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ABSTRACT: CO2 emission reduction is an essential step to achieve the climate change targets.
Solvent-based post-combustion CO2 capture (PCC) processes are efficient to be retrofitted to the
existing industrial operations/installations. Solvent degradation (and/or loss) is one of the main
concerns in the PCC processes. In this study, the thermal degradation of monoethanolamine (MEA) is
investigated through the utilization of hybrid connectionist strategies, including an artificial neural
network-particle swarm optimization (ANN-PSO), a coupled simulated annealing-least squares
support vector machine (CSA-LSSVM), and an adaptive neuro-fuzzy inference system (ANFIS).
Moreover, gene expression programming (GEP) is employed to generate a correlation that relates the
solvent concentration to the operating variables involved in the adverse phenomenon of solvent
thermal degradation. The input variables are the MEA initial concentration, CO2 loading, temperature,
and time, and the output variable is the remaining/final MEA concentration after the degradation
phenomenon. According to the training and testing phases, the most accurate model is ANFIS, and the
reliability/performance of its optimal network is assessed by the coefficient of determination (R2),
mean squared error, and average absolute relative error percentage, which are 0.992, 0.066, and 2.745, respectively. This study
reveals that the solvent initial concentration has the most significant impact, and temperature plays the second most influential effect
on solvent degradation. The developed models can be used to predict the thermal degradation of any solvent in a solvent-based PCC
process regardless of the complicated reactions involved in the degradation phenomenon. The models introduced in this study can
be employed for the development of more accurate hybrid models to optimize the proposed systems in terms of cost, energy, and
environmental prospects.

1. INTRODUCTION
Carbon capture and storage (CCS) is considered a promising
approach to decrease the climate change progress and to
accomplish the Paris Agreement expectations.1 It is estimated
that CCS contributes to a 14% decrease in the world CO2
emissions under the 2 °C scenario (i.e., to limit the global
temperature increase below 2 °C) and a further 32% under the
beyond 2 °C scenario.2 The concentration of CO2 in the
atmosphere is constantly increasing. Figure 1 shows the trend
of CO2 concentration with time reported by the Global
Monitoring Laboratory of the National Oceanic and
Atmospheric Administration (NOAA). The concentration of
CO2 was 412.18 ppm in March of 2019, and its current
concentration (March of 2023) is 421.00 ppm.3

One of the most concerning issues in the amine-based post-
combustion CO2 capture (PCC) process is solvent degrada-
tion, which takes place through the transformation of amines
into other chemical components due to the chemical reactions.
This adverse phenomenon occurs through thermal degradation
and oxidative degradation. In thermal degradation, the amines
react with CO2 to form compounds (e.g., cyclic amines) having
a high molecular weight. In oxidative degradation, the amines
react with oxygen to generate various components (e.g.,
carboxylic acids) having a low molecular weight.4 It was also

found that high-stable salts are formed due to the reaction
between the carboxylic acids and the amines. These high-stable
salts put a high burden on the regeneration process and
increase the risk of corrosion in the process equipment/
materials, highlighting the significant importance of avoiding
their synthesis. It has been confirmed that higher temperatures
lead to a higher reaction rate.4

Monoethanolamine (MEA) is the most common solvent,
which is regarded as a benchmark solvent in the solvent-based
PCC processes. MEA is lost in the solvent-based PCC process
through thermal degradation, oxidative degradation, and
volatility losses. Thermal degradation takes place by the
polymerization of carbamate, leading to high-molecular-weight
byproducts. Oxidative degradation occurs in the stripper,
resulting in producing high-stable salts; this is not usually a
concern in the applications of the amine absorption/stripping
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processes (e.g., treatment of natural gas and H2 production) as
O2 is not in the system. Volatility losses in the absorber and
stripper can be reduced by employing a sophisticated control
system.5

PCC operating conditions (e.g., CO2 concentration) have a
significant impact on solvent degradation.6 Changes in the
operating conditions of CO2 loading and the physical
properties of heat-stable salts can alter the solution properties
(e.g., viscosity and specific heat capacity), affecting the overall
consumption of energy.7 The acidic impurities in the flue gas
do not have a substantial influence on the MEA degradation in
a CO2 capture process.8 Quantification of the solvent
degradation is a key factor in a close analysis of the process.
There is a ten-fold increase in the oxidation rate of MEA in a
CO2 capture process while using dissolved Fe, Mg, and Cu as
potential catalysts.9 Quantification of the products of the
oxidative and thermal degradation of MEA verified that
differences in the type of degradation products between
samples of lean and rich amine indicate the chemical reaction
of the products. Rich amine was more susceptible to thermal
degradation than oxidative degradation.10 Operation time plays
a major role in the solvent degradation. MEA concentration
decreases by 95% due to the thermal degradation at 160 °C for
8 weeks; however, the remaining solvent maintains its capacity
at 22% to remove CO2, possibly owing to the capacity of some
of the degradation product to remove CO2.

11 The gas
contaminants have different degrees of impact on the thermal
degradation. At the same molar concentration of MEA, the
degradation rate in the presence of nitrile (5000 ppm) is much
higher than that of MEA alone. Sodium sulfate, fly ash, and
sodium thiosulfate do not have any impact on the thermal
degradation rate of MEA.12 The utilization of oxidative
degradation inhibitors should be seriously considered in the
solvent solution design, including additives for the CO2
capture applications. There is a 58% increase in the MEA
oxidative degradation influenced by the metal ions, which are
resulted from the solvent impurities and wall leaching.13 A
mixture of different solvents can be used in the process.
However, it is significantly affected by the operating
conditions. For example, thermal degradation of the
piperazine/diethanolamine (PZ/DEA) blend was studied

with a CO2 loading range of 0−0.4 mol CO2/mol alkalinity
at 135 °C. At high CO2 loading, there were more amounts of
degradation products, and the formation of triethanolamine
and 1,4-bis(2-hydroxyethyl) piperazine increased.14 It is to be
noted that different solvents have various levels of degradation.
MEA is less thermally stable than morpholine (MOR).
Moreover, N-(2-hydroxyethyl) ethylenediamine (HEEDA)
and N-(2-hydroxyethyl)imidazolidine-2-one (HEIA) are the
products of MEA thermal degradation, and these products are
not produced from MOR thermal degradation after two and
four weeks.15

Reactive constituents in flue gas (e.g., O2, NOx, SO2, and
inorganic oxide fly ash) react with amines, resulting in the
irreversible degradation of amines into different products of
degradation. This degradation leads to a reduction in
absorption efficiency and corrosion problems.16 Reduced
solvent capacity, solvent loss, degradation products formation,
ammonia emissions, and aerosol emissions are the critical
problems that require an adequate understanding of solvent
degradation and deeper insight into the mentioned concerns.17

Therefore, the stability of the solvent in the CO2 capture
process is one of the most important matters that requires to
be closely monitored to control the desired efficiency of the
solvent’s performance as well as CO2 capture absorption’s
optimal operation. Detailed knowledge on the mechanisms of
degradation and the impact of the operating conditions on the
governing mechanisms help design more efficient mitigation
strategies. The literature review reveals that no research
investigation has been performed on the analysis of thermal
degradation of solvent in a solvent-based PCC process through
employing smart techniques (artificial intelligence/machine
learning tools). This study aims to fill this knowledge gap. The
developed hybrid models can provide a suitable platform for
the analysis of solvent degradation in the targeted process. The
models can also be used for the modeling and optimization of
solvent-based PCC processes. Incorporating the thermal
degradation into the modeling and/or optimization of the
process can lead to more reliable results and eventually cause
further improvement in the system performance and the
process design.

