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ABSTRACT
The gut microbiome influences the development of allergic diseases during early childhood. 
However, there is a lack of comprehensive understanding of microbiome-host crosstalk. 
Here, we analyzed the influence of gut microbiome dynamics in early childhood on atopic 
dermatitis (AD) and the potential interactions between host and microbiome that control 
this homeostasis. We analyzed the gut microbiome in 346 fecal samples (6–36 months; 112 
non-AD, 110 mild AD, and 124 moderate to severe AD) from the Longitudinal Cohort for 
Childhood Origin of Asthma and Allergic Disease birth cohort. The microbiome-host inter
actions were analyzed in animal and in vitro cell assays. Although the gut microbiome 
maturated with age in both AD and non-AD groups, its development was disordered in 
the AD group. Disordered colonization of short-chain fatty acids (SCFA) producers along with 
age led to abnormal SCFA production and increased IgE levels. A butyrate deficiency and 
downregulation of GPR109A and PPAR-γ genes were detected in AD-induced mice. 
Insufficient butyrate decreases the oxygen consumption rate of host cells, which can release 
oxygen to the gut and perturb the gut microbiome. The disordered gut microbiome devel
opment could aggravate balanced microbiome-host interactions, including immune 
responses during early childhood with AD.
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Introduction

The gut microbiome during early life influences 
immune system development that affects health in 
later life.1,2 Gut microbiome perturbations during 
early infancy increase the risk of developing allergic 
diseases in children.3,4 Several studies support the 
notion that the gut microbiome plays a critical role 
in manifesting allergic diseases.5–8 Gut microbiota, 
and the short-chain fatty acids (SCFA) they produce, 
can induce Treg cells, which control mucosal Th2 
inflammation.9,10 The Th1/Th2 balance is essential 

for immune regulation, and an imbalance Th1/Th2 
can lead to chronic inflammation and allergic 
diseases.11

Atopic dermatitis (AD) is the most common 
chronic inflammatory skin disease, and its course 
is affected by the microbiome.8,12–15 The gut micro
biome in infants with AD has low bacterial diver
sity, is deficient in Bifidobacterium and 
Bacteroides,8,16,17 and has perturbed functional 
genes related to host immune development.13 

These perturbations result in imbalanced SCFA

CONTACT Soo-Jong Hong sjhong@amc.seoul.kr Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, 
University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Bong-Soo Kim bkim79@hallym.ac.kr Department of Life Science, 
Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea.

Supplemental data for this article can be accessed on the publisher’s website

GUT MICROBES                                              
2022, VOL. 14, NO. 1, e2068366 (23 pages) 
https://doi.org/10.1080/19490976.2022.2068366

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4760-9262
http://orcid.org/0000-0003-4155-2584
http://orcid.org/0000-0001-5751-5089
http://orcid.org/0000-0003-1500-2845
http://orcid.org/0000-0002-2272-8321
http://orcid.org/0000-0003-1409-2113
http://orcid.org/0000-0003-1243-8280
https://doi.org/10.1080/19490976.2022.2068366
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2022.2068366&domain=pdf&date_stamp=2022-04-28


production, which dysregulates host-microbiome 
communication through immune and metabolic 
processes.18 Previous studies have compared the 
gut microbiome between infants with and 
without AD; however, these studies did not con
sider the changes in the microbiome with aging. 
Microbes colonize the gut since birth,2,19 and the 
microbiome dynamically changes until 36 months 
of age.2 The changes in the complex and mutual 
relationships between the gut microbiome and 
hosts with AD with aging remain unclear.

A recent study investigated the longitudinal 
changes in the gut microbiota in children 
with AD at early (5, 13, 21, and 31 weeks) 
and school ages (6–11 years) using 16S rRNA 
amplicon sequences.20 Although changes in 
microbiota associated with AD were observed, 
there was a lack of understanding of the micro
biome functions as the study was solely based 
on 16S rRNA amplicon sequencing.21 Since the 
gut microbiome has highly balanced symbiotic 
interactions with the host,22 particularly in 

early life, a comprehensive analysis of the gut 
microbiome’s role in early childhood is 
a prerequisite to identify the mechanism under
lying the host-microbiome symbiotic ecosystem 
in AD.

We investigated the relationship between gut 
microbiome dynamics in early childhood in chil
dren with AD and without AD and the potential 
interactions that control this relationship.

Results

Gut microbiota during early childhood exhibited 
two age-specific types (based on human study)

We analyzed 346 fecal samples (6–36 months; non- 
AD = 112, mild AD = 110, and moderate to 
severe AD = 124) from the Longitudinal Cohort 
for Childhood Origin of Asthma and Allergic 
Disease birth cohort (Figure 1a and Figure S1).
The sample size had a discriminatory power of 
90%, with a significance of 0.05 (Table S1). Of 

Non-AD
(32.4%)

Mild AD
(31.8%)

Mod-Sev
AD

(35.8%)

Samples (n=346)

a b

112

112

100

112

110

107

103

107

124

124

123

124

0 100 200 300

16S

WMS

RTP

SCFA

Number of samples (n)

Non-AD Mild AD Mod-Sev AD c

-1.0

-0.5

0.0

0.5

-1.0 -0.5 0.0 0.5 1.0

N
M
D
S
2

NMDS1

P < 0.001
WMS

M
od
el
fit

2 -0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

N
M
D
S
2

NMDS1

P < 0.001

GMT1
GMT2

16S

M
od
el
fit

2

B
ac
te
ria
la
m
ou
nt
s

(L
og

10
no
rm
al
iz
ed
16
S
co
pi
es
/g
)

6

7

8

9

10 **

WMS

**

16S

S
ha
nn
on
di
ve
rs
ity
in
de
x

GMT1GMT2

1

2

3

4

5

******

GMT1GMT2

WMS 16S

* ****
**

Non-AD
Mild AD
Mod-Sev AD

*

d
0 0.5 1 1.5

Relative abundance (%)

Bifidobacterium
Bacteroides

Faecalibacterium
Veillonella
Escherichia

Blautia
Ruminococcus

Subdoligranulum
Clostridium
Eubacterium

Dialister
Roseburia

Coprobacillus
Alistipes

Enterococcus
Lactobacillus

Lachnospiraceae_noname
Erysipelotrichaceae_noname

Parabacteroides
Klebsiella

GMT1 GMT2
WMS

e

Bifidobacterium
Faecalibacterium

Bacteroides
Escherichia

Clostridium_g21
Veillonella
Blautia

Clostridium_g6
Ruminococcus_g2
Eubacterium_g23

Enterococcus
Dialister
Klebsiella

Anaerostipes
Streptococcus
Enterobacter
Roseburia
Citrobacter

Eubacterium_g1
Kosakonia

16S
GMT1 GMT2

10

20

30

A
ge
(m
on
th
s)

WMS 16S

** **

GMT1 GMT2

Figure 1. Summary of the analyzed data and comparison of the gut microbiota between clusters determined by Dirichlet multinomial 
mixture (DMM) modeling. (a) Overview of the studied samples. (b) Number of samples analyzed for each dataset. We analyzed 346 16S 
rRNA gene amplicon sequencing (16S), 343 whole metagenome sequencing (WMS), 326 quantitative real-time PCR (RTP), and 343 
short-chain fatty acids (SCFA) profiles. (c) Microbiota clusters determined by DMM modeling in WMS and 16S dataset. The lowest 
Laplace approximation indicated that the number of clusters was two for gut microbiota data (inner graph). Two gut microbiota types 
(GMT1 and GMT2) were clearly distinguished in the NMDS plot (P < .001). (d) Comparison of age, bacterial amounts, and diversity 
between GMT1 and GMT2. (e) Heatmap of the relative abundance of the top 20 genera within two clusters. Mod-Sev AD: moderate to 
severe AD.*P < .05, **P < .01, ***P < .001.
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these, 58.0% were boys, and 25.6% were born by 
cesarean delivery (Table S2). The scoring of atopic 
dermatitis (SCORAD) index, parental history of 
allergic diseases, serum eosinophils, total IgE, egg- 
, and milk-IgE were significantly different between 
non-AD and AD groups (p < .001). Solid food was 
introduced at a mean age of 5.6 months in the 
subjects of this study.

