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Accelerating Functional MRI Using Fixed-Rank
Approximations and Radial-Cartesian Sampling
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Purpose: Recently, k-t FASTER (fMRI Accelerated in Space-

time by means of Truncation of Effective Rank) was introduced
for rank-constrained acceleration of fMRI data acquisition. Here

we demonstrate improvements achieved through a hybrid
three-dimensional radial-Cartesian sampling approach that
allows posthoc selection of acceleration factors, as well as

incorporation of coil sensitivity encoding in the reconstruction.
Methods: The multicoil rank-constrained reconstruction used
hard thresholding and shrinkage on matrix singular values of the

space-time data matrix, using sensitivity encoding and the non-
uniform Fast Fourier Transform to enforce data consistency in the

multicoil non-Cartesian k-t domain. Variable acceleration factors
were made possible using a radial increment based on the golden
ratio. Both retrospective and prospectively under-sampled data

were used to assess the fidelity of the enhancements to the k-t
FASTER technique in resting and task-fMRI data.

Results: The improved k-t FASTER is capable of tailoring
acceleration factors for recovery of different signal components,
achieving up to R¼12.5 acceleration in visual-motor task data.

The enhancements reduce data matrix reconstruction errors
even at much higher acceleration factors when compared

directly with the original k-t FASTER approach.
Conclusion: We have shown that k-t FASTER can be used to
significantly accelerate fMRI data acquisition with little penalty

to data quality. Magn Reson Med 76:1825–1836, 2016.
VC 2016 The Authors Magnetic Resonance in Medicine pub-
lished by Wiley Periodicals, Inc. on behalf of International
Society for Magnetic Resonance in Medicine. This is an
open access article under the terms of the Creative Com-
mons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work
is properly cited.
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INTRODUCTION

Functional MRI (fMRI) is increasingly taking advantage of
acceleration methods to improve the efficiency of data

acquisition, increase achievable temporal and spatial reso-
lutions, and reduce artifacts (e.g., image distortion or phys-
iological noise). Higher sampling rates in fMRI increase the
temporal dimensionality of the time-series data, which is
beneficial for statistical inference (1). Moreover, they pro-
vide an opportunity for finer characterization of hemody-
namic response features. Alternatively, interest in using
fMRI to probe functional organization of the brain at finer
scales, like cortical layers (2) or columns (3), particularly
combined with ultrahigh field MRI at 7 Tesla (T) or above,
incurs a significant burden on acceleration to mitigate lon-
ger volume repetition times (TRs) at high matrix sizes.

Conventionally in fMRI, acceleration is achieved using
parallel imaging techniques such as SENSE (4) or GRAPPA
(5), which rely only on spatial coil sensitivity information
resolve undersampling. More recently, simultaneous multi-
slice or “multiband” methods (6,7), which accelerate by
acquiring more than one slice at a time without sampling
reduction, and three-dimensional (3D) echo planar imaging
(EPI) methods have seen increased adoption (8), particularly
when combined with CAIPIRINHA (9) to mitigate signal-to-
noise ratio (SNR) loss. However, these methods only use
spatial information in images from single time-points, inde-
pendently. While these methods are powerful, they do not
exploit information contained in the time domain. Parallel
imaging approaches that do incorporate information across
temporal frames, such as k-t GRAPPA (10), do so by enforc-
ing strong temporal autocorrelation, which can undermine
the goal of increasing temporal resolution.

Recently, we introduced a method, k-t FASTER (fMRI
Accelerated in Space-time by means of Truncation of Effec-
tive Rank) (11), that explicitly leverages the fact that fMRI
data have a limited number of spatial and temporal compo-
nents that contain the signals of interest. In other words,
fMRI k-t matrices can be robustly characterized with fixed
rank approximations, which permits the application of tech-
niques developed for recovery of undersampled matrices
(12). These matrix completion methods are similar to com-
pressed sensing (13), where matrix rank constraints replace
vector sparsity constraints, although with our approach no
prespecified sparsifying basis is needed, as fMRI data are
not sparse under conventional transforms. Our original
work demonstrated the ability for k-t FASTER to robustly
accelerate resting fMRI data acquisition by just over
4� (acquiring only 23% of k-space) by using an under-
sampled multishot 3D EPI sampling strategy combined with
an iterative hard threshold and matrix shrinkage reconstruc-
tion. Notably, the matrix recovery was performed in a coil-
independent manner to demonstrate the entire burden of
reconstruction being carried by the rank constraints.

In previous methods that use temporal information for
acceleration in fMRI, the data were required to possess
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specific spatial-spectral structure to avoid x-f aliasing
(14), or to permit temporal sparsity-constrained recon-
structions (15). These methods are typically restricted to
data with x-f structure, which limits their applicability.
Recent work has also explored the use of Karhunen-Loeve
transform (KLT) to identify a more general sparsifying
basis (16,17); however, these methods require additional
training data or use only a subset of acquired data for
basis estimation.