Figure 1. Monthly average concentration of CO2 reported by Mauna Loa Observatory in Hawaii.3 [Data taken from ref 3 (https://gml.noaa.gov/
ccgg/trends/data.html).]
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2. THEORY AND BACKGROUND
This section includes a literature review on solvent degradation
and the CO2 capture process description. In the literature
review part, the experimental and modeling studies regarding
solvent degradation are described. In the process description, a
conventional CO2 capture process is explained along with the
fundamental knowledge of the chemical reactions involved in
the MEA absorption process.

2.1. Literature Review. There have been many research
studies on the degradation of the solvents used in the carbon
capture process. For instance, Davis and Rochelle18 quantified
the thermal degradation of MEA as a function of CO2 loading,
initial MEA concentration, and temperature during the normal
operating conditions of the stripper. They concluded that the
MEA loss leads to the formation of N,N′-bis-(2-hydroxyethyl)-
urea, HEIA, and HEEDA. Using the speciation data (chemical
species) from the Aspen model of a stripper confirmed that a
significant solvent loss occurred in the packing; however, its
major loss took place in the reboiler and the reboiler sump. In
addition, thermal degradation in the stripper was low when the
temperature of the reboiler was controlled below 110 °C. This
loss became substantial when the stripper pressure increased.18

The performance of various solvents [i.e., MEA, diethanol-
amine (DEA), and 2-amino-2-methyl-1-propanol (AMP)] in a
90% CO2 capture process from a 550 MW coal-fired power
plant was evaluated using Aspen Plus software. The best
operating conditions of the process were determined using an
electrolyte-NRTL thermodynamic model and multi-objective
optimization by employing a genetic algorithm (GA). The
results indicated a higher working capacity of DEA compared
to that of MEA at optimal operating conditions, leading to a
lower heat duty of the reboiler. Moreover, the selection of the
thermodynamic model was very decisive; therefore, consid-
eration of proper/reliable thermodynamic models for the
solvents is of significant importance in the performance
analysis of the proposed system.19 The common causes of
thermal stability of sodium salts of sarcosine, glycine, alanine,
and β-alanine were scrutinized through thermal degradation at
the temperatures of 125, 135, and 145 °C. The salts improved
the rates of thermal degradation compared to those of MEA as
the reference solvent. The results also revealed that the amine
group steric hindrance has a positive impact on amino acid
protection against degradation. The thermal stability was
increased in the order β-alanine > alaninate > sarcosinate >
MEA.20 Leónard et al.21 developed a kinetic model for the
degradation of MEA in the CO2 capture process. It was found
that oxidative degradation is enhanced by the O2 concentration
in the gas feed. However, the gas feed CO2 concentration had
no considerable impact on the degradation. A significant
thermal degradation was observed at high temperatures (i.e.,
140 °C) and in the presence of CO2.

21 The stability of five
amine solutions (e.g., MEA, AMP, and PZ) to oxidative and
thermal degradation was investigated in the presence and
absence of CO2. The analysis performed by HPLC revealed
that the presence of CO2 and O2 significantly affects the
thermal degradation rate.22 A CO2 capture process model was
developed, including the degradation of MEA based on the
experimental data, where the impact of the operating
conditions on the process solvent loss was assessed. It was
concluded that the main cause of solvent loss was oxidative
degradation in the absorber, while thermal degradation was not
a serious concern.23 A research investigation was done about

the thermal degradation of N,N-diethylethanolamine (DEEA)
as a function of CO2 loading, temperature, and DEEA
concentration in an autoclave. Thermal degradation of DEEA
in the absence of CO2 was insignificant, and there was a
decrease in the DEEA remaining fraction while increasing CO2
loading, temperature, and DEEA concentration.24 Thermal
degradation rates of AMP and 4,4-dimethyl-1,3-oxazolidin-2-
one (DMOZD) were determined by employing the exper-
imental data obtained at the temperatures of 120, 135, and 150
°C as a function of the concentrations of amine and CO2. The
thermal degradation of AMP had a smaller degradation rate
constant than that of MEA. Moreover, the rate of DMOZD
formation had a lower dependency on CO2 concentration and
a higher dependency on AMP concentration.25 In another
study, a thermodesorption-gas chromatography-mass spec-
trometry method was developed for the quantitative analysis of
the products (e.g., pyrrole, dimethylformamide, and pyrazine)
of the MEA thermal degradation in the gas effluent of the CO2
capture process. The researchers claimed that the developed
method could be used for the simultaneous quantification of
numerous products of thermal degradation.26 A gas chroma-
tography-flame ionization detector was employed to investigate
the stability of thermal degradation of methyldiethanolamine
(MDEA) and its mixture with glycine in the presence and
absence of CO2. The results indicated that the CO2 presence
significantly affects the solution’s thermal degradation. More-
over, there was a reduction in MDEA thermal degradation
when glycine was added to the MDEA solution.27 Molecular
mechanisms describing the MEA thermal degradation were
analyzed using molecular dynamics simulation along with
metadynamics sampling. It was concluded that the formation
of 2-oxazolidinone (OZD) as an intermediate and the main
products of HEEDA and HEIA are thermodynamically
favorable.28 In a study, density functional theory was
implemented to further understand the plausible chemical
pathways that led to the formation of the products of the
thermal and oxidative degradations of MEA. It was concluded
that MEA could bear the oxidative degradation to create
hydroperoxides and imines. The authors claimed that by
employing proper activation energies and Arrhenius data along
with the aid of chemical kinetic mechanisms, it would be
possible to synthesize new amine molecules/chemicals which
could be more tolerant against the adverse phenomenon of
degradation.29 The stability of MOR was investigated under
the operating conditions of the stripper in the carbon capture
process. The degradation kinetics of MOR was scrutinized
under the fluctuations of temperature and CO2 loading. It was
concluded that a significant degradation rate was observed at
temperatures above 175 °C, and the rate of degradation
increased upon an increase in the CO2 loading. Moreover, the
thermal stability of MOR was higher than that of MEA, DEA,
MDEA, and PZ.30 In a recent study, Braakhuis et al.31

developed a kinetic model to predict MEA thermal
degradation in a carbon capture process. The rates of thermal
degradation and the degradation products were analyzed as a
function of temperature, time, and loading. The developed
model employing the literature data had an error of 17.5% due
to its limited reproducibility and high experimental un-
certainty. The results indicated that the thermal and oxidative
degradation mechanisms interacted, and the concentrations of
thermal degradation products were influenced by this
interaction.31
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2.2. Process Description. Carbon dioxide emission
significantly leads to the greenhouse effect and, therefore, to
global warming.32 Hence, its concentration reduction in the
atmosphere is a crucial matter for different environmental and
industrial sectors.33 Several commercial projects have been
developed in view of the importance of CCS, such as the Petra
Nova in Texas (US) and the Boundary Dam in Saskatchewan
(Canada). Both projects utilize amine-based PCC technologies
to capture CO2 from the flue gas streams. The thermally
regenerative amine-based PCC is a conventional technology
which includes an absorber to capture CO2 from the flue gas
and a desorber to strip CO2 from the CO2-rich solvent with
heat, which is usually provided by the steam cycle of the power
plant. Figure 2 depicts a typical solvent-based CO2 capture
process.34 Although there have been considerable improve-
ments in the industrial applications of amine technology, there
are still some limitations, such as the high energy requirement,
significant capital cost, and amine degradation in this
technology. The high energy need of an amine-based PCC
process is generally due to the requirement of high thermal
heat (i.e., 120−150 °C) for the amine regeneration. There
have been many investigations with a special focus on
technology development to increase the energy efficiency of
the capture process and to minimize the absorbent
regeneration heat requirement.2