We analyzed 346 16S rRNA amplicon 
sequences (16S), 343 whole metagenome 
sequences (WMS), 326 quantitative real-time 
PCR (RTP) tests, and 343 SCFAs profiles in 
this study (Figure 1b and Table S3). Moreover, 
negative controls for the sampling tube, DNA 
extraction kit, and library preparation were 
sequenced and subsequently compared to the 
microbiota in samples (Figure S2). The micro
biota detected in the negative controls differed 
from that in the samples, indicating that our 
sequence data was not influenced by potential 
contaminations.

Gut microbiota variation in all subjects (non-AD 
and AD groups) was analyzed using the Dirichlet 
multinomial mixture (DMM) model based on WMS 
and 16S datasets (Figure 1c). The microbiota was 
clustered within two gut microbiota types, GMT1 
and GMT2, based on the lowest Laplace approxima
tion (p < .001). Age was the significant factor distin
guishing the two GMTs (Figure 1d; the median age 
of 10 months in GMT1 and 24 months in GMT2, p < 
.001), but AD diagnosis was not significantly differ
ent between GMTs (p > .05; Table S4). There were 
no significant differences in the odds ratio (OR) for 
covariates between GMT1 and GMT2 (p > .05) 
except age. The relative amounts and diversity of 
bacteria were higher in GMT2 than GMT1 (p < .01).

Bifidobacterium, Veillonella, and Escherichia 
were dominant genera in GMT1, whereas 
Bacteroides, Bifidobacterium, and 
Faecalibacterium were dominant in GMT2 (q < 
0.001; Figure 1e, Table S5). These coincided with 
the DMM modeling results in each phenotypic 
group (Figure S3). Although WMS and 16S data
sets showed similar results for DMM clustering, 
the relative abundances of each genus were dif
ferent. Therefore, we compared the overall con
cordance of relative abundances between WMS 
and 16S at phylum and genus levels (Figure S4). 
Pearson correlation R values of WMS and 16S 

were over 0.52 in all subjects (p < .001) at the 
phylum level and decreased (R ≤ 0.31; p < .001) 
at the genus level. Moreover, detected genera in 
negative controls for WMS were clearly different 
from those in samples, and detected numbers 
were lower (2 genera) than in 16S (19 genera) 
(Figure S2). Therefore, we primarily used the 
WMS dataset for further analyses.

Age-dependent assembly of gut microbiota was 
perturbed in childhood with AD (based on human 
study)

Although the early childhood gut microbiota was 
clustered within two types, previous studies reported 
that the gut microbiota dynamically changes with 
age during early life.2,23 Furthermore, solid food 
intake starting at a mean age of 5.6 months in sub
jects of this study could influence their gut micro
biome (after 6 months). Therefore, we analyzed the 
gut microbiota using the Bray–Curtis dissimilarity 
according to age range (6, 7–12, 13–24, 25– 
36 months) in non-metric multidimensional scaling 
(NMDS) plots (Figure 2a). The microbiota varied 
with age within GMT1 and GMT2 for all subjects 
and each phenotype (p < .01).

We analyzed the indicator species for each age to 
study the shifts in the gut microbiota with age in 
each phenotypic group (Figure 2b, Table S6). 
Indicator species gradually shifted with age in the 
non-AD group, while they showed abrupt changes 
in AD groups. In the non-AD group, facultative 
anaerobes were indicators until 12 months, and 
strict anaerobes were indicators after 12 months. 
However, their relative abundances in the AD 
groups were different from those in the non-AD 
group with age. The relative abundance of faculta
tive anaerobes in AD microbiomes was higher than 
in non-AD microbiomes during early life. In addi
tion, they differed between mild and moderate to 
severe AD groups (p < .05; Figure S5a).

At 6 months, Bifidobacterium longum was 
a predominant indicator in all groups, and there 
were no significantly different species according 
to AD severity (q > 0.05; Figure 2c). B. bifidum and 
B. breve were dominant indicators at 7–12 months, 
and the relative abundance of Escherichia coli was 
higher in the moderate to severe AD than mild AD 
group at this age (q < 0.05). The higher proportions 
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of Alistipes finegoldii, unclassified (UC) 
_Oscillibacter, and UC_Alistipes were detected in 
the non-AD than in AD groups at 13–24 months 
(q < 0.05). Faecalibacterium prausnitzii, Bacteroides 
fragilis, Ruminococcus bromii, and Dialister invisus 
were indicators at 13–36 months, and the relative 
abundances of B. fragilis and D. invisus were higher 
in the non-AD than in AD groups at 25–36 months 
(q < 0.05). Indicators for each age were evaluated 
using the multivariate association with linear models 
(MaAsLin2) after adjusting for covariates (Table S7). 
Indicators were significantly associated with age 
after adjustments except for B. bifidum and 
A. finegoldii.

We analyzed the significantly associated cov
ariates with microbiota at each age using the 
EnvFit model (Table S8). Breastfeeding and AD 
severity were significantly associated with gut 
microbiota at 6–24 months. In particular, 
exclusive breastfeeding (EBF) was the most sig
nificant and common factor (r2 = 0.306, p < 
.001 in WMS) for the gut microbiota differ
ences in both non-AD and AD groups at 
6 months. The relative abundance of 
B. longum was higher in EBF infants than in 
non-EBF infants, whereas B. breve and 
UC_Coprobacillus were higher in non-EBF 
infants (p < .05; Figure S5b).
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Estimated microbiota age and network analyses 
revealed disordered gut microbiome development 
in AD groups (based on human study)

We compared the species profiles by age to analyze 
the gut microbiome development during early life 
according to AD severity via random forest model
ing. Bacteroides fragilis and F. prausnitzii were the 
most influential species in the prediction model 
(Figure 3a). Gut microbiota in the AD group was 
highly mature compared to that in the non-AD 
group at 6 months, whereas delayed gut microbiota 
maturation was observed after 12 months in the 

microbial-by-age z-score (MAZ) analysis 
(Figure 3b). Bacteroides fragilis, 
UC_Subdoligranulum, Anaerostipes hadrus, and 
Roseburia inulinivorans were significantly correlated 
to low MAZ in the AD group after 12 months (p < 
.05; Figure S6a).

