows:

ln Lðl; bjXÞ ¼ ln
Yn
i¼1

l

2l
1
lbG 1

l

� �e�1
l

xi
lj jl ð7Þ

The model parameters can be estimated by setting the partial derivative of ln L(X|λ, β) over
λ and β to be equal to zero, as shown in Eqs 8 and 9, respectively:
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@
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þ 1
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¼ 0 ð8Þ
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@

@l
lnLðXjl; bÞ ¼ 1

l2
lnþ n ln l� nþ nF
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þ
Xn
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b
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" #
� 1

l

Xn
i¼1
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b
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����
l

ln
xi
b

����
����

" #
¼ 0 ð9Þ

where FðxÞ ¼ d
dx
ln GðxÞ ¼ d

dxGðxÞ
GðxÞ is the digamma function.

The parameter λ can be calculated by eliminating β in Eq 9. Then, the following is obtained:

zðljXÞ ¼ 1þ ln l
l

þ 1

l
F

1

l

� �
�
Xn
i¼1

xij jl ln xij j �
ln

Xn
i¼1

xij jl � lnn

l

0
BBB@

1
CCCA

Xn
i¼1

xij jl
¼ 0 ð10Þ

Eq 10 does not have a close-form solution. Thus, we can solve it by employing Newton–
Raphson method, a gradient-based root-finding method. The main steps are as follows:

Given an initial λ0, the iterative procedure is repeated as

lkþ1 ¼ lk �
zðlkjXÞ
@
@lk

zðlkjXÞ
ð11Þ

where

@

@l
zðljXÞ ¼ 1

l2 �
lnl
l2 � φ 1

l

� �
l3 � F 1

l

� �
l2 �

Xn
i¼1

xij jlln xij jcðX; lÞ
� �Xn

i¼1

xij jl �
Xn
i¼1

xij jlln xij j xij jlcðX; lÞ
h i

Xn
i¼1

xij jl
 !2 ð12Þ

In Eq 12, cðX; lÞ ¼ ln xij j �
ln

Xn
i¼1

xij jl � lnn

l and φðxÞ ¼ d
dx
FðxÞ is the trigamma function.

The iterative procedure is repeated until the estimation λn converges, namely, a sufficiently
accurate value is reached. After achieving λ, β can be calculated from Eq 8.

Perceptual Meaning of WDModel
According to the theory of sequential fragmentation [29], the spatial structure of the grain
image is generally confined to be subjected to the WDmodel of the integral form. The integral
WDmodel is an effective physical description for the widely used empirical model, namely,
generalized Laplacian or generalized Gaussian model [30]. It is also well applied in image
denoising, coding, and image retrieval [24]. The WDmodel can represent a series of classical
statistical distribution shapes by changing the model parameters. For example, when λ = 1,
WD becomes the exponential distribution with a mean value of β. When λ = 2, WD becomes
Gaussian distribution (GD). For a small value of λ, WD is basically close to the symmetric
power-law distribution. Some studies have also shown that the shape parameter is directly
related to image fractal dimension [29]. The fractal dimension of an image is Df = −3λ.
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Studies have shown that the parameters of the WDmodel can completely characterize the
spatial structures (spatial layout or organization of local patches or particles) of a grain image
comprised of a great number of local fragmentations. Researchers have determined that the
distribution model parameters are directly related to the visual perception characteristic of bio-
logical vision systems [27]. With respect to the WDmodel denoted in Eq 6, λ is the shape
parameter that reflects the particle size of the visual image texture, and β is the scale parameter
directly related to the illuminant contrast of the image. The WDmodel has a direct connection
with the human visual perception. We can conduct a correlation analysis of the WDmodel
with the commonly used human perception properties.

The salient perception properties of a texture image, which include coarseness or fineness, reg-
ularity, roughness, and directionality, are some of the visual characteristics mentioned in previ-
ous studies [31,32].TheWDmodel can effectively explain these human perception properties.

(1) Coarseness or fineness is a fundamental perception attribute when human beings
observe and cognize the world (or the projection of the world, e.g., texture images) [31]. In gen-
eral, the larger the element size is in the grain image, the coarser it is felt for human visual per-
ception, which is innately related to the scale of observation. The perceptual property of
“coarseness” can be captured effectively with WDmodel parameter(WDMP)λ. For example, if
we zoom in on a grain image, a coarse image appears. The coarseness can be reflected with the
shape parameter λ of the WDmodel because the shape parameter λ is apparently the reflection
of the particle size according to the theory of sequential fragmentation. In general, image mag-
nification is accompanied by an increase in resolution power. Then, other details are captured
in the field of vision. The details consequently fragment the coarse patches to fine particles or
homogeneous regions. According to the theory of sequential fragmentation, this process does
not affect the distribution shape of the spatial structure, that is, the statistical distribution of the
local particles still obeys the WDmodel. In the extreme case, few particles or even only one
particle exists in the field of vision because of the increasing resolution power of the visual sen-
sor together with magnification caused by the decrease of the distance between the lens and the
observation field. Then, the WDmodel slowly converges to a power-law distribution in accor-
dance with Eqs 1, 4 and 5, namely, it effectuates the small value of the shape parameter λ of the
WDmodel [27].

(2) Regularity is a perceptual property of the placement rule variations of the texture ele-
ment (local particles). In general, a fine texture image tends to be perceived as regular. The
coarseness or fineness of an image can be indicated by the shape parameter λ of the WD
model. However, in the extreme case, several particles or even just one particle exists in the
receptive field, namely, the image can be distinguished by obvious foreground objects and
background regions. Then, the WD model is rejected, and the spatial distribution of the
captured scene can be depicted either by power-law distribution or as regular texture.
Alternatively, the exhibited statistical distribution shape is often multimodal when the
grain image includes numerous fine particles fully filled in the entire receptive field [27].
This phenomenon can be reflected with the estimated shape parameter λ of the WD
model. The resultant is usually λ� 2, which is the overfitting result of the heavy tails of
WD distribution. In this case, the spatial distribution of the grain image is perceived to be
regular.