To absorb one molecule of CO2, two molecules of MEA are
required, producing the ion pair of MEACOO− (carbamate)
and MEAH+ (protonated MEA). CO2 absorption with MEA
can be carried out primarily through a two-step mechanism, as
follows35

+ +MEA CO MEA COO2 (1)

+ ++ +MEA COO MEA MEACOO MEAH (2)

The zwitterion, MEA+COO−, formed from the reaction of
MEA and solvated CO2 is considered the rate-limiting step of
the CO2 capture.36 Aqueous MEA experiences thermal
degradation in the stripper at temperatures above 110 °C in
the presence of CO2. It is proven that MEA thermal

degradation materializes through the synthesis of oxazolidi-
none from the dehydration of carbamic acid (MEACOOH).
Oxazolidinone might eventually react with MEA, leading to
more stable products, implying that MEACOOH is another
crucial intermediate in the CO2 absorption/stripping proc-
ess.35

In the CO2 capture process, thermal degradation usually
takes place in the stripper. Most previous studies have reported
that high temperature in the presence of CO2 is the reason for
degradation.37 According to some research works, the thermal
degradation is due to the high temperature in the absence of
CO2, highlighting the important role of heat.37 This kind of
degradation results in dimerization, dealkylation, and cycliza-
tion. The main products of the MEA thermal degradation are
oxazolidine-2-one (OZD), HEEDA, HEIA, and N,N′-bis-(2-
hydroxyethyl)urea. Oxidative degradation usually occurs in the
absorber, and the main reactions occurring in this equipment
are addition, dealkylation, and piperazinones. The main
products of the MEA oxidative degradation are ammonia,
formaldehyde, methylamine, acetaldehyde, formamide, formic
acid, glyoxal, and acetic acid.37

3. THEORY OF SMART TECHNIQUES
Models are developed/utilized to reflect the performance of a
process of interest.38 There are various challenges in the
analysis of the chemical and process engineering systems due
to the high dimensionality and complicated dependencies
between various parameters of the process, whose modeling is
required for the ensuing efficient process design, control,
optimization, and fault detection. A part of the challenge is
commonly addressed by the time-consuming and costly
endeavors of experimentation and simulation. Utilization of
artificial intelligence (AI)/machine learning (ML) techniques
in the modeling attempts is a promising solution to most of the
mentioned problems.39 The intelligent methods or/and ML
tools such as artificial neural network (ANN), genetic
algorithm (GA), functional network (FN), least square support
vector machine (LSSVM), fuzzy decision tree (FDT),
imperialist competitive algorithm (ICA), particle swarm

Figure 2. Conventional solvent-based PCC process. Copyright 2013 American Chemical Society. Adapted with permission from ref 34.
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optimization (PSO), fuzzy logic (FL), recurrent neural
network (RNN), and adaptive neuro-fuzzy inference system
(ANFIS) have been broadly utilized for industrial and
theoretical applications to estimate target parameters, find
best patterns, and obtain nonlinear data.40 The utilization of
the classical AI in the field of chemical engineering was
suggested in the 1980s with the development of expert systems
(e.g., catalyst design and thermophysical properties) for the
first time.41 Nowadays, AI and ML are employed in the
analysis of different problems/processes, such as oil and gas
industry (e.g., deposition of wax in surface and subsurface
pipes42 and hydrate formation in production facilities43,44) and
medicine (e.g., breast cancer diagnosis45). Indeed, ML is in the
category of AI and originated from computer science and
mathematics. It provides the computers with the ability to
learn from data without being explicitly programmed. It is
generally categorized into supervised learning and unsuper-
vised learning approaches.41 ML methods can overcome the
limitations of mechanistic modeling due to their capability of
learning complicated behaviors of systems/processes, the
cheaper development of the proposed system model, and a
more convenient and easier way of system optimization.39

Physical properties play a critical role in the design of chemical
processes and products. AI techniques can be employed to
predict the physical characteristics of various chemicals/
components.46

3.1. Artificial Neural Network�Particle Swarm Opti-
mization. An ANN model is a powerful tool that is utilized for
a wide range of problems (e.g., forecasting, recognition, and
regression).47 ANNs are capable of estimating non-linear
functions. Training algorithms play the most significant role
when dealing with applications with high non-linearity
nature.38 A classical ANN is composed of three types of

layers: an input layer, followed by a number of hidden layers
and an output layer. All layers are interconnected by synaptic
links with the corresponding connection weights.48 The ANN
is trained by adjusting the weights, attempting to minimize the
error between the calculated values/outputs and the expected/
target values.49 A training or learning algorithm is considered a
procedure to adjust the coefficients (weights and bias) of ANN
outputs for the proposed/given inputs and correct the known
outputs (target values).50 Different training algorithms have
been developed in the past few years. However, they might not
be suitable/efficient in some specific cases, and they might not
lead to optimum solutions. Therefore, some other techniques,
such as bio-inspired algorithms (BIAs), are needed to train an
ANN. These algorithms are powerful optimization tools, which
are able to solve very complicated optimization problems. BIAs
work on the principle of nature’s behavior known as swarm
intelligence, which is defined as a property of systems
consisting of unintelligent agents with an intelligent collective
behavior but limited individual capabilities.47 Parameter
optimization of multivariable systems is a common concern
in computational biology. One of the methods, which were
developed for parameter optimization, is PSO, first introduced
by Kennedy and Eberhart in 1995.51 PSO is a meta-heuristic
algorithm, which is mostly employed in continuous, discrete,
and combinational optimization problems.52 The PSO
algorithm is based on a stochastic search in multimodal search
space, developed from the dynamic system simulations, such as
bird flocks and fish swarms.53 The PSO idea comes from a
swarm of particles flying throughout a multi-dimensional
search space, searching for the global optimum. The particles
can impact each other’s movements by exchanging informa-
tion. Each particle keeps an individual (or cognitive) memory
of the best position that it has visited/searched, along with the

Figure 3. Layout of the ANN-PSO model algorithm. Adapted from ref 56.
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global (social) memory of the best position visited/searched by
all particles in the swarm. The next position of a particle is
calculated by considering its last movement vector, a random
component, and the global and individual memories.51 The
advantages of the PSO method are reasonably well handling of
the optimization problems with multiple local optima and its
simple implementation.51 In the idea of PSO, a single solution
is called a particle, and the collection of all solutions is called a
swarm. The key idea of PSO is that each particle is only aware
of its current velocity, its own best configuration accomplished
in the past (pBest), and which particle is the current global best
in the swarm (gBest). At each iteration, each particle corrects
its velocity so that its new position will be closer to its pBest
and gBest simultaneously. The following equation determines
each particle’s velocity update52