The microbiota heterogeneity was the lowest in 
the moderate to severe AD group at 6 months 
(Figure 3c) but increased to the level of other
groups after 12 months. Heterogeneity of micro
biota in the mild AD group was higher than in 
other groups after 24 months. The Shannon 

Figure 3. Disordered gut microbiota development in AD groups. (a) Species importance in the prediction model of EMA in 112 non-AD 
samples. The 16 species with the most discriminating power were selected by the lowest cross-validation error (inner graph). (b) 
Comparison of EMA through early childhood among groups by MAZ score. (c) Heterogeneity of gut microbiota within each group 
throughout early life. The gray area represents the 95% confidence intervals (CIs). The black dashed line indicates the time point at 
which the change in the MAZ score of AD groups occurs. (d) Difference of Shannon diversity index among groups in each age. (e) 
Network analysis of the top 10 species in each microbiota type for each phenotype determined by random forest modeling. The 
common group included commonly detected species in GMT1 and GMT2. Positive correlations are marked by blue edges and negative 
correlations by red edges. Edge thickness denotes FastSpar correlation, ranging from value −0.4 to 0.4. Node sizes were scaled on the 
eigenvector centrality measure. Only significant correlations with P < .05 are shown. The top 5 network hubs determined by the 
PageRank algorithm are marked in bold with an Orange square symbol. Mod-Sev AD: moderate to severe AD. *P < .05.
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diversity increased with age in all groups (p < .001), 
and the diversity was significantly lower in the 
moderate to severe AD than in non-AD at 6 months 
(p < .05; Figure 3d). Differences in diversity 
between groups according to AD severity were 
observed at 6 months and 25–36 months in the 
16S dataset, and 7–12 months and 25–36 months 
in the functional gene dataset (p < .05; Figure S6b).

Different microbiota development in AD groups 
could be partly driven by interactions between spe
cies in the gut microbiota. Thus, we analyzed the 
correlations between species in GMT1 and GMT2 
of each phenotype group because gut microbiota 
was clearly distinguished into two age-specific types 
throughout early childhood (Figure 1). Commonly 
detected bacteria in both GMTs could be inter
mediate members during gut microbiome 
development.

More complex interspecies correlations in the 
non-AD group than in the AD groups indicated 
that dynamic drift and diversification occurred 
through interactions during gut microbiome devel
opment in the non-AD group (Figure 3e). Positive 
correlations were more abundant in GMT1 than in 
GMT2 and the common groups. Enterococcus fae
calis was a hub with positive correlations with bac
teria in GMT1. UC_Subdoligranulum and 
Lachnospiraceae bacterium_5_1_63FAA were key
stones during gut microbiome development. 
Faecalibacterium prausnitzii and B. fragilis were 
hubs in the gut microbiota of GMT2 with negative 
correlations with GMT1 members and positive cor
relations with bacteria in GMT2.

Citrobacter freundii and E. faecalis were key
stones in GMT1 of mild and moderate to 
severe AD, respectively. Although 
UC_Subdoligranulum and Lachnospiraceae were 
also keystones during microbiome development 
in AD groups, there were fewer correlated bacteria 
than in the non-AD group, and their correlations 
differed. Faecalibacterium prausnitzii was also 

a hub in GMT2 of AD groups. Therefore, the 
same bacteria could be critical to gut microbiome 
development in all groups. However, their influ
ences on the microbiota were different in AD 
groups according to severity. This could be related 
to the disordered gut microbiome development 
with lower relative abundances of B. fragilis and 
UC_Subdoligranulum in AD groups (Figure S6a). 
Network analysis for all subject and combined AD 
groups revealed similar results as that of the distin
guished phenotypes (Figure S7).

Disordered microbiota development in AD groups 
altered SCFA profiles with age (based on human 
study)

Differences in AD gut microbiome development 
can cause alterations in SCFA profiles. 
Therefore, we compared SCFA profiles among 
groups by training a machine-learning algo
rithm. SCFA-by-age z-score (SAZ) was calcu
lated to analyze the dysbiosis of SCFA profiles 
in AD groups along with age (Figure 4a). 
Butyrate contributed more significantly to the 
prediction model than propionate. The SCFA 
profiles in AD groups were highly matured 
compared to those in non-AD before 12 months. 
However, they delayed maturation after 
12 months, consistent with gut microbiota 
development (correlation R value between SAZ 
and MAZ ≥ 0.77 with p < .001). These results 
indicated that disordered gut microbiota devel
opment was associated with dysregulated SCFA 
production.

The relative abundances of B. breve in AD 
groups were significantly associated with high 
SAZ at 6 months (p = .012; Figure 4b).
Conversely, the relative abundances of facultative 
anaerobes (K. pneumoniae, C. freundii, and E. coli), 
B. fragilis, and F. prausnitzii were related to low 
SAZ in AD groups after 12 months (p < .05).

regression models and the Pearson correlation test. (b) Species that are significantly associated with the dysbiosis of SCFAs (SAZ score) 
in AD groups at each age. (c) Comparison of gene families involved in butyrate metabolism among groups. The boxplot shows the 
significantly different gene families between the non-AD and AD groups. (d) Correlation between the relative abundances of 
significantly associated species with abnormal MAZ or SAZ in AD groups and IgE levels. Bacteroides fragilis and unclassified (UC) 
_Subdoligranulum were detected as associated species with P-value < 0.01. Mod-Sev AD: moderate to severe AD. N: non-AD, M: 
mild AD, and MS: moderate to severe AD. *q < 0.05, **q < 0.01.
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Gene families involved in butyrate metabolism 
were compared according to AD severity (Table S9 
and Figure S8), and the significantly different gene 
families between non-AD and AD groups (q < 0.05 
in Dunn’s test and q < 0.25 in MaAsLin2 after 
adjustments) were analyzed (Figure 4c). 
L-glutamate usage for butyrate production through 
glutamate decarboxylase (gad) was lower in AD 
groups than in non-AD group after 12 months. 
The conversion between fumarate and succinate 
by succinate dehydrogenase/fumarate reductase 
(sdhB/frdB) was lower in moderate to severe AD 
at 7–12 months. Different genes were used to 

convert pyruvate to acetyl-CoA in mild AD (porB) 
compared to other groups (korA) at 25–36 months. 
Crotonoyl-CoA production from 3-butenoyl-CoA 
by 4-hydroxybutanoyl-CoA dehydrase (abfD) was 
reduced in AD groups at 13–24 months. Butyryl- 
CoA: acetate-CoA transferase (but) levels at 25– 
36 months were lower in AD groups than non- 
AD group, and acetaldehyde dehydrogenase 
(adhE) levels were higher in the mild AD group
than in other groups. Phosphate butyryltransferase 
(ptb) and butyrate kinase (buk) levels were the low
est in the mild AD group at 25–36 months. Ten 
species (A. findgoldii, A. hadrus, B. fragilis, 
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Figure 5. Normalized abundances of KEGG Orthology (KO) among groups according to age. (a) The top 19 KOs with the most 
discriminative power were selected. Functional gene features in the gut microbiome of the non-AD group were used to determine 
significantly changed KOs according to age by MaAsLin2 after adjustment with other covariates (q < 0.05). Among the age-dependent 
KOs, 19 KOs were selected by the lowest cross-fold validation error. (b) Selected KOs were compared among groups at each age in the 
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B. ovatus, Coprococcus eutactus, Eggerthella 
lenta, Lachnospiraceae bacterium, Megamonas 
hypermegale, Odoribacter splanchnicus, and 
Prevotella buccae) were significantly different 
between non- and AD groups, as corresponding 
bacteria (q < 0.05; Figure S9). These differences 
could cause deficient butyrate production and low 
SAZ in AD groups. Differences according to sever
ity were also found. Gene families involved in pro
pionate metabolism were also different among 
groups according to severity (Table S10 and 
Figure S10).