(3)Roughness is originally a tactile property of a surface. Humans can perceive it from
the visual characteristics of the grain images. In the assessment of the attribute of “rough-
ness,” we initially correct the illumination differences to eliminate the influence of different
light conditions. As addressed by Geusebroek [27], the scale parameter β is an indicator of
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the height variations of the texture, and the shape parameter λ is the indicator of the granu-
larity of the particles in the grain image. Thus, the perception property “roughness” is
reflected by granularity or coarseness, which is measured by the shape parameter λ. It is also
reflected by the height variation of the texture, which is attained from the scale parameter β.
Thus, the combination of these two parameters can effectively indicate the roughness of the
grain image.

(4)Directionality is a global sense over the entire given region. It indicates the dominant
orientation of the texture, which is caused by the shapes of the texture elements as well as
their placement rules. The parameters of the WD model do not include the direct shape
information of textons (particles). However, the placement of textons (particles) can be
implicitly characterized with WDMPs. Studies[27] have demonstrated that the anisotropy
of grain size can be described with the dominant direction of the shape parameter λ. Anisot-
ropy in texture shadows (or contrast) can be reflected in the dominant orientation on the
scale parameter β of the WD model. In other words, grain image may exhibit two types of
anisotropy. The first type is caused by the particle size, whereas the second type is caused by
the contrast variations of particles. Thus, if we fully consider the overall structure informa-
tion of the grain image, WDMPs can effectively describe the human perception-related
“directionality” with the corresponding dominant orientation information. Fig 2 demon-
strates the relationship of the perception “directionality” of a grainy image with the
WDMPs. Fig 2(A) displays a typical grain image (rice image), whose statistical modeling
results obtained with the WD model are plotted in the polar coordinate form, as shown in
Fig 2(B). Before statistical modeling, the grain image is filtered with180 directional filters in
[0–2π]. Fig 2(B) illustrates that the dominant direction of WDMPs λ and β conforms to the
perception “directionality” of the grain image.

Image Spatial Layout Characterization

Gaussian Derivative Filtering (GDF)
The local spatial layout of an image can be completely determined with Taylor expansion of
the image at a given point because the image function is the discretization form of a continuous
2D function. A local observing pixel in an image is set as the original observation point labeled
as I(0, 0).Then, any other pixel (x, y) in the local spatial structure around the original visual
observation point can be determined with Taylor expansion. The approximate expression of
the Taylor formula for I(x,y) is

Fig 2. Perception “directionality” of grain image via WDMPs. (a) Original grain image.(b) The polar plot of
WDMPs λ and β of the directional filtering responses of the grain image displayed in (a). The perception
“directionality” is reflected by the dominant direction information of parameters λ and β.

doi:10.1371/journal.pone.0146484.g002
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Îðx; yÞ ¼ Ið0; 0Þ

1þ xIx1y0 þ yIx0y1
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x2Ix2y0 þ 2xyIx1y1 þ y2Ix0y2
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þ
1
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h i
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1
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Xn
i¼0
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iyn�iIxiyn�i

" #
þ � � �

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð13Þ

The preceding equation indicates that the observed value of a visual pattern in an image is
determined with the weighted accumulative addition of the image spatial structures over suffi-
cient spatial observation scales. Differential item Ixiyn�i in Eq 13 directly relates to the spatial

layout of the image I, representing its most important spatial structure information. Ixiyn�ican

be generated with GDF.

Ixiyn�iðx; yÞ ¼ Iðx; yÞ � Gxiyn�iðx; y; sÞ ð14Þ

where Gxiyn�iðx; y; sÞ represents Gaussian derivative filter, whose derivative orders are i and n-i

in x and y direction respectively; and i�0; n-i�0. σ is the scale parameter of the Gaussian
function.

We denote Gκ,σ as a k-order Gaussian derivative filter, where k = i+(n-i), to simplify the
description. Fig 3A and 3B show the original rice image and its corresponding spatial structure,
respectively, computed with I�G1;sðIx1y0Þ. Fig 3C displays the statistical modeling results of the

filtering image resulting from the WD and Gaussian distribution (GD) models, whose vertical
coordinates recording the probability density are the natural logarithm results. The statistical
modeling results in Fig 3C explicitly reveal that the WDmodel is an effective tool to model the
distribution shape of the image spatial structure, whose distribution fitting performance is con-
siderably better than that of the GD model.

Omnidirectional GDF
The use of Gk inimage filtering can reflect the spatial structure information of an original
image in x and y directions, namely, the filtering results only reflect the spatial organization of
the local homogeneous patches in the corresponding directions in accordance with Gk. How-
ever, some spatial structures (e.g., the rice image in Fig 2A) in the visual image have strong
directionality. The size and shape of rice differ with rice varieties and rice quality. Thus, the
grain structure of the rice image in the assembly line exhibits obvious directional features. A
multidirectional filter for omnidirectional feature extraction must be constructed to consider

Fig 3. Statistical modeling of image spatial structure. (a) Original rice image I.(b) GDF result (I *G1,σ) of
rice image in (a). (c) Statistical modeling of filtering image with WD and GDmodels.

doi:10.1371/journal.pone.0146484.g003
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fully the multidirectional spatial structural details of the visual information. Thus, directional
filtering information should be introduced into the construction of the traditional Gaussian
derivative filter.