In contrast, low rank matrix completion only requires the

assumption that the data contain a small number of high-

variance rank-1 components (relative to the matrix size). In

the case of fMRI, a component is described by the outer

product of a spatial map and its associated time-course, rep-

resenting brain networks (or nuisance signals similar to

those identified by independent component analysis). No a

priori characterization of those components is necessary.

This powerful property circumvents the requirement for

knowledge of a sparsifying transform or the need to impose

model structure on the matrix estimates.
Preliminary reports of similar methods for rank-based

acceleration of fMRI data acquisition have included

additional sparsity constraints to regularize the recon-

struction, such as promoting sparsity of the recovered

spatial components (18) or sparsity of the images in the

wavelet domain (19). In contrast, the k-t FASTER

approach relies solely on a strict fixed-rank constraint,

without relying on prior information or any specific spa-

tial or temporal structure.
Here we introduce an improved version of our k-t

FASTER method, which uses a 3D hybrid radial-Cartesian

sampling trajectory that enables acceleration factors to be

selected posthoc. Additionally, we incorporate coil sensi-

tivity maps into the reconstruction in an approach that

estimates a single, underlying x-t matrix. We show, in

both numerical simulations and experiments, that the

more sophisticated sampling and sensitivity encoding

both help to increase achievable acceleration factors, and

that acceleration limits are dictated by the strength or var-

iance of components to be recovered in the fixed-rank sig-

nal model, relative to noise. Furthermore, we demonstrate

that k-t FASTER can robustly identify both task activation

and intrinsic networks in task experiments up to R¼ 12.5

and R¼5, respectively, with no prerequisite knowledge of

task waveforms, specific design constraints or assump-

tions of spatial structure necessary for reconstruction.

METHODS

Sampling

The sampling strategy used here comprises a multishot 3D

acquisition along a hybrid radial-Cartesian k-space trajec-

tory (20–22) (Fig. 1a). In this approach, each shot samples

a 2D plane of k-space using an echo-planar trajectory.

However, instead of sampling parallel planes in 3D space

(as is done in 3D EPI), each plane is rotated about the EPI

phase-encoding direction to cover a cylinder in k-space,

with a Cartesian sampling distribution along kz, and radial

distribution in kx-ky. This trajectory was previously pro-

posed in the context of diffusion imaging and acquired

projections with monotonically increasing angle (20), our

new implementation sets the angular increment by the

golden ratio (180
�
/1.618 � 111.25

�
). This sampling

scheme results in an ordering of radial projections such

that any arbitrary number of consecutive measurements

produce a near optimal k-space encoding efficiency (23)

(Fig. 1b). This sampling pattern is similar to the “stack-of-

stars” trajectories used in other dynamic rank-constrained

accelerated acquisition methods (24). However, acquiring

data along the z-direction using an EPI readout instead of

line-by-line is more efficient for fMRI given the long echo

time constraints for optimal BOLD contrast.
One benefit of this sampling scheme is that acceleration

factors can be chosen for the data posthoc, so data can be

reconstructed at multiple temporal resolutions. While Car-

tesian sampling patterns fix the acceleration factor of the

reconstructed data at acquisition time, this scheme pro-

vides more flexibility and potentially increases the utility

of the acquired data, permitting second level optimization

on temporal bin width. With the richness of fMRI data, sig-

nal models of varying ranks can represent different

amounts of desired network information, and can be esti-

mated with maximum acceleration factors linked to model

order. Previous work with bit-reversed multiecho radial

FIG. 1. Diagram of the 3D hybrid radial-Cartesian multishot sampling scheme (a). Each shot constitutes an EPI readout with kz phase
encoding, and is rotated by approximately 111.25

�
about the z-axis from the shot previous. Top down view along the kz-axis showing

the radial order of acquisition for the first 30 projections (b), where projections acquired close together in time share similar color.
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ordering schemes (25) offer similar benefit, but with
reduced flexibility due to the fact that optimal k-space cov-
erage is achieved only when bin sizes are powers of two.

Another advantage of this sampling procedure, hereafter
referred to as “radial” for simplicity, is that the undersam-
pling is distributed across two spatial dimensions, com-
pared with just one dimension in our previous 3D EPI
implementation with undersampling in kz only. The arti-
facts resulting from radial under-sampling are also less
coherent in the image domain compared with more con-
centrated artifact power resulting from Cartesian under-
sampling schemes. However, radial encodings are inher-
ently less efficient than Cartesian encodings, by a factor of
P/2 (�57%) (26). To accurately reflect the impact on
achievable volume scan times compared with conven-
tional acquisitions, we report all acceleration factors rela-
tive to the amount of sampling in an equivalent fully
sampled Cartesian acquisition. By this convention, a
radial trajectory would have to use some under-sampling
to achieve an acceleration of R¼ 1.