+ = × + × ×

+ × ×

v t w v t c r pBest x t

c r gBest x t

( 1) ( ) ( ( ))

( ( ))

i j i j i j i j

j i j

, , p p , ,

g g , (3)

where vi,j symbolizes the ith particle velocity in the jth
dimension; x denotes the particle’s current position; w signifies
a constant (momentum), correcting/adjusting the degree of
influence of the velocity from the previous time step on the
velocity from the current time step; cp and cg are constants; and
rp and rg are the random numbers within [0,1]. The algorithm
capability for exploitation and exploration can be adjusted by
modifying the constants cg and cp, respectively.52

Finally, the following equation is employed to update the
position of the ith particle in the jth dimension52

+ = + +x t x t v t( 1) ( ) ( 1)i j i j i j, , , (4)

Historically, the first application of PSO was to accelerate
the assessment of the transfer functions in the ANNs.54 An
ANN training process results in a minimization problem that
can be tackled by a conventional or meta-heuristic algorithm.
In a hybrid ANN-PSO model, PSO deals with the error
minimization of the ANN by assigning the optimum values for
the weights and biases of the model. Therefore, the feasible
space of the problem is dependent on the interval at which the
weights and biases vary.55 Figure 3 illustrates the schematic
algorithm of an ANN-PSO model.56

3.2. Coupled Simulated Annealing-Least Squares
Support Vector Machine. The support vector machine
(SVM) is a commonly accepted mathematical approach to
achieve a proper interrelation between the variables of a
defined mathematical problem.57 The SVM learning method,
which is based on the principle of statistical machine structure
risk minimization, can decrease the confidence range; there-
fore, it leads to a small real risk, having better generalization
ability of unknown samples. The main idea of this approach is
that solving the dual problem is achieved by solving the linear
programming problem based on the maximum distance
between the sample points and segmentation for modeling.58

The generalization theory provides an effective strategy to
control capacity and, therefore, hinders controlling the
hyperplane margin measures. Optimization theory gives the
mathematical methods which are required to find hyperplanes
optimizing these measures.59 The SVM methodology has been
usually utilized in two areas of classification and function
estimation.60,61 SVM has several applications, such as text
categorization, biosequence analysis, biological data mining,
image classification, and hand-written character recognition.59

The concepts in structural risk minimization and statistical
learning theory are the fundamentals of SVM.62 The LSSVM is
an improved version of the standard SVM algorithm.63 It is
capable of transforming quadratic program problems into
linear problems via least squares value functions and equality
constraints. It trains faster and converges more precisely.64,65

LSSVM converts the SVM linear programming problem into
constraint conditions and changes the loss function structure,
leading to a huge reduction in the computational effort.66

LSSVM employs this hyperplane to fit the location of sample
points.58

We consider a set of nonlinear sample points as follows

=T x y x y x y x R y R( , ), ( , ), ..., ( , ), ,l l i
n

i1 1 2 2
(5)

where xi is the input vector; yi symbolizes the output vector; l
indicates the number of training samples; ⌀:xi ∈ Rn → φ(xi) ∈
H; and the input vector xi is mapped into the high-dimensional
feature space. Mapping is used to linearize these sample points.
The LSSVM regression function is expressed by the following
equation58

= · +f x x b( ) ( ) (6)

where φ(x) is a nonlinear function (mapping function) that
can have different forms (e.g., linear, polynomial, and radial
basis function); and ω and b (offset value/bias) represent the
weights and determine constant coefficients in the training
process. The Kernel function transforms the nonlinear
estimation function into a linear one in H space.58

LSSVM optimization can be defined as follows58

= · +
=

R min
1
2 2

T

i

l

isvm
1

2

(7)

where γ is the regularization parameter, and ξ denotes the slack
variable or random error.67,68

The bound conditions are as follows58

= + + =y x b i l( ) ; 1,2, ...,i
T

i i (8)

In LSSVM, constraint conditions are signified by equations,
which are different from SVM optimization. The Lagrange
function is as follows58

= + { + + }
= =

L x b y1
2

( )
i

l

i
i

l

i
T

i i i
2

1

2

1
(9)

where αi is the multiplier of Lagrange.58

The constraints are in accordance with the Karush−Kuhn−
Tucker condition, as given below58
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After eliminating ω and ξ, the linear system of equations is
written below
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(11)

where y = [y1, y2, ..., yN], 1⃗ = [1, 1, ..., 1]; α = [α1, α2, ..., αN];
and I is the unit matrix.58

The Kernel function can be defined in accordance with the
Mercer’s condition as follows

= = =K x x x x i j l( , ) ( ) ( ); , 1,2, ...,ij i j i j (12)

In eq 12, K(xi,xj) is the Kernel function of SVM, which meets
the conditions of the Mercer theorem. Since eq 11 is a non-
singular equation, the values of α and b can be determined.58

These parameters can be calculated using the least squares
method.69 It means that eq 6 can be represented by the
following equation (the LSSVM regression model)58

= +
=

f x K x x b( ) ( , )
i

l

i i j
1 (13)

String Kernels are usually employed for the case of character
training samples. The Gauss Kernel functions and polynomial

Kernel functions are usually utilized for numerical training
samples. For numerical training samples, polynomial Kernel
functions have a poor learning ability compared to the Gauss
Kernel function.58 The Gauss Kernel function is commonly
employed as the Kernel function as follows

=
i
k
jjjjj

y
{
zzzzzK x x

x x
( , ) exp

( )
2i
i

2

2
(14)

where σ is the width function of the Gauss Kernel, and its size
indicates the degree of sensitivity of the LSSVM model to the
input data. In other words, smaller σ signifies the model’s
higher sensitivity to the input data changes, and larger σ
implies higher unresponsiveness to the data changes.58

Simulated annealing (SA) is the first proposed algorithm to
broaden the local search methods. Prevention from the local
optima is the key aspect of this method.70 SA was proposed by
Metropolis et al.71 and then popularized by Kirkpatrick et al.72

SA is a stochastic optimization algorithm employed for finding
the global solution in combinatorial optimization problems.73

Coupled-simulated annealing (CSA), which was proposed by
Suykens et al.,74 is an improved version of simple SA,
incorporating a series of parallel SA with greater accuracy
and convergence speed. The key drawbacks of SA are moving
toward solutions with worse quality and preventing the local
optima, which were improved in the CSA method. Therefore,
CSA can avoid the local optimum in non-convex problems and
perform with higher accuracy and acceptance probability while
sustaining the speed of convergence during the problem
optimization.75−77 The CSA algorithm is employed to calculate
the tuning parameters of γ and σ2 (regularization parameter
and the width function). Figure 4 displays the algorithm of a
CSA-LSSVM hybrid model.78

3.3. Adaptive Neuro-Fuzzy Inference System. ANFIS,
which was developed by Jang,79 is established/structured based
on the combination of the capabilities of the fuzzy inference
system (FIS) and ANN.80−82 The Sugeno fuzzy inference
approach was employed in the modeling of the neuro-fuzzy