Potential influence of disordered microbiome 
development on host immune responses in AD 
groups was revealed by functional features (based 
on human study)

The associated species with abnormal MAZ and 
SAZ in AD groups were correlated with clinical 
features (Figure 4d). The relative abundances of 
B. fragilis and UC_Subdoligranulum were nega
tively correlated with total IgE, egg-, and milk-IgE 
at 25–36 months (p < .01). In particular, B. fragilis 
was related to both abnormal MAZ and SAZ in AD 
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Figure 6. The interactions between gut microbiome and host cell in animal and in vitro cell assays. (a) Design for the mice experiment. 
Female BALB/c mice were used, 1% DNCB was applied to the shaved dorsal skin three times for one week. 0.4% DNCB was applied three 
times a week for four weeks. Mice were sacrificed at day 35, and the middle part of the colon and fecal samples were collected. (b) The 
concentration of SCFAs was compared between non-AD and AD groups. SCFAs were measured by GC-MS from fecal samples. (c) The 
expression of target genes in the middle part of the colon was compared between non-AD and AD groups. The expression levels of SCFA 
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groups, suggesting that the disordered microbiome 
development and SCFA production by limited 
colonization of B. fragilis was related to IgE levels 
and sensitization to egg or milk in children 
with AD.

The gut microbiome may play different roles 
by disordered microbiota development in AD 
groups. We analyzed the alteration of functional 
features in the gut microbiome along with age 
based on KEGG Orthology (KO). The differen
tial KOs by age in the non-AD group were 
selected by MaAsLin2 after adjustment for cov
ariates. A total of 327 KOs significantly altered 
with age (q < 0.05). We selected the top 19 most 
discriminatory features by random forest model 
with the lowest cross-fold validation error 
(Figure 5 and Table S11). Differences in func
tional features were distinguished by two clusters 
consistent with DMM clustering. Relative abun
dances of 6 KOs were higher in the GMT1 
dominant phase (6–12 months), and those of 
13 KOs were higher in the GMT2 dominant 
phase (13–36 months).

Four KOs gradually changed according to AD 
severity at each age (p < .05 in Kruskal–Wallis test 
and q < 0.05 in Dunn’s test). The relative abun
dance of acarbose and validamycin biosynthesis 
was higher in non-AD than in AD groups at 
6 months. The MAPK signaling pathway showed 
the highest levels in moderate to severe AD at 7– 
12 months. Chloroalkane and chloroalkene degra
dation and transcription were higher in moderate 
to severe AD at 13–24 months. MAPK signaling 
pathway showed higher levels in non-AD than 
in AD groups at 25–36 months. Species contributed 
to these KOs differed among the AD severity 
groups.

Interactions between gut microbiome and host cell 
were perturbed in the AD group (based on animal 
and in vitro cell studies)

The interactions between the perturbed gut 
microbiome and host cell were analyzed using 
animal and in vitro cell assays. The gut micro
biota, SCFA production, and host gene expression 
were compared between non-AD and AD- 
induced mice (Figure 6a). The concentration of 

butyrate was lower in fecal samples of the AD 
group than the non-AD group, whereas acetate 
was higher in the AD group (p < .01; Figure 6b). 
The expression level of genes for G-protein 
coupled receptor 109A (Gpr109a) and peroxisome 
proliferator-activated receptor-γ (Pparg) were 
downregulated in the colon of the AD group 
compared to the non-AD group (p < .01; 
Figure 6c). Positively correlated gut microbes 
with Pparg, Gpr109a, and butyrate were more 
abundant in the non-AD group than in the AD 
group (p < .05; Figure 6d).

Our results clearly show that butyrate production 
by the gut microbiome in the AD group was dis
turbed in both human and animal studies; hence, the 
influence of butyrate on colon epithelial cells was 
analyzed by the oxygen consumption rate (OCR) in 
Caco-2 cells (Figure 6e). Butyrate enhanced OCR 
and mitochondrial respiration processes. However, 
this effect was only detected at 1 mM concentration 
of butyrate, which showed that an optimal concen
tration of butyrate is required to maintain home
ostasis of host cell metabolism.

Discussion

We analyzed the gut microbiome of children 
with AD during early childhood (6–36 months) 
according to severity. The ecological drift of the gut
microbiome during early life, from facultative anae
robes to strict anaerobes, was irregular in AD groups. 
The disordered microbiome development in AD was 
contributed to butyrate deficiency, different micro
biome’s functional genes, and increased IgE levels. 
Perturbed gut microbiota and deficient butyrate 
interacted with gene expressions and OCR in host 
cells. The perturbed microbiome-host crosstalk 
could contribute to AD during early childhood.

The gut microbiota in early childhood was clus
tered into two age-specific types, GMT1 and 
GMT2, regardless of AD phenotype. Age- 
dependent clustering is consistent with previous 
findings,2 resulting from synergistic influences, 
such as immune system development and the tran
sition to solid food during early life.19,24

The age-dependent gut microbiome development 
during early childhood is critical for understanding 
their influences on AD, since microbial diversity and 
specific taxa could be linked to AD. Some studies 
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have reported that the gut microbiota of AD patients 
is less diverse than non-AD patients.16,25 In contrast, 
other studies have found no significant differences in 
microbiota diversity between the groups.13,26 

Bifidobacteria are suggested to be beneficial,27,28 

but are overrepresented in children with allergies at 
a later age.7 Faecalibacterium, Lachnospira, 
Veillonella, and Rothia in the microbiota of children 
aged 3 months are risk factors for developing atopic 
wheeze, but not at 12 months.29 We found that the 
diversity of gut microbiota in moderate to severe AD 
decreased compared to the non-AD group at only 
6 months through WMS. Bifidobacterium was not 
associated with AD, as previously reported.13,20,30,31 

Therefore, the disturbed gut ecosystem could be 
more critical in AD progression during early child
hood than single taxa.

Although the gut microbiota developed with age 
in both non-AD and AD groups, the development 
in the AD groups was disordered, as determined by 
the MAZ analysis. We found that the microbiota of 
children with AD over-matured before 12 months 
compared to those of non-AD children and had 
delayed development at 13–36 months. Shifts of 
indicator species at each age and interspecies inter
actions indicated the disordered gut microbiome 
development in AD groups. The order and timing 
of microbe colonization affect interspecies interac
tions during gut microbiome development.32

Early colonizers can affect the subsequent colo
nization of gut microbial populations. Interspecies 
interactions in AD microbiomes were reduced 
compared to the non-AD microbiome, particularly 
in GMT1, and these interactions varied according 
to AD severity. Also, the reduced interactions in 
GMT1 persisted in GMT2. This provides evidence 
for the influence of priority effects on the gut 
microbiome during early development. The low 
heterogeneity and diversity of moderate to 
severe AD gut microbiota at 6 months partially 
supports this assertion. Reduced interspecies inter
actions at early phases caused reduced interactions 
at intermediate and later phase (GMT2). This can 
cause disordered microbiome development and 
abruptly shift indicator species along ages in 
the AD groups.

The SCFA dysbiosis with age in AD groups (SAZ 
analysis) was consistent with MAZ results. Lower 
SCFA levels and butyrate producers in early life are 

associated with atopic disease development.14,33,34 

The maturation of the gut microbiome and its 
metabolome with age are a synchronized process 
that regulates gut maturation and immune 
development.35 Therefore, SCFA dysbiosis result
ing from disordered gut microbiome development 
during early childhood can be related to AD.