Reconstruction Algorithm

Rank constrained optimization problems can be formu-
lated in several different ways. The iterative hard thresh-
olding (IHT) or projected Landweber algorithm (27)
solves the following constrained optimization problem
using a fixed rank constraint:

minX ky �FðXÞ22k such that rankðXÞ ¼ r: [1]

However, our recent work (11) found that incorporating
a matrix shrinkage step improved reconstruction fidelity
in fMRI data. Our method of iterative hard thresholding
with matrix shrinkage (IHTþMS) is also similar to a vari-
ant of the fixed point continuation (FPC) algorithm (28),
the latter of which solves the unconstrained problem:

min
X

1

2
ky �FðXÞk2

2 þ lkXk�: [2]

In both Eqs. [1] and [2], X is the estimate of the data
matrix, F is the measurement and sampling operator, and
y is a vector containing the measured data. In Eq. [2], l is
a Lagrange multiplier, and k � k� is the nuclear norm (sum
of singular values), which is the convex relaxation of the
rank constraint.

As the IHTþMS approach is a heuristic variant of the
IHT and FPC algorithms, it does not solve Eq. [1] or [2]
directly, although descriptions of convergence properties
and recovery bounds for the FPC variant exist (29). How-
ever, in essence, IHTþMS can be viewed as finding near
optimal rank-r matrix approximations. This fixed-rank
approach has proven more successful in fMRI data than
methods using singular value thresholding heuristics to
solve Eq. [2], due to the shallow decay behavior of singu-
lar values in fMRI data (11).

The IHTþMS reconstruction program (Fig. 2) can be
summarized as:

Ynþ1 ¼ Xn þ mF�ðy �FXnÞ

Xnþ1 ¼ Sr;cðYnþ1Þ
[3]

where Xn is the nth matrix estimate, m is a step size
parameter, F is the measurement operator (discussed
below) and Sr;c is the hard thresholding and shrinkage
operator (or projection operator). Sr;c has input parame-
ters r, the hard rank constraint, and 0 	 c 	 1, the matrix
shrinkage factor.

Compared with the original k-t FASTER formulation,
the measurement operator F ¼ FE is now the composition
of the nonuniform Fast Fourier Transform (NUFFT)(30)
and complex coil-sensitivity encoding, represented by
F and E, respectively. With time-varying sampling, F is
a general linear operator, not a matrix, and because F

includes a Fourier transform, the data are estimated
directly in the x-t domain. This formulation facilitates the
enforcement of data consistency across arbitrarily sampled
k-space and across multiple coils, which are the two
improvements made over the single-channel, Cartesian
sampling approach originally demonstrated. It can be
viewed as either a rank-regularized iterative SENSE recon-
struction (31), or as the analogue to distributed com-
pressed sensing (32). In the former interpretation, the rank
constraint effectively suppresses noise-like, residual inco-
herent aliasing, whereas in the latter, the multiple coils
increase the number of effective measurements.

Coil Sensitivity Estimation and Coil Compression

In both simulations and experiments, coil sensitivity profiles
were estimated using the adaptive combine method (33), tak-
ing the complex coil combination weights at each voxel as

FIG. 2. Overview of the IHTþMS
matrix reconstruction process. Data
consistency is enforced in the multi-

coil, non-Cartesian k-t space, whereas
the rank thresholding and shrinkage,
and the data estimates are in a com-

posite x-t space. Adjoint operations
are denoted with “*”.
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the sensitivity values. Rectangular neighborhoods extending
four voxels in each direction were used for weight estimation
in a given voxel, and coil sensitivities were arbitrarily phased
relative to the phase of coil channel 1. To generate the images
required by the sensitivity estimation procedure, the data
from all radial projections were averaged, effectively perform-
ing a temporal mean across the undersampled data. Due to
the radial sampling, the full set of projections constitute a
more-than-fully sampled k-space, and the inverse NUFFT
was directly applied to generate mean images. To avoid
phase cancellation from the complex temporal averaging,
global phase variation was removed before data reconstruc-
tion, using a simple regression on the center of k-space that is
sampled every shot.

An SVD-based coil compression transform (34) was
used to reduce the coil dimensionality from 32 to 8 in the
experimental data. This reduces the memory burden of the
reconstruction while retaining over 90% of the sensitivity
variance in all cases. In the simulations, sensitivities from
one of the experimental datasets were used.

Simulations and Experiments

Simulations using retrospectively resampled resting state
fMRI data were performed to evaluate the benefits of
non-Cartesian sampling and multicoil reconstruction
with knowledge of ground truth. The whole-brain data
used for retrospective resampling were acquired in a sin-
gle subject using simultaneous multislice EPI at 3T, with
a volume TR¼836 ms using a MB¼8 acceleration, and
2 mm isotropic spatial resolution (35). The full image
dimensions were 100�100�64 with 1000 time points.
Multicoil k-space data were generated by multiplying the
source image time-series by coil sensitivities, and using
the NUFFT to sample the data in k-space according to
the hybrid radial scheme depicted in Figure 1.