Figure 4. Typical structure of the CSA-LSSVM model. Adapted with permission from ref 78. Copyright 2014. Published by Elsevier Ltd.
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systems.81,83 The FIS can create complicated mapping
relations based on fuzzy rules, making it suitable for
representing fuzzy knowledge and experiences.84 The role of
the fuzzy part is to group the input data into sets determined
by the membership degree, which can be any value between
zero and one.81 If-Then fuzzy rules from fuzzy sets are created
by the FIS with a suitable membership function (MF) to
reflect the human thinking nature/process; however, it is
limited to adaptive learning capabilities.80 The relationships
between inputs and outputs in a traditional ANN procedure
are established through data training and learning; however,
the ANN is not able to simulate the thinking process of the
human mind.84 In other words, even though the ANN has the
capability of adaptive learning, it is not able to explain how the
decision is made. Therefore, the ANFIS model can extract the
logical rules hidden in the data by itself.84 Applying the ANN
adaptive learning capabilities to the If-Then rules in the FIS
structure makes it a powerful tool/technique for the solution of
the complicated engineering and non-engineering problems.80

ANFIS utilizes two algorithms of post-error propagation and
the hybrid method, which is a combination of error quadratic
and descending gradient methods, to train the network, leading
to the reduction of algorithm complexity and an improvement
of network learning time.81 Figure 5 shows the schematic
structure of the ANFIS with two inputs and one output.85

The ANFIS basic rule with two inputs of x1 and x2 and one
output of y is defined as follows:86

Rule #1: if x1 is A1 and x2 is B1, then y1 = p1x1 + q1x2 + r1
Rule #2: if x1 is A2 and x2 is B2, then y2 = p2x1 + q2x2 + r2
Ai and Bi are the fuzzy set parameters of each input in the

premise part (part-if) and pi, qi, and ri are the linear parameters
in the consequent part (part-then).

ANFIS is composed of five layers, and each layer is formed
by some nodes.87

Layer #1 (Fuzzification): Each node i is an adaptive node,
where the output is described as follows81,85,86

= =O A x i( ); 1,2i i
1

1 (15)

= =O B x i( ); 3,4i i
1

2 2 (16)

Here, Oi1 is a function of the membership of Ai and μAi and μBi
introduce the membership degrees for the fuzzy set
parameters.

Layer #2 (Implication): The nodes are fixed ones, which are
labeled as Π, and they perform as a simple multiplier. The

output of each node is wi, which is the firing strength of a rule
created by incoming signals as defined below

= = =O w A x B x i( ) ( ); 1,2i i i i
2

1 2 (17)

Layer #3 (Normalization): In this layer, each node is a fixed
one, which is labeled as N. wi is the output signal of the ith
node, which is computed by the ratio of the firing strength of
rule i to the sum of the firing strength for all rules as defined
below

= =
+

=O w
w

w w
i; 1,2i i

i3

1 2 (18)

Layer #4 (Defuzzification): Each node (i) is an adaptive one
with a node function encompassing the resultant/conclusion
parameters of pi, qi, and ri; and wi refers to a normalized firing
strength from Layer #3 as follows

= = + + =O wy w px q y r i( ); 1,2i i i i i i i
4

(19)

Layer #5 (Sum/Combination): It includes a single fixed
node, which is labeled as Σ, implying it adds all the input
signals to compute the final output as described below

= = = =O y wy
wy

w
i( ) ; 1,2i

i
i i

i i i

i i

5

(20)

3.4. Gene Expression Programming. A powerful
deterministic approach, called gene expression programming
(GEP), is developed in accordance with the idea of iterative
improvement of a population of potential solutions employing
an evolutionary process, which is based on the concept of
survival of the fittest.88 GEP is employed to determine the
relationship between independent variables according to
experimental data. The fundamental of GEP is similar to the
principle of the human chromosome, wherein the predicted
and actual/experimental data exemplify the chromosomes.89

GEP is formed by the combination of GA and genetic
programming (GP).90,91 GEP is one of the most recently
introduced methods to find the best solution for nonlinear
problems, eliminating the drawbacks of GA and GP by
employing advanced regression techniques.92,93 GEP is a
genetic algorithm since it employs the individuals’ populations,
selects them in accordance with fitness, and suggests genetic
variation by utilizing one or more genetic operators. GEP is
like GP and GA; however, their major difference is in the
nature of the individuals. In GP, the individuals have a

Figure 5. Typical architecture of an ANFIS model. Adapted with permission from ref 85. Copyright 2018. Published by Elsevier Ltd.
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nonlinear nature having various shapes and sizes (parse trees);
in GA, the individuals are linear strings of fixed length
(chromosomes); and in GEP, they are encoded as linear
strings of fixed length (the chromosomes and genome), which
are thereafter structured as nonlinear entities of various shapes
and sizes.94 The key players in GEP are the chromosomes and
the expression trees (ETs). The ETs consist of the genetic
information expression encoded in the chromosomes.95 The
human gene incorporates a head (an encoded function) and a
tail (a non-encoded function). The tail typifies the variables
and constants, and the head presents the function, variables,
and constants. The GEP output is indicated in the form of a
mathematical formula in the software language (e.g., Python)
and ETs. The accuracy of the mathematical formula is
dependent on the number of genes employed in the
simulation. The genetic codes utilized in GEP are chosen on
the basis of the nature of the simulation.89 In this method,
different phenomena are modeled employing a series of
functions and terminals. The functions commonly incorporate
the main arithmetic operators (i.e., addition, subtraction,
multiplication, and division), trigonometric functions, mathe-
matical functions (e.g., exp, log, and sin), or functions defined
by the user, who believes that they could be most suitable to
efficiently represent the model. The set of terminals consists of
independent variables and constant values of the problem. In
the GEP algorithm, the head component of the gene can hold
functions and terminals, and the tail component of the gene
can only control terminals. The codes relevant to each gene
lead to the construction of a sub-ET. The sub-ETs
communicate with each other to create a more complex and
larger ET (i.e., they are connected together by a function
known as the linking function to form the complex
structure).96

In the GEP, the linear chromosomes of fixed length consist
of genes structured in a head and tail (i.e., function as
genotype) and the parse trees (ETs) (i.e., function as
phenotype), establishing a genotype-phenotype system. The
computer programs produced by GEP incorporate multiple
ETs because of the multigenic entity of the genotype-
phenotype system, allowing the evolution of more complicated
programs composed of several subprograms. The GEP model
has two languages: genetic and ET. This bilingual notation is
known as Karva. Figure 6 displays the expression trees of the
phenotype for the following equation, and Figure 7 depicts the
algorithm of a GEP system.97
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c b
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( )
( )

sin (1.7 )
(21)

4. METHODOLOGY
In this study, four different smart techniques/approaches,
which were explained in the previous section, are used to
analyze the degradation of MEA under the industrial operating
conditions of the CO2 capture process. The validation of the
models is carried out by employing the experimental data.5

The models are compared to each other based on their
accuracy of prediction. Furthermore, the parametric sensitivity
analysis is performed using the most accurate model.