If fθ represents the directional operation of a function f, then Gθ
κ,σ represents the result of

Gκ,σ after rotating at an angle of θ. According to the research findings of Freeman [33], the
image filtering results Gθ

κ,σ over any angle θ can be computed with the following formula:

Gy
k;sðx; yÞ ¼

XM
i¼1

kiðyÞGyi
k;sðx; yÞ ð15Þ

Gaussian derivative filter with any rotational angle can be constructed through the accumu-
lative weighted addition of some special directional Gaussian derivative filters in several limited
directions to obtain the spatial structural details of a visual image in any direction. The best
way to achieve the optimal expression of Gθ

κ,σ is to obtain the minimum number of GDF
bases. If the minimum number of GDF bases isM, we transform Gκ,σ into Gκ,σ(r, ϕ) under the

polar coordinates, where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, ϕ = angle(x, y). Then, we can obtain the following

result through Fourier series decomposition:

FourierðGk;sðr; �ÞÞ ¼
XN
n¼0

anðrÞein� ð16Þ

Eqs 15 and 16 reveal that the optimal numberM is equivalent to the number of nonzero
harmonic components in the Fourier series of Gκ,σ(r, ϕ). In other words,Mis equal to the sum
of nonzero number in an(r). Therefore, ki(θ) is the solution to the following equation by solving
the Fourier transformation under the polar coordinates:

1

eiy

� � �
eiNy

0
BBBBB@

1
CCCCCA ¼

1 1 � � � 1

eiy1 eiy2 � � � eiyM

..

. ..
. . .

. ..
.

eiNy1 eiNy2 � � � eiNyM

0
BBBBBB@

1
CCCCCCA

k1ðyÞ
k2ðyÞ
..
.

kjðyÞ

0
BBBBBB@

1
CCCCCCA

ð17Þ

ki(θ) can be obtained with Eq 17 by selecting some specific GDF bases. For example, the follow-
ing results can be obtained:

Gy
1;sðx; yÞ ¼ cosðyÞGx1y0ðx; yÞ þ sinðyÞGx0y1ðx; yÞ ð18Þ

Gy
2;s ¼ cos2ðyÞGx2y0ðx; yÞ þ 2 sinðyÞcosðyÞGx1y1ðx; yÞ þ sin2ðyÞGx0y2ðx; yÞ ð19Þ

Fig 4A and 4B show the directional Gaussian derivative filters of Gθ
1,σ and G

θ
2,σ, respectively,

in [0*180°]. The image spatial structure characteristics under any direction can be obtained
by constructing the omnidirectional Gaussian derivative filters (ODGDFs)through the statisti-
cal modeling of the filter responses with the WDmodel.

Comparison with Gabor filters
The proposed ODGDFs are slightly similar to the commonly used Gabor wavelets(GWs). Both
GWs and the proposed ODGDFs act in the same way as band pass filters. However, essential
differences exist in the choice of the frequency domain.

Gabor transform is a special case of short-time Fourier transform. Images can be decom-
posed intoM channels of different orientations and scales through Gabor wavelet transform.
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The Fourier transform of a Gabor filter is the convolution of the Fourier transform of the har-
monic function and the Fourier transform of the Gaussian function. Fig 5 plots the half-value
of the Gabor filters in the frequency plane tuned to different frequencies and orientations.

The proposed ODGDFs are based on the property of the Taylor expansion of the 2D func-
tion. As stated earlier in this paper, if we set a local observing pixel in an image as the original
observation point labeled as I(0, 0), then any other pixel (x, y) in the local spatial structure
around the original visual observation point can be determined with Taylor expansion.

Îðx; yÞ ¼ Ið0; 0Þ
X1
k¼0

1

k!

Xk

i¼0

Ci
kx

iyk�iIxiyk�i ð20Þ

Eq 20 indicates that the observed value of a visual pattern is gained by integrating the image
spatial structures over sufficient spatial observation scales. The differential item Ixiyn�i in Eq 20

directly relates to the spatial structure of image I, representing the most important spatial orga-
nization information of the local homogeneous particles or patches in the grain images. Ixiyn�i

can be generated through GDF. Multiscale and multidirectional Gaussian derivative filters are
introduced in this study to obtain the image spatial structure features of diverse scales and ori-
entations. The difference of Gabor filters with the proposed Gaussian derivative filters can be
observed from the frequency responses. Fig 6 displays the frequency responses of Gκ under dif-
ferent orders of κ, where σ = 1 and the direction is θ = 0°. In contrast to the plot in Fig 5, the
proposed ODGDFs evidently capture the different information of the processed image in the
frequency domain against the commonly used GWs.

Fig 4. Gaussian derivative filters with specific directions. (a)Gθ
1,σ.(b)G

θ
2,σ.

doi:10.1371/journal.pone.0146484.g004

Fig 5. Plot of frequency responses of Gabor filters under different scales and different orientations.

doi:10.1371/journal.pone.0146484.g005
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Application Case

Overview of Machine Vision-based Rice Quality Inspection System
Today, people pay close attention to the quality of their food. Different consumer groups have
different concerns about food quality. For example, some people attach considerable impor-
tance to the color and luster of food, whereas others pay significant attention to the shape or
ingredients. For a food-processing enterprise, automatic classification and recognition of the
product quality play a key role in the food production process.

Rice is a major source of dietary energy and protein with regard to human nutrition and
caloric intake. It is the most widely consumed staple food in many countries, particularly
China, which has the largest population in the world. Thus, intelligent and automatic rice pro-
cessing quality grading or classification, as well as packaging, have represented the core com-
petitiveness of each rice processing company. The majority of rice processing enterprises have
employed automatic classification technology instead of inefficient and subjective manual
inspection of rice processing quality to provide high-quality products (e.g., rice) and to reduce
processing cost. In recent years, automatic monitoring of rice quality based on machine vision
has drawn extensive attention locally and internationally.

Brosnan [2,6] reviewed the developments of machine vision-based quality inspection tech-
nology of food products in various applications in the food industry in the early years. A
detailed summary of the existing computer vision-related external quality inspection of fruits
and vegetables can be found in the literature [34],which presents the principles, developments,
and applications of these systems. This study also determined that a machine vision-based
external quality inspection and grading system is important and necessary in the postharvest
preprocessing stage and that it has become a common and scientific tool in industrial and agri-
cultural manufacturing automation.