To demonstrate the difference in acceleration effi-
ciency, the radial sampling at acceleration factors of
R¼ 6.67, 8.33, and 12.50 were compared with 3D EPI
sampling at R¼ 4.27, which was the acceleration limit
observed in our previous work due to the chosen rank
constraint, sampling scheme and absence of coil encod-
ing. Additionally, one to eight virtual coils were used to
evaluate varying amounts of coil sensitivity information,
with the 3D EPI reconstructions using the same sensitiv-
ity encoding scheme described above. This first set of
simulations contained perfectly correlated noise across
coils to examine the effects of coil sensitivity differences
without the added benefit of noise averaging. In the sec-
ond set of simulations, the radial sampling was similarly
evaluated, but with independent noise on each of the 32
input coils channels. All reconstructions used a rank
thresholding constraint of 128.

fMRI experiments were conducted using two different
tasks to demonstrate the robustness of k-t FASTER in
recovering fMRI signal components in vivo. All data were
acquired with informed consent in accordance with local
ethics, at 3T using a 32-channel head coil (Siemens
Healthcare, Erlangen, Germany), with a 2-mm isotropic
whole-brain acquisition with TR/TE¼50/30 ms. Addition-
ally, to ensure that acquisition TE values were short
enough for optimal BOLD contrast while minimizing image

distortion, parallel imaging acceleration was applied along
the EPI direction in all acquired radial data, and was

recovered independently of and before the rank-
constrained reconstruction. For the radial data, k-t FASTER
reconstruction was performed independently on 2D slices

after inverse Fourier transform along the EPI direction.
This allowed the slices to be processed in parallel, reduc-

ing overall computation time and memory requirements.
The first experiment was performed in three subjects,

with a 5-min acquisition using a set of 200 projection angles
repeated 30 times. The subjects performed a 30-s off/on

block-design visual-motor task involving simultaneous
bilateral finger tapping and viewing of a 10 Hz flashing
checkerboard stimulus. To assess the reconstruction fidel-

ity across a broad range of accelerations, data were recon-
structed at acceleration factors of R¼ 2.5, 3.33, 5, 6.67, 8.33,

10, 12.5, and 16.67 to achieve volume TRs of 2, 1.5, 1, 0.75,
0.6, 0.5, 0.4, and 0.3 s, respectively. In one subject, accelera-
tion factors of R¼ 20, 25, and 33.33 corresponding to vol-

ume TRs of 250, 200, and 150 ms were also tested.
A second experiment using a category fluency task

was acquired in an additional 2 subjects, using the same
acquisition parameters as experiment 1. This task also

used a 30-s off/on block design, where categories were
presented visually (e.g., “tools”), and subjects were asked
to think of as many words belonging to the category as

possible in the block duration (e.g., “hammer”).
For the task data (spatial dimension 100� 100� 72, tem-

poral dimension 6000=ð100
R Þ), rank-constraints of 32 were

used, as task components were observed to be well charac-
terized at this dimensionality. To assess the impact of the
choice of rank, one subject was reconstructed at ranks of 8,

16, 32, 64, and 128. The algorithm step size m was set to
0.1, the matrix shrinkage parameter c was set to 0.5, and
100 iterations were chosen for the simulations and 50 iter-

ations for in vivo data reconstructions, unless the mini-
mum update threshold of 10-4 stopped iterations earlier.

In all cases, all time-points were initialized to the mean
image calculated from all projections as described above.
For the R¼ 25 and 33.33 data, m was set to 0.05 with 100

iterations to ensure convergence. While density compen-
sation weighting is not necessary, simple radial weighting
by jkjwas used to speed up convergence.

Data Analysis

For the simulation data, matrix error compared with
ground truth was evaluated using the relative Frobenius

norm (normalized root-mean-square error):

err ¼ 100
kX̂ � XkF

kXkF

%

For the in vivo data, FEAT (36) was used to perform a

standard GLM (general linear model) regression analysis
of the task fMRI data with no additional spatial smoothing.
Additionally, model-free exploration of the reconstructed

data was performed using independent component analy-
sis (ICA) with MELODIC (37). All z-statistic maps were
corrected using mixture modelling to ensure correct null

distributions (zero mean, unit variance) (37), which is
important when comparing across different acceleration

1828 Chiew et al.



factors given that autocorrelation can inflate statistical
estimates (38).

RESULTS

The results from the simulations show that matrix recon-

struction error decreases with the new radial sampling

strategy compared with under-sampled 3D EPI, even at

much higher acceleration factors (see Table 1). For com-
parison with the original k-t FASTER method, a 3D EPI

coil-by-coil reconstruction with sum-of-squares combina-

tion at R¼4.27 in the correlated noise data, produced

the highest error of 0.059. At acceleration factors nearly

three-fold higher, radial sampling produced matrix esti-

mates with significantly lower error when taking advant-

age of additional coil encoding. Similarly, the results in

Table 1 show that error decreases monotonically with
increasing coil information. Supporting Figure S1, which

is available online, shows results of a conjugate gradient

SENSE reconstruction at R¼ 6.67 with reconstruction

error of 0.113, highlighting the benefit of combined sen-

sitivity encoding and rank constraints.
With a single virtual coil, the lowest error was found for

the 3D EPI at the lowest acceleration factor of R¼4.27.