4.1. Data Processing. The prediction performance of the
proposed solvent degradation requires an adequate number of
data points. The data is collected from a Ph.D. thesis
completed on the degradation of MEA. The basic step in
developing a smart model is to identify the input and output
parameters of the model. In this research, MEA initial
concentration, CO2 loading, time, and temperature are
considered the input variables, and the MEA concentration
left in the system after a certain period of time is denoted as

Figure 6. Algebraic expression tree of the phenotype for eq 21 [root node = 0; function node (branch point) = 1, 2, 3; terminal (leaf) node = 4, 5,
6, 7] (selection acts on phenotype according to the fitness). Adapted with permission from ref 97. Copyright 2017. Published by Elsevier Ltd.
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the output parameter. Thermal degradation is strongly
dependent on the temperature of the system, and it takes
place at higher extent of temperature. CO2 loading stimulates
thermal degradation, and a larger loading of CO2 was proven
to increase thermal degradation either by increasing the proton
donor availability through catalyzing the dehydration or
through the formation of more carbamate.31 Regarding the
impact of time, thermal degradation products usually increase
with time.10 Obviously, the concentration of the solvent in the
system plays a significant role in the thermal degradation of the
solvent. For instance, increasing MEA concentration un-
expectedly decreases the rate of thermal degradation.5

Considering the impact of vital parameters on the MEA
thermal degradation, the remaining MEA concentration in the
system can be presented by the following equation

=C f C L t T( , , , )f i (22)

In this equation, Cf indicates the final concentration of MEA in
m (molality); Ci denotes the initial concentration of MEA in
m; L represents the CO2 loading in a (moles of CO2/moles of
MEA); t symbolizes the time in d; and T is the system

temperature in °C. There are many studies on the amine’s
thermal degradation in the literature. The studies employed
different parameters impacting the amine’s thermal degrada-
tion. Moreover, the presented operating conditions are in very
different ranges, which could not be used for the development
of a unique smart model. The data used in this research is
collected from a Ph.D. thesis as the most extensive work done
on MEA thermal degradation. The number of data points is
fairly enough (159 data points) to develop smart techniques/
models for the prediction of the amine’s thermal degradation.
Table 1 includes the data used in this study.5

To structure the models, 85% of the data is used in the
training phase, and the remaining data is employed to test the
models (i.e., to assess the performance of the trained models).
The closeness of the R-squared value to unity and the
closeness of the error values to zero are considered the
termination criteria of the model runs.

4.2. Programming. MATLAB software is used to develop
the models of ANN-PSO, CSA-LSSVM, and ANFIS. Different
configurations of each model are employed to obtain the most
optimal results. The GEP model is constructed in the
environment of GeneXproTool5 5.0. In all models, the MEA

Figure 7. Algorithm of a GEP model. Adapted with permission from ref 97. Copyright 2017. Published by Elsevier Ltd.
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degradation is examined using the collected data and the

defined inputs.5 For the models of ANN-PSO, CSA-LSSVM,

and ANFIS, all data are normalized within the range of [−1 1]

in order to avoid numerical overflow in the program runs and

reach the desired convergence. The following equation is used

to normalize the data

=x
x x

x x
2 1i min

max min (23)

where x̂ denotes the normalized value of xi, and xmin and xmax

indicate the minimum and maximum values of the
experimental data.

4.3. Model Performance Evaluation. The statistical
parameters such as the average absolute relative error
percentage (AARE%), mean squared error (MSE), and
coefficient of determination (R2) are employed to evaluate
the accuracy and performance of the models developed in this
study. The following equations represent the abovementioned
statistical parameters98−100

Table 1. Data Used to Develop the Connectionist Models (Data Taken from ref 5)a

T = 100°C T = 120°C T = 135°C

Ci (m) a d Cf (m) Ci (m) a d Cf (m) Ci (m) a d Cf (m)

3.5 0.2 7 3.51 3.5 0.2 7 3.94 3.5 0.2 7 3.39
3.5 0.2 14 3.5 3.5 0.2 14 3.3 3.5 0.2 14 3.29
3.5 0.2 28 3.44 3.5 0.2 28 3.19 3.5 0.2 28 3.13
3.5 0.2 42 3.48 3.5 0.2 42 3.15 3.5 0.2 42 3.09
3.5 0.2 56 3.34 3.5 0.2 56 3.18 3.5 0.2 56 2.81
3.5 0.4 7 3.49 3.5 0.4 7 3.85 3.5 0.4 7 3.3
3.5 0.4 14 3.39 3.5 0.4 14 3.22 3.5 0.4 14 2.95
3.5 0.4 28 3.46 3.5 0.4 28 3.13 3.5 0.4 28 2.71
3.5 0.4 42 3.54 3.5 0.4 42 3.01 3.5 0.4 42 2.5
3.5 0.4 56 3.45 3.5 0.4 56 3.43 3.5 0.4 56 2.3
3.5 0.5 7 3.5 3.5 0.5 7 3.91 3.5 0.5 7 3.08
3.5 0.5 14 3.45 3.5 0.5 14 3.26 3.5 0.5 14 3.75
3.5 0.5 28 3.4 3.5 0.5 28 2.82 3.5 0.5 28 2.43
3.5 0.5 42 3.52 3.5 0.5 42 2.81 3.5 0.5 42 2.34
3.5 0.5 56 3.7 3.5 0.5 56 2.9 3.5 0.5 56 1.81
7 0.2 7 6.96 7 0.2 7 7.3 7 0.2 7 6.25
7 0.2 14 7.02 7 0.2 14 6.52 7 0.2 14 6.29
7 0.2 28 7.06 7 0.2 28 6.56 7 0.2 28 6.09
7 0.2 42 6.99 7 0.2 42 6.26 7 0.2 42 5.5
7 0.2 56 7 7 0.2 56 6.29 7 0.2 56 4.99
7 0.4 7 6.99 7 0.4 7 6.88 7 0.4 7 6.16
7 0.4 14 6.66 7 0.4 14 6.43 7 0.4 14 6.11
7 0.4 28 6.99 7 0.4 28 6.13 7 0.4 28 4.88
7 0.4 42 6.94 7 0.4 42 6.07 7 0.4 42 4.83
7 0.4 56 7.03 7 0.4 56 6.15 7 0.4 56 3.39
7 0.5 7 7.09 7 0.5 7 6.56 7 0.5 7 5.78
7 0.5 14 7.05 7 0.5 14 6.03 7 0.5 14 4.95
7 0.5 28 6.87 7 0.5 28 5.71 7 0.5 28 3.83
7 0.5 42 6.98 7 0.5 42 5.25 7 0.5 42 3.45
7 0.5 56 6.99 7 0.5 56 5 7 0.5 56 2.46
11 0.2 7 10.63 11 0.2 7 10.23 11 0.2 7 10.73
11 0.2 14 10.86 11 0.2 14 10.59 11 0.2 14 9.9
11 0.2 28 11.14 11 0.2 28 9.8 11 0.2 28 9.38
11 0.2 42 11.86 11 0.2 42 10.42 11 0.2 42 8.67
11 0.2 56 11.26 11 0.2 56 9.66 11 0.2 56 7.86
11 0.4 7 10.81 11 0.4 7 10.39 11 0.4 7 9.7
11 0.4 14 11.07 11 0.4 14 9.86 11 0.4 14 7.41
11 0.4 28 11.24 11 0.4 28 9.33 11 0.4 28 7.13
11 0.4 42 10.9 11 0.4 42 8.59 11 0.4 42 5.46
11 0.4 56 11.04 11 0.4 56 8.14 11 0.4 56 4.59
11 0.5 7 9.12 11 0.5 7 10.36 11 0.5 7 8.36
11 0.5 14 10.18 11 0.5 14 9.63 11 0.5 14 6.84
11 0.5 28 10.69 11 0.5 28 10.2 11 0.5 28 4.94
11 0.5 42 11.18 11 0.5 42 6.98 11 0.5 42 4.15
11 0.5 56 11.07 11 0.5 56 6.6 11 0.5 56 3.09