The relative abundance of facultative anaerobes 
throughout early childhood was higher in AD 
groups than in non-AD group in the present 
study. Early colonizing facultative anaerobes gra
dually shift to strict anaerobes by utilizing oxygen 
to create an anaerobic gut environment.19,36 The 
higher abundance of facultative anaerobes in AD 
groups than in non-AD group could indicate that 
the redox balance of the gut environment through
out early childhood is disturbed for those with AD. 
Low SAZ score in AD groups was related to the 
relative abundances of facultative anaerobes and 
strict anaerobes including B. fragilis.

Lower B. fragilis proportions were also related to 
low MAZ scores, reduced interspecies interactions, 
and increased IgE levels in AD groups compared to 
non-AD. In particular, IgE and specific IgE to food 
allergen play a critical role in the pathogenesis 
of AD and food allergy.37–39 A reduced abundance 
of B. fragilis in the AD group, which prevents 
inflammation through its polysaccharide A by 
restoring Th1/Th2 balance,40 was also found in
previous studies.16,27 These results suggest that the 
redox-dysregulated gut environment of children 
with AD during early development could cause 
gut microbiome perturbation and SCFA dysbiosis 
in later life by limiting the colonization of B. fragilis. 
This could cause increasing IgE and egg/milk-IgE 
levels in AD.

The potential influence of disordered gut micro
biome development on host immune responses 
in AD groups was found in functional features 
analysis. Functional genes in the microbiome 
related to acarbose and validamycin biosynthesis 
and MAPK signaling pathway were gradually chan
ged according to AD severity. The anti-
inflammatory effect of acarbose has been previously 
reported in the mouse model of inflammation.41 

MAPK signaling pathway was higher in AD groups 
at the earlier phase, whereas this pathway was 
higher in non-AD group at the later phase. This 
pathway is important for cell growth, 
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differentiation, and inflammation,42,43 and there
fore may play different roles in the gut through 
different contributing species at early and later 
phases of early childhood.

The interaction between the perturbed gut 
microbiome and host cell in the AD group was 
evaluated in animal studies and in vitro cell assays. 
Deficient butyrate was caused by perturbed gut 
microbiota in the AD-induced mice, resulting in 

the downregulated expression of Gpr109a and 
Pparg in the colon. GPR109A is a receptor for 
butyrate,44 and butyrate activates PPAR-γ signal
ing, which induces epithelial cell proliferation, oxi
dative phosphorylation, and immune 
development.45–47 In addition, butyrate enhanced 
the OCR of the host cell, which corresponds to an 
increase in mitochondrial oxidative phosphoryla
tion and a decrease in anaerobic glycolysis.48,49 
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Figure 7. Hypothetical model for microbiome-host interactions in the gut ecosystem of AD during early life. In the non-AD group, the 
gut microbiome develops during early childhood by colonizing microbes at the appropriate time. Early colonizing facultative 
anaerobes gradually shift to strict anaerobes by utilizing oxygen to create an anaerobic gut environment. Adequate maturation of 
the gut microbiome regulates SCFAs production and immune development throughout early childhood. Butyrate produced by strict 
anaerobes activates PPAR-γ, mitochondrial respiration, and increases oxygen consumption through oxidative phosphorylation. Thus, it 
maintains an anaerobic environment by reducing oxygen emanation from the mucosa. Moreover, the butyrate induces Treg cells, which 
control Th2 inflammation. In the AD group, this cyclic interaction is imbalanced, exacerbating the homeostasis of the gut ecosystem. An 
abnormal oxygen environment in the gut maintains facultative anaerobes during childhood; it limits B. fragilis colonization throughout 
the lifespan. Disordered gut microbiome development is related to decreased butyrate production and abnormal immune responses. 
PPAR-γ and Treg cells cannot be activated with a decrease in butyrate. The epithelial proliferation and mitochondrial respiration 
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anaerobes induce abnormal immune responses.
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When the host’s metabolism shifts toward anaero
bic glycolysis, it decreases oxygen consumption and 
increases glucose consumption and lactate 
release,50,51 driving the proliferation of facultative 
anaerobes.52 These influence the differentiation of 
Treg cells and immune responses.10,53 This circular 
crosstalk can accelerate gut ecosystem dysbiosis. 
Therefore, the disordered gut microbiome develop
ment and SCFA dysbiosis in children with AD 
affect gut homeostasis, including the immune sys
tem. Our results advance the understanding of the 
gut microbiome-host interactions in AD during 
early childhood (Figure 7).

Since it is challenging to evaluate human gut 
microbiome development using animal models,54,55 

we could not apply microbiome development states 
in mice. This can be improved with advancements in 
omics technologies, in vitro, and humanized in vivo 
models in the future. Although differences of micro
biome’s functional gene among phenotypic groups 
were found by whole metagenome in this study, 
further studies will be necessary to clarify these find
ings by other techniques including metatranscrip
tomic and metaproteomic analyses. Furthermore, 
we could not identify the causative covariates of gut 
microbiome development in this study. This could 
be due to the limited covariates obtained or complex 
interactions in the gut ecosystem. Nevertheless, our 
study is significant because it advances the hypoth
esis regarding the influence of the gut microbiome 
on the pathogenesis of AD through host- 
microbiome interactions during early life. This can 
help develop novel prediction and treatment strate
gies for AD in early life.

In conclusion, regulated gut microbiome devel
opment is essential to maintain the gut ecosystem 
during early childhood. Disordered microbiome 
development in AD is characterized by persisting 
facultative anaerobes and limited B. fragilis coloniza
tion with age, which reduces SCFA production and 
induces abnormal immune responses by increasing 
IgE. This relationship is dynamic and harmonious 
crosstalk of a symbiotic human-microbiome system. 
Thus, the early stages of microbiome development 
may be an appropriate target for modulating the 
microbiota and establishing a healthy microbiome. 
Understanding these symbiotic relationships is cri
tical for developing preventive and therapeutic stra
tegies to treat AD in early childhood.

Material and methods

Study subjects and sample collection

The statistical power of the sample number per 
group was estimated using the micropower 
R-package based on permutational multivariate 
analysis of variance (PERMANOVA).56 The 
PERMANOVA powers were calculated based on 
the weighted UniFrac distance of infant gut 
microbiota data in our previous study.13 The effect 
sizes (ω2) were calculated using the simulated 
matrixes of 80% and 90% powers for varying sam
ple numbers per group (Table S1). One hundred 
bootstrap iterations were performed using 
a significance level of 0.05 to estimate the power 
and effect size. The effect size was smaller than 
0.0001 in ≥ 100 samples per group for 
a discriminatory power of 90%. Therefore, we 
aimed to collect more than 100 samples per 
group in this study.

Subjects in this study were recruited from the 
Longitudinal Cohort for Childhood Origin of 
Asthma and Allergic Disease (COCOA) birth 
cohort (over 3,000 infants enrolled) and 
Childhood Asthma Atopy Asan Medical 
Center.57 The collection of data and biological 
samples in the COCOA study is conducted 
every year for all enrolled children from 
6 months to 20 years old, regardless of allergic 
disease development. Pediatric allergists 
diagnosed AD according to Hanifin and Rajka’s 
criteria.58 AD severity was simultaneously 
assessed at fecal collection using the SCORAD 
index (mild < 25 and moderate to severe ≥ 25).59 

Total IgE and egg- and milk-specific serum IgE 
(IU/mL) levels were measured using fluorescent 
enzyme immunoassay (AutoCAP system, Phadia 
AB, Uppsala, Sweden) after 12 months of age for 
all subjects. Subjects without any visible sign of 
skin eczema indicative of AD from 6 to 
36 months and without food sensitization (< 
0.35 of specific IgE to egg and milk) were 
recruited into the non-AD group. Subjects who 
received antibiotics during 6 months preceding 
collection and had health complications, includ
ing gestational age < 37 weeks, smoking expo
sure during pregnancy, any major congenital 
anomalies, and birth asphyxia requiring oxygen 
supplementation, were excluded from the study. 
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Collected clinical data and biological samples in 
this study were summarized in the sampling 
strategy (Figure S1).