However, as more virtual coils are added, the relative ben-
efit of the additional sensitivity information is marginal in

the undersampled 3D EPI, whereas errors in the radial

data decrease by nearly half when the number of virtual

coils increased from one to eight. Without multiple coils,

the acceleration factor appears to be the dominant factor

dictating reconstruction error. However, the impact of

having radial undersampling across two dimensions (kx

and ky), compared with only kz-undersampling in the 3D
EPI becomes apparent when looking at multiple coil

reconstructions. With independent noise across coil chan-

nels, a similar effect of acceleration factor and coil infor-

mation can be seen, with added benefit at higher numbers

of virtual coils due to additional noise averaging.
Figure 3 show time-series from representative voxels

in the retrospective sampling reconstructions with inde-

pendent noise, highlighting the fidelity with which the
k-t FASTER reconstruction is able to recover temporal

information. Figure 3a shows the radial datasets at all

three acceleration factors (and eight virtual coils). Recon-

struction fidelity decreases with increasing acceleration,

and is particularly evident in the residual error plotted
in Figure 3b, and in the brain-masked residual error his-
togram in Figure 3c. Similarly, Figures 3d–f highlight the
significant benefit of higher numbers of virtual coils, as
expected.

The fidelity of the estimated spatial subspace was
assessed by comparing it to the principal component
analysis (PCA) subspace of ground truth data with a typ-
ical singular value distribution (Fig. 4a). Two things are
apparent from the correlation matrices (Fig. 4b): (i) the
number of well recovered basis components decreases
with acceleration, and (ii) at the same relative undersam-
pling factor, more components are recovered with
increasing time points (imaging duration). Furthermore,
the highest relative variance components are well cap-
tured at even the highest acceleration factors, indicating
that reconstruction errors reflect the systematic loss of
lower variance components, rather than uniform loss of
fidelity across all components. This is consistent with
the link between undersampling factors and the maxi-
mum dimensionality of the matrix that is recoverable,
where rank-r signal models requires at minimum rðm
þn� rÞ samples for unambiguous characterization.
Recovery of higher dimensional signal models necessi-
tates greater sampling (reduced acceleration), although
the maximum tolerable under-sampling at any given
rank will be case-specific and depends on the precise
distribution of component variances. However, one-to-
one component mapping is not necessary for subspace
identification, and these results do not capture the entire
range of signal recovery.

For the in vivo visual-motor experiment, Figure 5 plots
representative time-series for voxels in visual and motor
cortices from a single subject across multiple acceleration
factors. A strong degree of similarity is exhibited across
these reconstructions at vastly different temporal scales,
which shows that the rank-constrained reconstruction is
capable of recovering dynamic temporal information at
very high acceleration factor. Peristimulus plots showing
block-averaged hemodynamic responses at various accel-
eration factors can be found in Supporting Figure S2.

While no ground truth is available, slight loss of con-
trast occurs at higher acceleration factors (reduced per-
cent signal changes), in both the visual and motor cortex
data, although peak z-statistics do not change notably

Table 1
Retrospectively Undersampled Simulation Relative Frobenius Norm Errors with Correlated Coil Noise (Top) and Independent Noise (Bot-

tom) across a Range of Sampling and Virtual Coils

Correlated Noise 3D EPI R¼4.27 Radial R¼6.67 Radial R¼8.33 Radial R¼12.50

1 Virtual-coils 5.58% 6.04% 6.72% 8.03%
2 Virtual-coils 5.52% 4.01% 4.46% 5.43%

4 Virtual-coils 5.07% 3.43% 3.83% 4.71%
8 Virtual-coils 4.90% 3.07% 3.41% 4.21%

Independent Noise Radial R¼6.67 Radial R¼8.33 Radial R¼12.50

1 Virtual-coils 6.56% 7.07% 8.44%
2 Virtual-coils 3.95% 4.43% 5.43%
4 Virtual-coils 3.33% 3.75% 4.68%

8 Virtual-coils 2.91% 3.28% 4.14%
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(Sup. Fig. S3). The similarity of peak z-stats across accel-

eration factors after correcting for temporal autocorrela-

tion has been reported previously, and reflects the

choice of analysis, where single-regression analyses do

not benefit from the increase in time-points as much as

multiple-regression analyses (like ICA) do (38).
Figure 6 shows the results of the FEAT GLM analysis

from all three subjects, in slices across the visual and

motor cortices, overlaid on the T2* weighted images gen-

erated by k-t FASTER. Similar to the time-series results,

z-statistic spatial maps resulting from a regression analy-

sis show a striking similarity across acceleration factors,

indicating that the signal component corresponding to

the visual-motor task has sufficiently high variance to be

well characterized at high acceleration factors. An addi-

tional comparison of task activation results using a fully

3D reconstruction, instead of slice-by-slice, can be found

in Supporting Figure S4.
Qualitative assessment of the time-series and statistical

maps suggests that motor and visual activation is well

characterized up to maximum acceleration factors around

R¼ 12.5 without much loss of task contrast or activation.