aCf: final concentration of MEA in m (molality); Ci: initial concentration of MEA in m; a: CO2 loading (moles of CO2/moles of MEA); d: time in
days; and T: temperature in °C.
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where xd
i and xm

i are the values of the experimental data and the
prediction; x̅ is the average value of the experimental data; and
n denotes the number of data.

5. RESULTS AND DISCUSSION
In this section, the results of each smart model are presented,
and the performance of each model is discussed through

different figures and tables. In all models, the input variables
are the MEA initial concentration, CO2 loading, time, and
temperature, and the target output is the remaining
concentration of MEA after circulation in the system. The
programs/codes for all models are written in MATLAB 2021b.
An ML model should be able to predict the model’s
performance accurately. The cost function is a critical ML
parameter to determine the degree of accuracy of the model
developed. In all programs/models, the degree of accuracy is

examined using the MSE measure. MSE is one of the most
commonly employed cost functions. It computes the square of
the difference between the predicted value and the actual value
(eq 25).

5.1. ANN-PSO Performance. In order to choose the most
optimal structure for the ANN-PSO model, different
parameters are optimized, such as constants for gBest and
pBest, number of particles, number of neurons in the hidden
layer, and number of maximum iterations. Figure 8 displays the
performance of the model for the datasets of training and
testing. The AARE % values of the model for the training and
testing phases are 6.57 and 5.33%, respectively.

5.2. CSA-LSSVM Performance. The CSA-LSSVM model
is analyzed using both the Gaussian Kernel function (radial
basis function) and the polynomial Kernel function. The

Figure 8. Performance of the ANN-PSO model: (a) training and (b)
testing.

Figure 9. Performance of the CSA-LSSVM model: (a) training and
(b) testing.

Table 2. Specifications of the ANFIS Model

parameter definition/value

number of inputs 4
number of output 1
fuzzy type Sugeno
FIS generation Grid partition
optimization method hybrid
membership function Gaussian
number of fuzzy rules 9
maximum number of epochs 300
initial step size 0.01
increase rate of step size 1.05
decrease rate of step size 0.7
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results obtained in terms of the model performance using both
mentioned approaches revealed that the training performance
of the Gaussian Kernel function is better than that of the
polynomial Kernel function. The best polynomial degree is

estimated to be three. The values of MSE for the training phase
for the cases of Gaussian Kernel function and polynomial
Kernel functions are 0.033 and 0.106, respectively. Therefore,
the CSA-LSSVM model performance is evaluated by employ-
ing the Gaussian Kernel function. The LSSVM model with the
radial Kernel function includes two critical parameters as the
tuning parameter (σ2) and the regularization parameter (γ),
where their optimal values are determined by the CSA
optimization algorithm. These two values significantly
influence the prediction accuracy of the model. The calculated
optimal values of σ2 and γ are 218.52 and 2.89 × 105,
respectively. Figure 9 illustrates the performance of the model
based on the training and testing datasets. The AARE % values
of the model for the training and testing steps are 2.38 and
6.87%, respectively.

5.3. ANFIS Performance. The developed ANFIS model
algorithm is based on the Takagi−Sugeno Fuzzy inference
system. Since the fuzzy part of the ANFIS model employs If-
Then rules and linguistic terms, the model is able to learn from
the presented data. Table 2 includes the specifications of the
developed ANFIS model. The type of MF used for the
development of the ANFIS model is Gaussian. MF as a

Figure 10. Membership functions for the input parameters of the developed ANFIS model.

Figure 11. Performance of the ANFIS model: (a) training and (b)
testing.

Table 3. Specifications of the GEP Model

parameter value

chromosome 90
gene 3
head size 11
root insertion sequence transposition 0.00546
gene transposition 0.00277
inversion rate 0.00546
insertion sequence transposition 0.00546
mutation rate 0.00138
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function represents the extent of an independent parameter
that belongs to a set. Figure 10 shows MFs of the input
parameters (independent parameters) after the training
process is carried out. Figure 11 depicts the performance of
the developed ANFIS model. The AARE % values of the
model for the training and testing phases are obtained to be
1.54 and 6.16%, respectively.

5.4. GEP Performance. There are many parameters that
influence the accuracy of the GEP model (e.g., number of
chromosomes and number of genes). Numerous efforts/runs
are made to determine the most suitable model based on the
collected data. The model accuracy increases with an increase
in the number of chromosomes and the number of genes.
There is a slight increase in the model’s accuracy if the head

Figure 12. Expression tree of the developed GEP model (d is the model variables and c is the model constant parameters).
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size is increased. The optimal values for the number of
chromosomes, number of genes, and head size are 90, 3, and
11, respectively. Table 3 includes the values of different
parameters for the most optimal GEP model (optimal

evolution). Figure 12 displays the ETs of the developed GEP
model based on the specifications, which are summarized in
Table 3.

Several runs are carried out in the software environment to
find the most suitable correlation which can properly represent
the thermal degradation phenomenon. The introduced
correlation is given below

= + + [ × × × ]

+ + + +

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ
i
k
jjjjj

y
{
zzzzz

i
k
jjj y

{
zzz

C
L S

C g T Q g

C
g

C

g
W

2
cos

cos cos
2

i

i
i

f 1 2

3 4

3
3

3

(27)

where

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjjj

y
{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
S t

g
gmax max U, , exp( )

5
63

(28)

= ×

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjjj

y
{
zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
Q L t

g
Lmax max ( ),

1
,

7 (29)

=
+Ä

Ç
ÅÅÅÅÅÅÅÅÅÅ

i
k
jjjj

y
{
zzzz

É

Ö
ÑÑÑÑÑÑÑÑÑÑ

W
g g

T Tmax max
2

, , tang4 8 9

(30)

=
+

U T( )L
C g

2
i 10

(31)

The values of the constant parameters involved in the above
correlation are provided in Table 4.

Figure 13 shows the performance of the developed GEP
model. The AARE % values of the model for the training and
testing stages are determined to be 6.37 and 6.00%,
respectively.

The results of the developed GEP model are compared with
those of the kinetics model developed by Davis.5 The values of
the R2 for the GEP model and the kinetics model are 0.96 and
0.95, respectively. It implies that the developed model has very
acceptable accuracy. Highlighting the importance of process
variables in the degradation phenomenon, the GEP model
prioritizes them, as illustrated in Figure 14.