The existing literature indicates that people tend to be concerned about the physical proper-
ties of each individual rice grain in earlier years, such as surface gloss, physical shape, size, and
other characteristics of each rice grain[35]. As addressed in the surveys[2,36], the first step of
these methods is rice image segmentation, which is the foundation of gaining proper descrip-
tions of surface color, shape, and size of each individual rice grain. After image feature extrac-
tion, a kind of classifier, such as neural network(NN), support vector machines(SVM) or other
supervised pattern recognition methods, is established to achieve the automatic grading or clas-
sification of rice processing quality[37].

Many experiments verified in earlier years the effectiveness of the aforementioned methods,
which can achieve a high grading accuracy (higher than 90% recognition); however, in the
practical application, many problems remain, such as particle image segmentation accuracy
and image processing efficiency (the highest record is only 1,200particles per minute[36]).

In recent years, researchers have been expected to bypass the time-consuming and unsatis-
factory image segmentation process in rice image processing. Therefore, researchers tend to

Fig 6. Frequency responses ofGκ.

doi:10.1371/journal.pone.0146484.g006
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focus on the spatial variations (structural distribution) in the intensity or color space of the rice
images. In particular, they paid significant attention to the spatial structure features of rice
image, usually called image texture[38].

Jackman[39] determined that further analysis with image texture in addition to the tradi-
tional image features of the rice image is expected to achieve a sophisticated description to
obtain high classification accuracies. Researchers previously focused on the texture feature of a
rice image for rice processing quality inspection. The commonly used texture description
methods are some simple second statistics based on GLCM,GLRM, and the histogram descrip-
tion of the pixel difference, as well as other mathematical description methods[39].

The proposed method is applied to a food-processing enterprise in South China to verify
the effectiveness of this method by identifying the grain quality automatically. Fig 7 displays
the schematic of the visual monitoring system. In the assembly line, several conveyors are
equipped to parallel process the rice, among which each the conveyor belt is approximately
95mm wide. The rice is evenly distributed on the conveyor belt for automatic classification and
reprocessing. The capacity of each conveyor belt reaches 45 kg/h. The visual sensors are
equipped above the conveyor belt perpendicular to the belt surface for rice quality monitoring.
In the experiments, an IL-P3-2048 Linear CCD is mounted, whose pixel dimensions are14
μm × 14 μm, and the active pixel per line is 2,048 with 20MHz data rate per tap. The F24mm/
2.8 fixed-focus lens is used, and the pixel resolution of each frame of rice image for quality
inspection is 2048 × 128. The aforementioned WD process of the image spatial structure indi-
cates that the WDmodel is the innate distribution of the image statistics with a large number
of local fragmentations, which do not vary with the resolution power of the visual sensor or the
size of the images. Other resolutions of the rice images achieve the analogous classification
performance.

The rice image is processed and analyzed through the method described in the second sec-
tion to realize the online identification of rice quality on the assembly line. When the rice qual-
ity is inferior, the actuator (a blast nozzle) is automatically controlled to blast air. Then, the
low-quality rice is blown away from the conveyor belt for rice reprocessing to classify the rice
of different quality and to yield high-quality rice for consumers.

Extraction of Spatial Structure Features of Rice Images
N-direction ODGDFs are used for image spatial organization characterization to consider fully
the multidirectional structural feature. Every disparity between the two adjacent directions is

Fig 7. Machine vision-based rice quality monitoring system.

doi:10.1371/journal.pone.0146484.g007
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360°/N. In terms of each filtering response by ODGDF, the WDMPs of the rice image under a
special observation scale are obtained. Several scales σ are used in this study to obtain multi-
scale image spatial structure details. Fig 8 shows the polar diagram of the WDMPs of the omni-
directional spatial structure of a rice image in Fig 3A under different observation scales.

If the spatial observation scale for image spatial structure analysis is σ, then, for any image,
the statistical distribution feature fimg,σ of the omnidirectional spatial organization under obser-
vation scale σ can be expressed as

fimg;s ¼ by1 ;s
by2 ;s

; � � � ; byN ;s
; ly1 ;s; ly2 ;s

; � � � ; lyN ;s
� � ð21Þ

where byi ;s
and lyi ;s represent the WDMPsβ and λ, respectively, under the scale σ in the direc-

tion of θi. If T dimensions of Gaussian observation scales [σ1,σ2,� � �,σT] exist, then the statistical
distribution features of the multiscale omnidirectional image spatial structure can be character-
ized as follows:

fimg ¼ fimg;s1
; fimg;s2

; � � � ; fimg;sT

� � ð22Þ

Construction of Rice Processing Quality Classifier
Intelligent product quality inspection is a pattern classification or recognition problem. In the
statistical learning and classification methods, support vector machine(SVM)based on the
structural risk minimization principle is the most recent nonlinear classifier, which is a promis-
ing tool to successfully resolve the small size issues in pattern recognition [40]. The major
drawback of the primal SVM in classification is the high computational burden for the con-
strained optimization programming. LSSVM is proposed to solve the computational problem
by solving linear equations instead of a quadratic programming problem [41]. However, the
sparseness property of SVM disappears because of the choice of the L2-norm in the LS–SVM
case. In reality, the sparseness property of a classifier is most important because it allows for
fast and accurate evaluation of new data points [42].

Fig 8. Polar diagrams of WDMPs of omnidirectional spatial structures.

doi:10.1371/journal.pone.0146484.g008
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A method of sequential minimal optimization was introduced into the pruning process for
sparse LSSVM to impose sparseness in LSSVM solutions [43]. However, the pruning method is
a time-consuming process because of the iterative computing steps for the removal of samples,
which do not directly affect the support values of other samples. Thus, a method of achieving
the sparse solution of the LSSVM classifier, namely, SMK–LSSVM classifier, is adopted in the
present study. In this method, the kernel matrices are reduced with Schmidt orthogonalization
theory to reduce computational complexity.