A quantitative analysis of the spatial fidelity of the statis-

tical maps at different acceleration factors using a

receiver-operator characteristic (ROC) (taking the data at

the R¼ 2.5 as representative of ground truth) found that

total area under the ROC curve was as high as 0.99 at

R¼ 12.5 and showed the steepest drop-off after R¼16.67,

consistent with the qualitative assessment (Sup. Fig. S5).
In addition to looking at task components, we investi-

gated the presence of intrinsic brain networks in subject

1 of the visual-motor task experiment. Figure 7 shows

the manually identified ICA spatial component corre-

sponding to the task anticorrelated default mode network

(DMN) (39), at acceleration factors of R¼ 2.5 to 16.67 (no

DMN components were found in datasets at R> 16.67).

The characteristic posterior parietal and anterior regions

can be seen most clearly at R¼ 3.33 or 5. These results

are consistent with the default mode network accounting

for less variance than the task networks (Sup. Figs. S6,

S7), and, therefore, showing lower peak tolerable acceler-

ation factors, while also demonstrating the utility of

acceleration in analyses like ICA, where the additional

time-points provided by the R¼ 3.33 or 5 data result in

better recovery of the DMN than the R¼2.5 data with

fewer time-points. The DMN expression is also signifi-

cantly less robust than the task activation networks,

which might be expected due to the simple sensorimotor

task, rather than a higher level cognitive task (40).
The impact of the choice of rank constraint in the

IHTþMS reconstruction algorithm can be seen in Figure 8,

which shows activation and time-series in motor cortex

regions from subject 1 at R¼6.67 and reconstruction rank

constraints of 8, 16, 32, 64, and 128. At rank 32 and beyond,

the reconstructed data show little difference in spatial or

temporal features. At ranks 8 and 16, however, it is apparent

signal component corresponding to the visual-motor task is

not being captured well, suggesting that the signal compo-

nents corresponding to the fMRI task are between 16 and 32

in variance order in the underlying data. At ranks of 64 and

128, there is little apparent penalty for selecting a rank con-

straint that overestimates the maximum dimensionality

FIG. 3. Time-series segment from a representative voxel across three different acceleration factors R¼6.67, 8.33, and 12.5 (with eight
virtual coils), in the radially sampled data (a), with corresponding residual errors in (b), and log-transformed error histograms in (c). The
same voxel time segment, with one, two, four, and eight virtual coils (at R¼6.67) (d), and errors in (e,f). Dashed lines in (b,d) denote

0%, 2.5%, and 5% error levels, and median error levels in (c,f).
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permitted by the degree of undersampling. Furthermore, the

effective impact of the nonlinear reconstruction process on

spatial fidelity is marginal, approximated by the size of an

equivalent smoothing kernel that can be estimated by ana-

lyzing the spatial smoothness (autocorrelation) of the resid-

uals after GLM fitting using Gaussian random field theory

(Sup. Fig. S8).
Finally, Figure 9 shows both GLM and ICA-derived

activation maps and time-courses from one subject in the

category fluency task at R¼ 8.33. The chosen accelera-

tion factor reflects the qualitative limit on acceleration in

this lower variance cognitive task. Here activation in vis-

ual cortex and Broca’s area is evident, and peak z-

statistics for both subjects were 9.82 and 9.77 in the

GLM analysis and 14.86 and 11.04 for the ICA compo-

nent containing Broca’s area. The ICA results show simi-

lar spatial patterns of activation, with temporal modes

corresponding very well to the block design task.

DISCUSSION

Using k-t FASTER, we show that significant further

improvements in data matrix reconstruction fidelity can be

made using a hybrid radial-Cartesian sampling scheme,

and incorporating coil sensitivity encoding in the measure-

ment operator. Task fMRI experiments showed that with

these modifications, high acceleration factors of up to
R¼12.5 or 16.67 in sensorimotor task fMRI can be
achieved, whereas the category fluency task and intrinsic
DMN recovery were found to exhibit lower maximum toler-
able acceleration factors of R¼8.33 and R¼5, respectively.

The compressibility of fMRI data depends largely on
context. In simple task-based fMRI, the signals of interest
are typically high variance, and therefore well described
with a model with very low rank (and hence highly com-
pressible). In contrast, intrinsic resting state network
fluctuations can be subtle, with variances close to the
noise floor, and need relatively higher rank models (per-
mitting lower acceleration). These precise limits are
subject-specific, and also depend on the total sampling
duration. As such, the utility of k-t FASTER in recovery
of subtle, low-variance signals may not lie necessarily in
reducing overall scan times, but rather to increase sam-
pling rates for increased spatial resolution or temporal
degrees of freedom. With high variance signals, however,

FIG. 4. a: Distribution of singular values from a ground truth data-
set with 500 or 1000 time-points. b: Correlation matrices compar-

ing the first 64 ground-truth PCA spatial components with the first
64 k-t FASTER estimated spatial components for the 500 point

data (top row) and 1000 time-point data (bottom).

FIG. 5. Example voxel time-series from representative high z-stat

voxels in the visual-motor task reconstruction a voxel from visual
cortex (a) and a voxel from motor cortex (b).