A total of 346 samples (112 non-AD, 110 
mild AD, and 124 moderate to severe AD) 
from 6 to 36 months old were collected from 
the COCOA cohort. Fecal samples were col
lected from five university hospitals in Seoul, 
and each center transported samples in iceboxes 
to the laboratory within 4 hours after sample 
collection. Samples were immediately stored at 
−80°C before being processed for DNA 
extraction.

This study was approved by the Institutional 
Review Boards (IRBs) of Asan Medical Center (IRB 
no. 2008–0616 and 2015–1031), Samsung Medical 
Center (IRB no. 2009–02-021), Severance Hospital 
(IRB no. 4–2008-0588), CHA Medical Center (IRB 
no. 2010–010), and Seoul National University 
Hospital (IRB no. H-1401-086-550). Written 
informed consent was obtained from the parents of 
each infant.

16S rRNA gene amplicon sequencing

Metagenomic DNA was extracted from fecal 
samples using the RNeasy PowerMicrobiome 
Kit (Cat #26000-50, Qiagen, Valencia, CA, 
USA) following the manufacturer’s instructions. 
The extracted DNA was purified using the 
DNeasy PowerClean Pro Cleanup Kit (Cat 
#12997-50, Qiagen) and quantified using 
a BioPhotometer D30 with a μCuvette G1.0 
(Eppendorf, Hamburg, Germany). The V1–V3 
region of the 16S rRNA gene was amplified 
using a C1000 thermal cycler (Bio-Rad, 
Hercules, CA, USA) per the MiSeq system pro
tocol for preparing a 16S metagenomics sequen
cing library (Illumina, Inc., San Diego, CA, 
USA), as described previously.60,61 Equimolar 
concentrations of each sample were pooled and 
sequenced using the Illumina MiSeq system 
(300-bp paired ends) according to the manufac
turer’s instructions. Previous studies reported 
the influence of potential contamination of 
reagents on sequence-based microbiome 
analyses.62,63 Therefore, we sequenced and ana
lyzed negative controls for quality control of 
sequencing. Negative controls were included at 

every step to check contamination, and three 
negative controls were sequenced with samples. 
Sequenced negative controls included unused 
stool box (sampling blank), DNA-free water 
added to the RNeasy PowerMicrobiome Kit 
(negative extraction controls), and the library 
preparation instead of DNA (library negative 
controls).

Amplicon sequences were analyzed using the 
QIIME2 pipeline.64 Raw sequences were quality 
filtered, and denoised using DADA2, and the taxo
nomic position of representative sequences were 
assigned with the EzTaxon-e database.65 Diversity 
indices were calculated after rarefied without repla
cement. A total of 28,804,166 reads (median 68,045 
reads per sample) in human fecal samples were 
obtained from sequence analyses.

Whole metagenome shotgun sequencing

Extracted DNA from 346 samples was fragmen
ted using a NEBNext dsDNA Fragmentase (Cat 
#0348 L, New England Biolabs, Ipswich, MA
, USA). Then, metagenomic libraries were pre
pared using the ACCEL-NGS 2S PLUS DNA 
Library Kits (Cat #21096, Swift Biosciences, 
Ann Arbor, MI, USA) according to the manu
facturer’s instructions.

The size of the libraries was confirmed using 
a Bioanalyzer 2100 (Agilent Technologies, Santa 
Clara, CA, USA). The concentration of the 
library was measured using a PicoGreen 
dsDNA Assay kit (Cat #P11496, Invitrogen, 
Carlsbad, CA, USA). Equimolar concentrations 
of each library were calculated by qPCR using 
a TaKaRa PCR Thermal Cycler Dice Real Time 
System III (TaKaRa Bio, Inc., Shiga, Japan) with 
the GenNext NGS Library Quantification Kit 
(Cat #NLQ-101, Toyobo, Osaka, Japan).

Libraries were pooled and sequenced using 
the Illumina HiSeq 2500 system (250-bp paired 
ends). Three samples were excluded due to 
failed sequencing library preparation. Thus, 
a total of 343 samples were analyzed. For qual
ity control of shotgun sequencing, negative 
controls were processed following the same 
procedures to check contamination, and two 
kinds of negative control were sequenced with 
samples. The two negative controls were DNA- 
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free water added to the RNeasy 
PowerMicrobiome Kit (negative extraction con
trols) and the library preparation instead of 
DNA (library negative controls).

WMS were analyzed as described 
previously.13,66 Briefly, adapter removal and 
quality filtering were performed using 
Trimmomatic with default options (leading 
and trailing: 3, sliding window size: 4, quality: 
15, min length: 150).67 Paired-end sequences 
were merged using PEAR v.0.9.11.68 

Contaminated human genes were removed 
using the BBMap (http://sourceforge.net/pro 
ject/bbmap) with a reference human genome. 
Taxonomic features were obtained by using 
MetaPhlAn2 v.2.7,69 and functional features 
were obtained by using HUMAnN2 v.2.8.0.70 

Finally, the resultant UniRef90 IDs were con
verted to the KOs. A total of 2,635,653,581 
reads (median 6,837,236 reads per sample) 
were obtained from WMS analysis.

Quantification of total bacterial amounts

The relative amounts of bacteria in fecal samples 
were estimated by quantitative real-time PCR based 
on the 16S rRNA gene. The 16S rRNA gene was 
amplified with the primer 340 F (5′-TCC TAC 
GGG AGG CAG CAG-3′) and 518 R (5′-ATT ACC 
GCG GCT GCT GG-3′) using a Thermal Cycle Dice 
Real-Time System III (TaKaRa Bio, Inc.).

Each sample was measured in triplicates in 
a 25-μL reaction containing 12.5 μL of TB 
Green Premix Ex Taq (Tli RNaseH Plus) (Cat 
#RR820B, TaKaRa Bio, Inc.), 2 μM of each pri
mer, and 1 μL of DNA template (a 10-fold dilu
tion series of sample DNA) with following 
amplification conditions: 95°C for 30s, followed 
by 40 cycles of denaturation at 95°C for 5 s and 
annealing at 60°C for 30s. We quantified the 
bacterial amount by comparing threshold cycles 
(Ct) values to a standard curve generated from 
parallel reactions of serial dilutions (1 × 101–1 × 
107) of the 16S rRNA gene from the Escherichia 
coli K12 w3110 strain. Regression coefficients 
(r2) for all standard curves were ≥ 0.98.

SCFAs analysis

Fecal SCFAs were extracted with modification of 
previously described methods.71,72 Acetic acid (Cat 
#338826, Sigma-Aldrich, St. Louis, MO, USA), pro
pionic acid (Cat #81910, Sigma), iso-butyric acid 
(Cat #58360, Sigma), butyric acid (Cat #W222100, 
Sigma), iso-valeric acid (Cat #129542, Sigma), and 
valeric acid (Cat # 240370, Sigma) were used as 
standard compounds. 4-methlyvaleric acid (Cat 
#277827, Sigma) was used as an internal standard 
(IS) for final adjustment on the quantity of each 
compound in samples. Briefly, 20 mg of fecal sam
ple was suspended in extraction solution (450 μL of 
methylene chloride, 5 μL of IS (10 ppm), and 25 μL 
of 0.6 M HCl). The suspension was derivatized for 
10 min after vortexing and centrifuging (14,000 × g) 
for 10 min at 4°C. Finally, the methylene chloride 
layer was transferred into the test vial and briefly 
vortexed before injecting into the gas chromatogra
phy-mass spectrometry (GC-MS).