Least Squares Support Vector Machine (LSSVM) Classifier
With respect to the classifier, the spatial structural feature xt of any rice image t is used as the
input vector of the LSSVM classification model, the output yt represents the corresponding rice
quality labeled based on manual assay and naked-eye observation results. For practical applica-
tion, this study only considers two types of rice quality, which are defined as

yt ¼
�1 }high quality} rice

þ1 other quality rice
ð23Þ

(

Given a number of N training samples fxt; ytgNt¼1, the LSSVM classification model function f
(xt ! yt) can be defined as follows:

yt½wTFðxtÞ þ b� ¼ 1� xt ð24Þ

where w is the weighting vector, bis the deviation vector, ξt is the potential classification error,
and F(x) is a nonlinear mapping function through which the input data are mapped to the
high-dimensional data space. The corresponding optimization function can be constructed as
follows:

min Jðw; b; xÞ ¼ 1

2
wTwþ r

2

XN
t¼1

x 2

t

s:t:

(
yt½wTFðxtÞ þ b� ¼ 1� xt

xt � 0

ð25Þ

The rice quality classification is a two-category classification problem, yt
2 = (±1)2 = 1. Thus,XN

t¼1

x 2

t ¼
XN
t¼1

ðytxtÞ2 ¼
XN
t¼1

fyi � ½wTFðxtÞ þ b�g2 ¼
XN
t¼1

e 2
t , where et = yt − (wTF(xt) + b).

The corresponding Lagrange function can be constructed as follows to solve the aforemen-
tioned optimization problem:

Lðw; b; e; aÞ ¼ Jðw; b; xÞ �
XN
t¼1

atf½wTFðxtÞ þ b� þ et � ytg

¼ 1

2
wtwþ r

2

XN
t¼1

et
2�
XN
t¼1

at
2f½wTFðxtÞ þ b� þ et � ytg ð26Þ

where at is the Lagrange multiplier. The partial differential equations of variables under
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Karush–Kuhn–Tucker optimality condition can be obtained as follows:

@L
@w

¼ 0 ) w ¼
XN
t¼1

atFðxtÞ

@L
@b

¼ 0 )
XN
t¼1

at ¼ 0

@L
@et

¼ 0 ) at ¼ ret

@L
@at

¼ 0 ) yt ¼ wTFðxtÞ þ bþ et

ð27Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

w and e are eliminated, and the solution of the optimization problem in Eq 25 can be trans-
formed to the following linear equations:

0 1 � � � 1

1 Kðx1; x1Þ þ r�1 � � � Kðx1; x1Þ
..
. ..

. . .
. ..

.

1 Kðxn; x1Þ � � � Kðxn; xnÞ þ r�1

2
6666664

3
7777775

b

a1

..

.

an

2
6666664

3
7777775
¼

0

y1

..

.

yn

2
6666664

3
7777775

ð28Þ

where K(xi, xj) = F(xi)F(xj) is the kernel function, which satisfies Mercer’s condition. After
computing a and b with Eq 28, the classifier parameter wcan be achieved through further calcu-
lation by substituting a and b into Eq 27. Consequently, the LSSVM-based automatic rice qual-
ity classifier can be obtained as follows:

f ðxÞ ¼ sgn
XN
t¼1

atKðx; xtÞ þ b

 !
ð29Þ

SMK–LSSVM Classifier
In the real application, the data distribution is frequently imbalanced, for example, the number
of samples regarding “high quality” is larger than the number of samples about “other quality”
rice. In the generalized LSSVM classification model described in Eq 25, each sample is set at a
constant penalty parameter r, which is not a highly effective solution for the classification of
the imbalanced distribution data. Thus, different penalty factors are provided for each sample
to treat the samples differently in accordance with their importance. Thus, the optimization
problem in Eq 25 is slightly modified as follows:

min Jðw; b; xÞ ¼ 1

2
wTwþ r

2

XN
t¼1

ctx
2

t ð30Þ

where rct is the penalty factor that corresponds to the training sample t. For the computing per-
formance, the samples of the same types are set to the same values as follows:

ct ¼
sþ yt 2 þ1

s� yt 2 �1
ð31Þ

(

Eq 29 shows that the choice of the different kernel function K(•,•) greatly affects the classi-
fier performance. Given that the kernel function is the central role of the classifier, a good
choice of the kernel is imperative to the success of the kernel-based recognition methods. The
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radial basis function (RBF) kernel has good local learning ability, whereas the polynomial ker-
nel has excellent global generalization ability [42]. A multikernel-based LSSVM classifier is
introduced in this study to achieve a good classification performance by taking advantage of
the merits of the RBF and polynomial kernels. Thus, in Eqs 28 and 29, the kernel function
K(•,•) is constructed as follows:

Kðx; xiÞ ¼ ZK1ðx; xiÞ þ ð1� ZÞK2ðx; xiÞ ð32Þ

where K1(x, xi) = (1+xi
Tx/c)d and K2(x, xi) = exp(−kx − xik2 / 2σ2) represent the polynomial

kernel and RBF kernel function, respectively. Schmidt orthogonalization method can be used
to build a sparse multikernel LSSVM by reducing the computation.

If a vector [F(x1),� � �,F(xn)]T represents the mapping expressions of the training samples in
the high-dimensional space, each F(xi) can be formulated with the combination of column
vectors of a transformational matrix [42].

Fðx1Þ
..
.

FðxnÞ

2
6664

3
7775 ¼

a11 � � � a1n

..

. . .
. ..

.

an1 � � � an1

2
6664

3
7775

~Fðx1Þ
..
.

~FðxnÞ

2
6664

3
7775 ð33Þ

where ½~Fðx1Þ; � � � ; ~FðxnÞ�T is a basis vector of the mapped expression, which can realize the
sparseness of the multikernel LS–SVM through orthogonalization processing.

According to the Schmidt orthogonalization method, the orthogonalized F(xi) can be com-
puted as follows:

Ftþ1ðxiÞ ¼ FtðxiÞ � ðFt
TðxiÞvtÞvt ð34Þ

where vt ¼ Ft ðxiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ft

T ðxiÞFt ðxiÞ
p and F(xi)(i 2 [1,� � �,n]) are the selected vectors.