Accelerating fMRI Using Fixed-Rank Approximations 1831



acceleration factors approaching those obtained by InI
methods (41) or MREG (42) is achievable. While sampling
procedures are similar, k-t FASTER does not exhibit the
spatial fidelity loss characteristic of these methods that rely
heavily on spatial regularization, instead of leveraging tem-
poral domain information and spatiotemporal redundancy.

The EPI-based sampling allows inverse Fourier transform
along the EPI phase-encoding direction, enabling efficient,
parallelizable slice-by-slice reconstruction. Furthermore,
the EPI readout provides additional utility in estimating
global phase shifts associated with scanner drift and physi-
ological fluctuations, and even physiologically induced lin-

ear phase shifts along the z-direction on a shot-by-shot
basis (22). Moreover, the flexible temporal resolution in the
trajectory should enable complete estimation of rigid-body
motion from images reconstructed at very high temporal
resolution from very few projections. Future work will con-
sider the inclusion of such corrections to improve robust-
ness to motion, as well as the estimation and removal of
other artifacts such as physiological fluctuations before
reconstruction of functional information.

The spatiotemporal flexibility of reconstruction may
also be beneficial in tuning single-subject experiments, as
in presurgical planning. In this case, an acquisition

FIG. 6. Activation maps highlighting

activation in visual and motor cortex
regions from subject 1 across accel-
eration factors, and from subjects 2

and 3 at R¼12.5. All maps were
thresholded at jzj>3.
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scheme that does not impose a rigid relationship between
spatial and temporal resolution may provide a greater
opportunity to find the optimal balance between spatial
fidelity and statistical power, without the constraint of fix-
ing imaging parameters across a group or cohort. It also
permits potentially exciting possibilities for performing
separable reconstructions of the spatial and temporal
information contained in fMRI data. For example, con-
sider independent reconstructions, one optimized for high
spatial fidelity, and another optimized for temporal fidel-
ity. While some care must be taken to account for the pos-
sibility of different features being present at different
scales, these data might be corelated or combined in sev-
eral ways (e.g., by means of regression) to produce high
fidelity spatiotemporal information that would otherwise
not be accessible without this type of acquisition scheme.

One challenge of using a non-Cartesian sampling
scheme is in ensuring that the sampled trajectory is con-
sistent with the expected, designed trajectory, particu-
larly when high undersampling factors are used. In this
work, trajectory shifts along the readout direction were
corrected using back-and-forth running EPI navigator
lines, as well as the abovementioned physiological phase
corrections, but no additional trajectory calibration or
corrections were used. Future work with hybrid radial-
Cartesian sampling or other optimized 3D trajectories
may benefit from more sophisticated trajectory correction
or mapping to ensure that data consistency constraints
are enforced on self-consistent k-space data, to prevent
over-fitting of inconsistent measurement data.

The primary differences between the k-t FASTER fixed-
rank reconstruction approach and other proposed rank-

based methods for fMRI acceleration are that (i) only rank
constraints are used, and (ii) no prior information is required
(aside from prior knowledge that the data matrix has a rela-
tively low rank representation). In the method proposed by
Lam et al (18), rank-constrained reconstruction follows the
partial separability imaging model (43), where the temporal
subspace is first defined using signals from only the densely
sampled portion of central k-space. The spatial subspace is
then estimated with an additional direct sparsity constraint
on the spatial component vectors. Similarly, the fLORA
method proposed by Nguyen and Glover (19) also uses the
partial separability model, and uses additional group spar-
sity constraints in their reconstruction, as well as reference
images. However, estimating the temporal subspace before
image reconstruction from only a subset of the spatial
domain may not be optimal due to the assumption that the
central k-space temporal subspace is valid for the full k-
space dataset (44); in our method, both the spatial and tem-
poral subspaces are estimated simultaneously, from the
entire set of samples. While regularization can improve the
conditioning of inverse problems, sparsity constraints
impose a specific model of data structure. Our approach
aims to avoid potential estimation bias by not enforcing any
structural constraints (spatial or temporal) on the data
whatsoever.

The ICA results further demonstrate that recovery of task-
related and intrinsic network components is achieved using
our relatively model-free approach to reconstruction, and
not simply driven by selective thresholding of simple
regression analyses. Although the task designs used in the
experiments were relatively simple and periodic, this infor-
mation is not used or imposed in any way during the

FIG. 7. Default mode network expression from a single subject ICA in a visual-motor dataset, at acceleration factors of R¼2.5 to
R¼16.67. All maps are thresholded at jzj>3.
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FIG. 8. Activation maps and repre-

sentative voxel time-series for the
visual-motor experiment across dif-

ferent reconstruction rank con-
straints of 8, 16, 32, 64, and 128.
Maps are thresholded at jzj>2.6.