The GC-MS analysis was performed on an 
Agilent 7890A gas chromatograph coupled to an 
Agilent 7000 triple quad mass spectrometric
, detector (MSD, Cat #G7000-90038, Agilent 
Technologies). Derivatives were separated using 
a VF-WAXms capillary column (30 m × 0.25 mm, 
0.25 μm film thickness, Agilent J & W Scientific, 
Folsom, CA, USA) with a carrier gas (helium) at 
a flow rate of 2.5 mL/min. One microliter of the 
sample was injected into the system. The oven 
program was set at 80°C for 2 min, raised to 
160°C at a rate of 20°C/min, to 180°C at a rate of 
3°C/min, to a final temperature of 230°C at a rate of 
10°C/min and maintained for 5 min. The transfer 
line temperature was set to 200°C. The MS source 
was held at 230°C and the quadrupole at 150°C. 
The energy of electron ionization was set to 70 eV. 
The mass spectral data were collected in a selected 
ion monitoring mode.

Quantitative analysis software (MSD, Agilent 
Technologies) was used to process the GC-MS 
data for peak picking, standard curve construction, 
and SCFAs quantification. The concentration of 
each SCFA in samples was calculated using the 
calibration curve constructed from the GC-MS 
data of corresponding SCFA standards.
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Predictive SCFAs metabolite profiling

We used the Model-based Genomically Informed 
High-dimensional Predictor of Microbial 
Community Metabolic Profiles (MelonnPan 
v.0.99.0)73 to predict SCFAs profiles based on mea
sured SCFAs in fecal samples and functional gene 
features of gut microbiomes obtained from 
HUMAnN2 (UniRef90 gene families).

After normalizing the raw measures into relative 
abundances, we filtered features (gene families and 
SCFAs) by both relative abundance (> 0.01%) and 
prevalence (> 10% of the samples). We measured 
SCFAs and functional gene features from 41 sam
ples to construct a training set. SCFAs were pre
dicted based on the functional gene features of 302 
samples using elastic net regularization and cross- 
validation. The predictability of each metabolite 
was evaluated using the Spearman correlation coef
ficient (r) between the measured and predicted 
metabolites concentration across samples.

The same labels were repeatedly shuffled in 
both metabolite and gene family tables to test 
the significance of well-predicted metabolites 
(r > 0.3),73 the MelonnPan model was applied 
to the randomized data by shuffling to link genes 
to metabolites, and the predicted metabolites in 
the original data and randomized data were 
compared.

Butyrate and propionate were successfully 
predicted after evaluating 10-fold cross- 
validation of predicted metabolisms in the pre
sent study. The accuracy of predicted metabo
lites was evaluated by the representative training 
sample index (RTSI) scores based on principal 
component analysis (PCA).

Animal studies

Female C57BL/6 mice were purchased from 
ORIENT Bio Korea. The mice (8-week-old) were 
divided into AD (n = 8) and non-AD (n = 10) 
groups. AD was induced for five weeks. Briefly, 
200 μL of 1% 1-Chloro-2,4-dinitrobenzene 
(DNCB) in an acetone:olive oil mixture (3:1 vol/ 
vol) was applied to the shaved dorsal skin, and then 
the skin was covered with a transparent film dres
sing. 1% DNCB was applied three times a week for 
one week. Then, 0.4% DNCB was applied three 

times a week for four weeks. At 35 days, mice 
were sacrificed, and the middle part of the colon 
was collected for gene expression analysis, and fecal 
samples were collected for microbiota and SCFA 
analyses. All procedures were performed in accor
dance with the guideline of the Institutional Animal 
Care and Usage Committee at Soonchunhyang 
University.

Quantitative reverse transcriptase-polymerase chain 
reaction analysis
Total RNA was extracted using TRIzol reagent (Cat 
#15596018, Invitrogen) from the collected middle 
part of the colon. RNA was converted to cDNA 
using reverse transcription reagents (Cat #FSQ- 
201, Toyobo). PCR was performed using SYBR 
Green Real time PCR Master Mix Kit (Toyobo) 
with specific primers for target genes (Table S12). 
The reaction was performed with QuantStudio5 
Real-Time PCR System (Applied Biosystems, 
Foster City, CA, USA). The expression levels of 
target genes were calculated by comparing the rela
tive expression levels after normalization to β-actin.

Microbiota analysis in mice fecal samples
Metagenomic DNA was extracted from fecal sam
ples of mice using the RNeasy PowerMicrobiome 
Kit (Qiagen). The 16S rRNA gene amplicon 
sequencing and analyses were performed as 
described above. A total of 442,006 reads (median 
20,543 reads per sample) in mouse fecal samples 
were obtained from sequence analyses.

SCFAs analysis
SCFAs in mice fecal samples were extracted and 
analyzed using GC-MS as described previously.

In vitro cell experiment

Caco-2 cells (ATCC® CRL-1790TM) were cultured 
in Eagle’s minimum essential medium (EMEM) 
supplemented with 20% fetal bovine serum (FBS) 
and 1% penicillin-streptomycin by incubation at 
37°C in a humidified atmosphere containing 5% 
CO2. Cultured Caco-2 cells at passages 20–27 
were used for experiments.
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Cell viability
Caco-2 cells were seeded (0.5 ×104 cells/well) into 
96-well plates and incubated at 37°C for 24 h to 
allow the cells to attach. Caco-2 cells were treated 
with butyrate (concentrations of 0.5, 1, and 5 mM). 
Afterward, 20 μL of MTT solution (final concentra
tion of 1 mg/mL) was added to each well, and cells 
were incubated for 2 h. The cell culture medium 
was subsequently removed, and each well was trea
ted with 200 μL DMSO to dissolve formazan crys
tals. Dissolved formazan absorbance was measured 
at 570 nm using a microplate reader (Sunrise-Basic 
Tecan, Tecan Austria GmbH, Grödig, Austria). The 
cell viability was expressed as the percentage of 
MTT reduction calculated relative to the absor
bance of control cells.

Mitochondrial Function
The effect of butyrate on mitochondrial function was 
measured by seeding Caco-2 cells in Seahorse XFp 
mini-plate (Cat #103025-100, Agilent Technologies) 
at 0.7 ×104 cells/well. Cells were cultured as 
described above. The cells were washed with extra
cellular flux (XF) DMEM medium (Agilent 
Technologies) supplemented with 5.55 mM glucose, 
2 mM glutamine, and 1 mM sodium pyruvate fol
lowed by incubation in this medium for 60 min at 
37°C in a non-CO2 incubator. Plates were trans
ferred to a Seahorse XFp analyzer (Agilent 
Technologies) and subjected to an equilibration per
iod. After measuring the basal oxygen consumption 
rate (OCR) for four cycles, oligomycin (1.5 µM, 
Agilent Technologies) was added to determine the 
proportion of respiration used to generate ATP. 
Then, carbonyl cyanide-4-(trifluoro methoxy) phe
nyl hydrazone (FCCP, 0.5 µM, Agilent 
Technologies) was added to determine the maximal 
respiration by mitochondria. After that, rotenone 
(0.5 µM, Agilent Technologies) and antimycin 
A (0.5 µM, Agilent Technologies) were added to 
measure the non-mitochondrial respiratory rate.