Gram’s form of the kernel matrix can be expressed as follows:

Gða; bÞ ¼ FðxaÞTFðxbÞ ¼ Kðxa; xbÞ ð35Þ

Thus,

Gtþ1ða; bÞ ¼ Gtða; bÞ �
Gtða; xiÞGtða; xiÞ

Gtðxi; xiÞ
ð36Þ

In the matrix orthogonalization processing, the column vector in column xi that corre-
sponds to the maximum G(i, i) is selected first. Then, the remaining vectors are orthogonalized
as the quasi method. Overall, the rank of the matrix is γ. Thus, the sparse kernel matrix can be
constructed as follows:

Algorithm 1
____________________________________________________________________

Step 1: ~G0ðp; pÞ ¼ Kðxp; xpÞ is set.

Step 2: The kernel matrix is initialized.
For t = 0: γ−1

~G0ðt; pÞ ¼ Kðxt; xpÞ; t ¼ t þ 1

End
Step 3: For t = 0: γ−1

xi is selected corresponding to the maximum G(i, i) and ind(t) = i is set.
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For s = t+1: γ−1

~Gtþ1ðs; pÞ ¼ ~Gtðs; pÞ �
~Gtðs; pÞ~GtðindðtÞ; indðsÞÞ

GtðindðtÞ; indðtÞÞ

End

~Gtþ1ðp; pÞ ¼ ~Gtðs; pÞ �
~Gtðt; pÞGtðt; pÞ

GtðindðtÞ; indðtÞÞ

End
____________________________________________________________________

The optimal model parameters c+ and c−, the polynomial kernel function parameters d, and
the RBF kernel function parameter σ can be determined with particle swarm optimization
(PSO) algorithm to improve the recognition performance of the rice quality classification
model:

vi;dðt þ 1Þ ¼ dvi;dðtÞ þ c1r1½Pi;d � xi;dðtÞ� þ c2r2½Pg;d � xi;dðtÞ�
xi;dðt þ 1Þ ¼ xi;dðtÞ þ vi;dðt þ 1Þ ð37Þ

where xi,d, vi,d, Pi,d, and Pg,d represent the current position, current speed, current optimal posi-
tion of the particle, and optimal position of the particle, respectively. d is a constant in[0,1],
which is referred to as the internal coefficient;c1 and c2 are the learningrates;r1 and r2are the
stochastic coefficients in [0,1].

Rice Quality Classification Results
Five varieties of rice image samples are collected from a rice-processing assembly line. The cor-
responding rice qualities are manually calibrated based on the measurement of the nutrition
component combination from the voting results of several experts by observing the rice
appearance. The five rice varieties are supposedly marked as ω1 * ω5.

The total sample numbers of the five rice varieties are 800, 756, 789, 824, and 802. In the
classification experiments, if NTi

samples of the rice variety ωi are selected as the test samples

and the remainder are used for classifier training, then the classification error of the test sam-
ples of rice variety ωi can be calculated with the following equation:

CEi ¼
1

NT

XNT

t¼1

ŷ t � ytj j
2

� 100% ð38Þ

where yt represents the actual rice quality label, and ŷ t represents the automatic recognition
result of the rice quality. Four experiments are conducted to validate the classification perfor-
mance of the proposed method. The experiments are as follows:

Experiment 1:Verification test. We achieve the rice processing quality classification results
with the proposed method, namely, the rice processing quality is classified by the WDMPs of
the images with the SMK–LSSVM classifier.

In this experiment, five Gaussian function scales are selected for the sake of extracting the
omnidirectional spatial statistics of the rice image under various observation scales, where

½s1; s2; � � � ; s5� ¼ ½0:5; ffiffiffi
2

p
=2; 1;

ffiffiffi
2

p
; 2�. A total of180 directions in [0* 360°] are applied in

this study to construct the Gaussian derivative filter banks for the omnidirectional spatial struc-
ture feature analysis. No larger than three-order Gaussian derivative filters (G1 * G3) with
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their combinations are considered. In constructing the classifier (SMK–LSSVM), the regulari-
zation factor r = 8.4, and the multikernel weighting parameter η in Eq 32 is set as 0.4.The poly-
nomial kernel function parameter d = 0.25, and the corresponding penalty factors c+ and c−

and the RBF kernel function parameter σ are optimized with the PSO algorithm. Five repeating
experiments are performed. In each independent experiment, the same number of samples
(500 samples) is randomly selected for the classifier test and the remaining samples for classi-
fier training. The average classification accuracies of the rice quality by the proposed image fea-
ture extraction method with SMK–LSSVM classifier are shown in Table 1.

The classification results in Table 1 shows that when only one kind of Gaussian derivative
filter is independently chosen for the image space structure feature extraction, the best classifi-
cation result can be achieved by selecting the first-order Gaussian derivative filter G1, whose
average classification accuracy can reach 91.33%.The rice quality classification performance is
relatively poor when only the G3 filter is used. However, the accurate classification rate can also
be slightly higher than80%. This finding demonstrates that the combination of more than one
filter significantly improves the classifier performance. Third-order and less than the third-
order Gaussian derivative filters can effectively characterize the spatial structural appearance,
and satisfactory classification results can be achieved. The experimental results shown in
Table 1 reveal that the accurate classification rate of the rice quality of any rice variety is more
than 97% when all of the Gaussian derivative filters (G1+G2+G3) are integrated, and the average
classification accuracy of the five rice varieties reaches as high as 98.13%, which can effectively
meet the imperative demand of the rice-processing factory.

Experiment 2: Comparative experiment. The rice quality classification results by different
image feature extraction methods integrated with SMK–LSSVM classifier are compared.