FIG. 9. Activation maps from FEAT GLM and representative high z-stat voxel time-series (rows 1,3) and corresponding spatial compo-

nent maps and temporal modes from a MELODIC ICA (rows 2,4), from one subject in the category fluency task. Rows 1 and 2 show
activation in visual cortex, while rows 3 and 4 show activation in Broca’s area. GLM maps are thresholded at jzj>2.6, and ICA maps are

thresholded at jzj>4.
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reconstruction, and we can expect the improved k-t

FASTER to perform equally well given arbitrary time

courses, as we demonstrated in the simulations based on

retrospectively sampled resting state data and in our previ-

ous work in estimation of resting state networks (11).

CONCLUSIONS

With hybrid radial-Cartesian sampling, and coil sensitiv-

ity encoding, k-t FASTER is capable of highly accelerat-

ing fMRI data acquisition, enabling posthoc selection of

acceleration factors dependent on the desired output

model order, while maintaining high spatial and tempo-

ral fidelity. The generality of the k-t FASTER approach

makes it suitable for both task-based and resting-state

fMRI, with no differences in reconstruction aside from

selection of algorithm parameters.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Fig. S1. Comparison of representative images from ground truth (a), k-t
FASTER (b), and conjugate gradient SENSE (c) reconstructions. While the
k-t FASTER image is nearly indistinguishable from ground truth, noticeable
blurring and residual streaking artifacts (particularly near the posterior end
of the image) is evident, highlighting the benefit of the rank constraint in
addition to enforcing multicoil consistency. Similarly, (d) shows a time-
series from a representative voxel, highlighting the excellent correspon-
dence of the k-t FASTER time-course (red) with ground truth (blue),
whereas the conjugate gradient SENSE time-course (yellow) is quite noisy.
In (e), a 10 3 zoomed portion of (d) is shown, and in both (d,e) plots are off-
set vertically for display clarity. Note that these time-series do not reflect
task activation, but a resting-state time-course from the center of the brain.
Fig. S2. Peristimulus plots from subject 1 in the visual-motor experiment,
across all tested acceleration factors. Masks were drawn manually over
visual and motor cortices, and data for all plots were averaged over an
additional z-statistic mask defined by the intersection across all accelera-
tion factors of all voxels with z-stats> 2.3.
Fig. S3. Peak z-statistics from the visual-motor task across acceleration
factors of R 5 2.5 to R 5 16.67, from all three subjects. Regions of interest
around the primary visual and the primary motor areas were drawn for
each subject, with peak z-stats reported separately for each region.
Although some variation is present, the general trend is roughly consistent
with consistent peak z-stats at varying acceleration factors for GLM analy-
ses. Deviations from this may be due to poor fitting of mixture models that
produce the corrected z-statistic distributions.

Fig. S4. ICA spatial maps, time-series and power spectra for a representa-
tive 3D reconstruction (in subject 1) at R 5 5. The left column represents
the visual component, containing 2.10% of the total variance in the data,
and the right column represents the motor component, containing 1.01%
of the total variance in the data. These maps can be directly compared
with the visual and motor components in Supporting Figure S6. In this 3D
reconstruction, the entire 3D1time matrix was reconstructed at the same
rank constraint of the slice-by-slice 2D1time matrices, 32, which was suffi-
cient to capture the task components, but not sufficient to recover the
intrinsic default mode network well.
Fig. S5. Top Row: Receiver operator characteristics (ROC) for subject 1 in
the visual-motor task data, across the entire volume (first column), visual
areas (second column) and motor regions (third column). Bottom Row:
Area under the ROC curves. The ROC results are generated based on
using the R 5 2.5 (thresholded at jzj>3) data as ground truth, as no actual
ground truth is available. In the overall dataset, the area under the ROC
curve is 0.99 at R 5 12.5.
Fig. S6. ICA spatial maps, time-series and power spectra for subject 1 at
R 5 5. The left column represents the visual component, containing 2.76%
of the total variance in the data, and the right column represents the motor
component, containing 1.17% of the total variance in the data. These
maps can be directly compared with the visual and motor components
derived from the 3D reconstruction in Fig. S5, as well as the GLM results in
Figures 4 and 5. While here the motor component appears to have signifi-
cantly lower variance, it is apparent that the mainly visual component does
have motor representation as well, so this left column component may be
better characterized as a visual-motor component, and the right column as
a secondary motor component.
Fig. S7. ICA spatial map, time-series and power spectrum for subject 1 at
R 5 5. This data correspond to the default mode network, containing
0.87% of the total variance in the data. One feature that is evident is that
most of the high z-stats in this component are confined in the z-direction
to the superior portion of the brain, which is likely a consequence of the 2D
separable slice-independent reconstruction, in which the slice-by-slice
enforcement of rank constraints acts like a z-dependent filtering or dimen-
sionality reduction.
Fig. S8. This shows that spatial resolution decreases monotonically with
acceleration, and acceleration factors of R 5 5–8.33 have effective kernel
FWHM sizes that are approximately equal to the nominal voxel dimension
of 2 mm. However, this effect of resolution loss is modest, showing only
�10–15% resolution loss at R 5 12.5, up to �30% increase in effective
voxel size at R 5 33.33.
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