Statistical analysis

Statistical analysis was performed with the 
R software v.4.0.2. All statistical tests for micro
biome data were two-sided.

Clinical data
The Kruskal–Wallis test was used to compare 
continuous variables among groups, and the 
Chi-square test was used to compare categorical 
variables between groups. The ORs and corre
sponding 95% confidence intervals (CI) were 
calculated using unconditional logistic regression 
models.

Microbiota analysis
The difference in Shannon diversity index between 
non-AD and AD groups was analyzed using the 
Mann–Whitney–Wilcox test. Differences in beta- 
diversity were visualized using NMDS plots and 
tested for inference by PERMANOVA (Adonis 
from the package vegan with 999 permutations) 
based on the Bray–Curtis distance.

Differences in relative abundances in microbiota 
were analyzed using the Kruskal–Wallis tests for 
three-group comparisons, and Dunn’s test was 
used to identify pairwise differences between 
groups. Dunn’s test was performed using the 
‘dunn.test’ package in R, and an approximately 
normal distribution was used to calculate p-values. 
P-values were adjusted using Benjamini–Hochberg 
false discovery rate (FDR) multiple testing
, correction. Results with q (adjusted p-value) < 
0.05 were considered statistically significant. WMS 
data was normalized using the cumulative sum 
scaling (CSS) method. Differences in normalized 
abundance by CSS among groups were analyzed 
using multivariate association with linear models 
(MaAsLin2).74

The inter-individual gut microbiota heterogene
ity within the same group according to age was 
determined by the locally weighted scatterplot 
smoothing (LOESS) regression based on the Bray– 
Curtis dissimilarity. The heterogeneity was evalu
ated using the Kruskal–Wallis test and Mann– 
Whitney U test. The significance of quantitative 
real-time PCR results among groups was calculated 
using the Mann–Whitney U test and Kruskal– 
Wallis test.

The correlations between significantly associated 
genera with Pparg, Gpr109a, acetate, and butyrate 
in mice experiments were analyzed using the 
Spearman correlation in R software.
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DMM clustering
The variance of the gut microbiota in all samples 
was analyzed using DMM modeling75 with the 
R package DirichletMultinomial. DMM clustering 
was conducted at the genus level to compare results 
between 16S and WMS. The lowest Laplace approx
imation score determined the number of clusters.

Comparison of taxonomic profiles between 16S and 
WMS
The overall concordance of microbiota composi
tions between 16S and WMS analyses was com
pared at the phylum and genus levels. Relative 
abundances of taxa were visualized using bar 
plots. Linear regression models and a Pearson cor
relation test were used to investigate the coefficient 
inference associations between 16S and WMS data
sets. The correlation and regression of two datasets 
were visualized using scatterplots.

Indicator species analysis
The indicator species at each age were determined 
using the ‘multipatt’ function of the indicspecies 
package in R software. We selected species with > 
10% prevalence and > 0.01% mean relative abun
dance in at least one group to identify indicators. 
This procedure is a statistical method determining 
whether a particular species is significantly more 
abundant in predefined groups than when the same 
species are randomly assigned to the groups. The 
non-AD microbiota determined the indicator spe
cies at each age. The significance of the association 
of the indicator with age was tested using 
10,000 permutations. Results with p < .05 were 
considered indicators at each age. Resultant indica
tors were evaluated by multivariate analysis of 
MaAsLin2 after adjustment for covariates.

EnvFit analysis
Covariates (sex, delivery mode, feeding type, allergic 
family history, AD diagnosis, total IgE, egg-IgE, and 
milk-IgE) could be related to differences in the gut 
microbiome and allergic disease. The effect size and 
significance of each covariate in the variation of 
microbiota were determined using the ‘envfit’ func
tion in R package vegan (v.2.5–7), which compared 
the difference in centroids of each group relative to 
the total variation. The significance was determined 
using 999 permutations. A PERMANOVA was used 

to determine the covariates with the strongest effects 
on taxonomic and functional features. Results with 
p < .05 were considered statistically significant.

Random forest model
Random forest regression was performed to model 
the gut microbiota age based on the relative abun
dance of bacterial species obtained from WMS of 
112 non-AD samples (6–36 months) using the 
R package Ranger. The chronological age of the 
microbiota in children without AD was used as 
a training set to predict the estimated microbiota 
age (EMA). The resulting prediction model, 
defined by alterations in bacterial species, was sub
sequently applied to all subjects with Ranger’s ‘pre
dict’ function. These estimates were used as a proxy 
for gut microbiota maturation.76 Next, sensitivity 
analyses were performed by restricting the models 
to samples not included in model building to con
firm the independence of the training sets.

To estimate the microbiota age, the N top dis
criminatory species were identified by the ‘rfcv’ 
function in the randomForest package. We calcu
lated the MAZ to compare the maturation of the 
gut microbiota among groups as described 
previously.20,76 A lower MAZ is indicative of 
a delay in microbiota development.

We used a similar process to estimate the SAZ 
for analyzing the dysbiosis of SCFAs profiles 
according to gut microbiota development varia
tions between non-AD and AD groups, and pre
dicted the SCFA age score using the training set. 
Linear regression models and a Pearson correlation 
test were used to analyze the associations between 
the SAZ and MAZ. In addition, Spearman correla
tion was used to identify the species associated with 
SAZ in each phenotypic group.

The correlations between significantly asso
ciated species with abnormal MAZ or SAZ 
in AD groups and clinical features (SCORAD 
index, Total IgE, egg-IgE, milk-IgE, and eosino
phil) were analyzed using the Spearman correla
tion in R software.

Network analysis
Interspecies correlations were estimated using 
FastSpar77 based on Pearson correlation with 
1,000 bootstraps. Pseudo p-values were 
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calculated as the proportion of simulated boot
strapped datasets with a correlation at least as 
extreme as the one computed for the original 
data set. The corresponding correlation network 
was visualized using the R package qgraph. The 
top 10 species in each microbiota (GMT) group 
were selected for each phenotype by random 
forest, and they were used for network analysis. 
Significant correlations (with p < .05) were 
shown in the network.

Node sizes were scaled on the eigenvector cen
trality measure, which was determined using the 
R package igraph. Edge thickness denoted 
a FastSpar correlation ranging from values −0.4 to 
0.4. Hubs were identified using the PageRank algo
rithm, a link analysis with the underlying assump
tion that hubs are more connected to other nodes 
than non-hub nodes.78 The top five species with the 
highest PageRank in each phenotypic group were 
selected as hubs in the networks. This process was 
performed in R using the igraph package.

Functional features analysis
Functional features of the gut microbiome were 
analyzed using the KO category. The significantly 
different features, according to age, were selected by 
MaAsLin2 after adjustment for covariates (q < 
0.05). The N top discriminatory KOs were selected 
by ‘rfcv’ function in the randomForest package.

Gene families involved in butyrate and propionate 
metabolism were compared between phenotypic 
groups at each age. MaAsLin2 evaluated the difference 
in gene families between phenotypic groups at each 
age after adjusting for covariates. We evaluated the 
significance of different KOs and gene families 
between phenotypic groups at each age using the 
Kruskal–Wallis test and Dunn’s test. P-values were 
adjusted using the Benjamini–Hochberg method. 
Results with q < 0.05 were considered statistically 
significant.
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SCFA data are deposited on Zenodo at https://doi.org/10. 
5281/zenodo.5602428.
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