The results of some rice quality classification methods based on commonly used machine
vision-based technologies are also compared with the aforementioned results in this experi-
ment to evaluate further the performance of the proposed WDMP features. These methods
include the image feature extraction methods based on image GLCM and GLRMmentioned in
the literature[44], the method based on wavelet analysis (WTA) [45,46], and the commonly
used multi-channel texture classification method, namely, Gabor wavelets [21]. The detailed
rice image surface texture feature extractions based on the GLCM/GLRM, WTA, and Gabor
wavelets are described in Table 2. Five independent repeating experiments are performed in
experiment 2, similar to experiment 1. In each experiment, 500 samples of each rice variety are
randomly selected for the classifier performance test, and the rest of the samples are used for
classifier training. The average rice quality classification accuracy is displayed in Table 3.

The classification performance is significantly lower than the proposed WDMP features
presented in this study. The average classification rates of the five rice varieties are all lower
than 85%. The average accuracies of the WTA, GLCM, and GLRMmethods are poor at less

Table 1. Rice quality classification results byWDMP features with SMK–LSSVM classifier.

Gaussian derivative filters Average classification accuracy of five independent experiments (1−CEi)*100%

ω1 ω2 ω3 ω4 ω5 Average

G1 89.67 91.40 89.96 92.90 92.71 91.33

G2 85.33 89.84 91.34 86.11 89.07 88.34

G1+G2 93.33 97.66 91.69 98.45 92.72 94.78

G3 77.33 82.03 84.42 82.71 82.45 81.79

G2+G3 89.00 93.33 88.23 92.28 90.06 90.58

G1+G2+G3 97.33 97.66 97.58 98.77 99.33 98.13

doi:10.1371/journal.pone.0146484.t001
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than 80%. The combination of GLCM and GLRM features can improve the classification per-
formance over some rice varieties. However, the classifier performance cannot be improved
obviously on all of the five rice varieties, and the average classification rate remains low(only
79.63%). The test results obtained by the traditional image feature extraction methods with
SMK–LSSVM classifier reveal that the methods based on the commonly used GLCM/GLRM,
WTA, and Gabor wavelets are not highly suitable for rice image analysis and feature extraction.
These methods cannot effectively characterize the most important visual cue of a rice image
and the spatial structural appearance of the surface texture structure. Moreover, the extracted
statistics by GLCM/GLRM orWTA are not related to the human vision perception, which
lacks specific physical significance. Thus, satisfactory rice quality classification performance
cannot be achieved with the image features as the input of the proposed SMK–LSSVM classifier
by the traditional image analysis methods (GLCM/GLRM or WTA), and the imperative
demand of the automatic rice classification, processing, and packaging of the assembly line in
the food-processing factory cannot be met.

Experiment 3: Comparative experiment. The rice quality classification results by different
image feature extraction methods integrated with the commonly used LSSVM classifier are
compared.

In this experiment, we mainly test the rice quality classification performance by the pro-
posed rice image statistics, WDMP features, and the traditional image analysis methods
(GLCM/GLRM, Gabor wavelets, and WTA) with the widely used LSSVM-based classifier. The

Table 2. Texture feature extraction based on GLCM/GLRM, Gabor wavelets, andWTA.

Texture
features

Features extraction details

GLCM/GLRM (1) The original image is quantified into images with 8, 32, and 64 gray levels. (2)For
each quantized gray-level image, 16 GLCM/GLRM matrices with the displacement of
li 2 [2,5,10,15] and the orientation of θj 2 [0°,45°,90°,135°] are computed. (3) Fourteen
statistics[47],including energy, moment of inertia, partial correlation, entropy, and
coarseness, are extracted to every GLCM/GLRM matrix.(4) The average values of the
14 statistics are computed as the final image texture features for rice quality
classification experiment.

Gabor wavelet (1) The intensity image is used for feature extraction. (2) Forty Gabor filters with five
scales and eight orientations are applied. (3) The statistical mean and standard
deviation of the amplitude response of the Gabor filtering image are extracted as the
image feature descriptor.

WTA (1) Three color spaces, namely, HIS, CIE, and L*a*b*,are used for the image analysis.
(2)Db4 wavelet is used for multiscale decomposition in each independent color space
until the image size under the largest scale is no less than 8 × 8. (3) A total of 15
characteristics [45](e.g., energy and color covariance) are calculated based on the
image wavelet detail coefficients under each decomposition scale to constitute the
image feature vector.

doi:10.1371/journal.pone.0146484.t002

Table 3. Rice quality classification results by GLCM/GLRM andWTA features with SMK–LSSVM classifier.

Image feature selection Average classification accuracy of five independent experiments (1−CEi)*100%

ω1 ω2 ω3 ω4 ω5 Average

WTA 75.00 75.80 80.40 71.40 77.40 76.00

GLCM 77.20 75.20 72.40 75.80 75.00 75.12

GLRM 77.20 78.40 76.20 79.00 80.40 78.24

GLCM+GLRM 79.56 80.20 75.00 78.80 84.60 79.63

Gabor wavelet 84.80 86.34 82.00 81.40 77.80 82.46

doi:10.1371/journal.pone.0146484.t003
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experiment operations are the same as those in experiment 1. The rice processing quality classi-
fication results by the proposed image analysis method and the traditional methods are
reported in Tables 4 and 5, respectively.

By combining the rice quality classification results of experiment 1 with those of experiment
2, we can draw the following conclusions: (1) With regard to the rice quality classification per-
formance, the proposed SMK–LSSVM classifier is better than the traditionally used LSSVM
classifier. We can achieve an average classification accuracy as high as 98.13% through the pro-
posed SMK–LSSVM classifier with the proposed ODGDF-based spatial structure statistics of
the rice image (G1+G2+G3). However, we can only obtain the classification accuracy at a rate of
94.56% by LSSVM classifier with the same image statistical features. (2) When the traditional
image analysis methods (GLCM/GLRM, Gabor wavelets, or WTA) are combined with the
LSSVM classifier, the rice quality classification rates of all the five rice varieties are also low,
which are obviously inferior to the proposed spatial structure feature extraction method in this
study for the effective rice quality classification.

Experiment 4: Comparative experiment. The rice quality classification results by different
image feature extraction methods integrated with learning vector quantization-neural network
(LVQ–NN) classifier are compared.

In addition to the SVMmethod, NN can model various complex nonlinear systems. It has
been also extremely widespread in various pattern recognitions. Among the different architec-
tures of NN, LVQ–NN is the nearest-neighbor pattern classifier based on competitive learning
with simple architecture and good pattern classification performance. In this experiment, a
LVQ–NN classifier is constructed to test the rice quality classification performance with differ-
ent image feature extraction methods. The input and output of LVQ–NN are the same as those
of the LSSVMmethod in the previous experiments. The number of hidden layer nodes in the
LVQ–NN classifier is set through cross validation, and the number corresponding to the best
classification performance is recorded as the number of the LVQ–NN hidden layer nodes. The

Table 4. Rice quality classification results byWDMP features with LSSVM classifier.

Gaussian derivative filters Average classification accuracy of five independent experiments (1−CEi)*100%

ω1 ω2 ω3 ω4 ω5 Average

G1 86.34 90.40 89.96 92.90 92.71 90.46

G2 83.38 89.84 91.34 86.11 89.07 87.95

G1+G2 89.68 92.00 90.45 93.45 92.63 91.64

G3 80.26 84.03 85.42 82.71 82.45 82.97

G2+G3 87.45 89.46 91.89 87.94 90.06 89.36

G1+G2+G3 95.34 94.28 95.48 95.27 92.43 94.56

doi:10.1371/journal.pone.0146484.t004

Table 5. Rice quality classification results by GLCM/GLRM andWTA features with LSSVM classifier.

Image feature selection Average classification accuracy of five independent experiments (1−CEi)*100%

ω1 ω2 ω3 ω4 ω5 Average

WTA 74.64 76.80 78.56 73.48 73.26 75.34

GLCM 76.48 73.20 74.68 74.68 75.12 74.83

GLRM 74.48 75.40 73.86 76.58 80.89 76.24

GLCM+GLRM 78.86 81.20 75.00 76.89 82.24 78.84

Gabor wavelets 82.40 81.80 82.80 80.00 78.80 81.16

doi:10.1371/journal.pone.0146484.t005
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ultimate number of the hidden layer nodes is set to 24, which can ensure the optimal rice qual-
ity classification accuracy. The corresponding classifier training algorithm is LVQ2[48]. The
average classification accuracy rates by the LVQ–NN classifier with the proposed spatial struc-
tural statistical modeling analysis and the traditional image analysis methods are presented in
Tables 6 and 7, respectively.

The experimental results reveal that the SMK–LSSVM classifier is considerably better than
the LSSVM classifier and LVQ–NN classifier, regardless of whether the proposed spatial struc-
ture statistics features of the grain image or the traditional image analysis methods are used in
the rice quality classification. In addition, the spatial structural features, WDMPs, proposed in
this study are highly similar to the human visual perceptual characteristics to a certain extent,
which can effectively describe the spatial organization appearance of the complex texture
images with a large number of local fragment structures. The proposed method can achieve a
considerably high classification accuracy rate with a small number of training samples by com-
bining the classification results in Tables 1 and 7. The proposed method can be effectively
applied to automatic rice quality inspection in the real assembly line to realize the automatic
classification of grain quality, which provides a means of effective automatic monitoring for
the processing and production of high-quality rice.

Conclusions
This study has analyzed and proved theoretically the WD process of the spatial structure of the
complicated texture images by introducing the sequential fragmentation theory. A method of
omnidirectional and multiscale GDF methods is presented to characterize the most important
visual hint of the complex grain images. Based on the statistical modeling of the image spatial
structure with the WDmodel, some statistical distribution shape-related variables with signifi-
cant visual perceptive meaning are extracted, thereby effectively describing the spatial structure
distribution characteristics of the complex textural images. Finally, a product quality classifier-

Table 6. Rice quality classification results byWDMP features with LVQ–NN classifier.

Gaussian derivative filters Average classification accuracy of five independent experiments (1−CEi)*100%

ω1 ω2 ω3 ω4 ω5 Average

G1 83.46 86.32 88.96 90.24 90.25 87.84

G2 84.68 83.24 85.38 87.81 89.27 86.07

G1+G2 88.56 90.36 91.36 91.06 89.89 90.24

G3 78.24 80.45 80.38 83.34 83.25 81.13

G2+G3 86.40 92.00 86.68 90.36 90.26 89.14

G1+G2+G3 88.42 90.28 90.48 94.54 92.76 91.29

doi:10.1371/journal.pone.0146484.t006

Table 7. Rice quality classification results by GLCM/GLRM andWTA features with LVQ–NN classifier.

Image feature selection Average classification accuracy of five independent experiments (1−CEi)*100%

ω1 ω2 ω3 ω4 ω5 Average

WTA 73.24 71.40 78.68 74.45 73.26 74.02

GLCM 74.46 75.00 71.56 74.84 75.00 74.17

GLRM 72.60 75.40 74.56 77.58 82.24 76.47

GLCM+GLRM 77.40 78.20 76.12 79.98 83.68 79.08

Gabor wavelet 82.20 84.20 86.00 80.20 77.80 82.08

doi:10.1371/journal.pone.0146484.t007
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based SMK–LSSVM is constructed, and Schmidt orthogonalization method is introduced to
reduce the model computation.

The proposed image analysis method and product classifier are applied to a food-processing
enterprise for automatic rice quality inspection on the assembly line to achieve satisfactory
classification performance. Exhaustive comparative experiments demonstrate that the pro-
posed method outperforms the traditional image analysis method with the commonly used
LSSVM and LVQ–NN classifiers. The proposed method can achieve the accurate classification
results of various varieties of rice quality, which lays a foundation for the effective processing
and automatic packaging production of high-quality rice.
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