5.5. Comparison of Developed Models. The statistical
criteria of R2 (coefficient of determination), MSE, and AARE
% are employed to evaluate the performance of the developed
models. Figure 15 depicts the performance of the ANN-PSO,
CSA-LSSVM, ANFIS, and GEP models in the training and
testing steps. Table 5 summarizes the performance of the
developed models considering the error analysis based on the
statistical criteria. It reveals that the CSA-LSSVM and ANFIS
models are more accurate predictive tools.

5.6. Parametric Sensitivity Analysis. The performance
of the ANN-PSO, CSA-LSSVM, and ANFIS models is
evaluated based on the trained models. The reliability of the
GEP model is also assessed using the correlation generated by
GeneXproTool5 5.0. The accuracy of all the models is
summarized in Table 6, revealing that the most suitable and
accurate model is ANFIS.

A sensitivity analysis is performed to determine the
relationship between the input parameters and the output/
target variable. This analysis is performed using the ANFIS
model as the most accurate model. In the context of statistics
and probability, correlation matrix theory determines the

Table 4. Values of the Constant Parameters in the GEP
Model

constant value

g1 2.8459
g2 −1.0751
g3 −2.6345
g4 1.2730
g5 5.9360
g6 5.3664
g7 −9.7546
g8 −6.5825
g9 −0.4391
g10 0.1580

Figure 13. Performance of the GEP model: (a) training and (b)
testing.

Figure 14. Importance of operating variables affecting the adverse
phenomenon of degradation predicted by the GEP model.
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degree of the linear relationship between two variables in a
multi-variable system. Various correlations can be used to
calculate the strength of the linear relationship. The Pearson
product−moment correlation coefficient, which is computed
by dividing the two variables covariance by their standard

deviation’s multiplication, is one of the best methods to
perform the correlation matrix analysis as follows98,101,102

=rx x
x x

x x
1 2

1 2

1 2 (32)

Figure 15. Performance of the models according to the training and testing phases: (a) ANN-PSO training; (b) ANN-PSO testing; (c) CSA-
LSSVM training; (d) CSA-LSSVM testing; (e) ANFIS training; (f) ANFIS testing; (g) GEP training; and (h) GEP testing.
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where rx x1 2
is the correlation coefficient; x x1 2

signifies the
covariance; x1

and x2
indicate the two variables standard

deviation; x1 and x2 denote the two variables; x1 and x2 point
out the average values of the two variables; and n represents
the number of the experimental data. The calculated value for r
falls within [−1 1], revealing the strength of the linear
relationship between the two variables. If the value of r is close
to 1, it implies a positive relationship, while the value of r close
to −1 reveals a negative relationship between the two variables.
The values close to zero indicate a weak relationship between
the proposed variables. Figure 16 depicts the results of the
sensitivity analysis of the variables involved in the MEA
thermal degradation and the degree of relationship between
the input variables and the final concentration of MEA as the
output. Based on Figure 16, the solvent initial concentration
has a strong linear relationship with the target variable as the
remaining concentration of the solvent (r-value of 0.877).
Moreover, the variables of temperature, time, and CO2 loading
have a negative relationship with the target variable, meaning
that upon an increase in these variables, the final concentration
of the solvent in the system decreases. Among these variables,
temperature has a stronger negative relationship with the target
variable. This finding agrees with the results obtained from the
GEP model as depicted in Figure 14.

In the operation of a solvent-based PCC, the cost of amine
degradation is critical, and it was reported that 10% of the
operation cost comes from solvent degradation.103 This
implies the importance of understanding amine degradation
in the performance analysis of solvent-based PCC processes.
The solvent’s capacity to absorb CO2 decreases when it
encounters undesirable degradation. The byproducts/impur-
ities of degradation should be removed from the system. They
are considered hazardous waste, and their specifications and
quantities need to be known for the proper control of the
process. The stripper energy requirement can be decreased by
increasing the pressure and solution capacity. However, these
conditions increase the risk of degradation and corrosion.
Considering the fluctuations of the operating parameters in an
actual process system, the development of a thermal
degradation model, which encompasses the operating con-
ditions outside of normal operating conditions, is required to
effectively optimize the system in terms of energy and solvent
degradation.104 Increasing temperature increases the MEA
degradation, and the pressure increase in the stripper
accelerates the MEA degradation due to increased reboiler
temperature. In a constant pressure system, a lower CO2
concentration results in a higher temperature of the reboiler,
which leads to more thermal degradation.5 An increase in MEA
concentration increases the chance of corrosion and enhances
the solution viscosity, leading to enhancement of the mass
transfer and pumping characteristics. Based on the model
developed by Davis,5 an increase in temperature increases the
thermal degradation, while an increase in amine concentration
and CO2 loading lowers the thermal degradation. According to
this study, increasing temperature and CO2 loading increases
the thermal degradation, while an increase in the MEA
concentration decreases the thermal degradation. Therefore,
there is a discrepancy between the two models with respect to
the CO2 loading. Note that the results of this study are in
agreement with the models developed by Braakhuis et al.31 and
Leónard et al.21 When a change in the CO2 loading occurs, the
CO2 partial pressure alters. Since the system is isobaric, the
temperature alters to balance/compensate for the change. It
can be concluded that decreasing pressure is an efficient
remedy since this leads to a stripper temperature reduction.
However, it adds more costs as the equivalent work of the
stripper increases. Therefore, the thermal degradation rate can
be reduced by increasing the partial pressure of CO2.
Temperature reduction in the stripper can be implemented
by utilizing a greater concentration of amine (e.g., MEA) at
higher loading.5

6. CONCLUSIONS
In this study, thermal degradation of amines in the conven-
tional solvent-based PCC process is examined. The degrada-
tion phenomenon is analyzed using hybrid smart models,
including ANN-PSO, CSA-LSSVM, and ANFIS. A correlation
is introduced using the capability of the GEP based on the
concept of maximum fitness and optimal evolution. The

Table 5. Performance of the Developed Models

model R2 (training) R2 (testing) MSE (training) MSE (testing) AARE % (training) AARE % (testing)

ANN-PSO 0.975 0.977 0.195 0.211 6.57 5.33
CSA-LSSVM 0.996 0.964 0.033 0.239 2.38 6.87
ANFIS 0.998 0.962 0.016 0.354 1.54 6.16
GEP 0.975 0.974 0.189 0.240 6.37 6.00

Table 6. Performance of the Trained Models

model R2 MSE AARE %

ANN-PSO 0.959 0.318 9.074
CSA-LSSVM 0.989 0.087 3.117
ANFIS 0.992 0.066 2.745
GEP 0.961 0.24 7.18

Figure 16. Values of correlation coefficients revealing the linear
relationship of the input variables to the output variables.
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statistical analysis shows that the ANFIS model has the highest
accuracy, with a coefficient of determination of 0.992. The
results reveal that increasing CO2 loading, time, and temper-
ature increases the thermal degradation, and an increase in
MEA initial concentration leads to a reduction in the thermal
degradation. These findings are confirmed by the ANFIS
model and the GEP correlation. The results indicate that the
solvent initial concentration and temperature are the most
influential variables affecting solvent degradation. Moreover,
the variables of time and CO2 loading have a relatively equal
impact on the degradation of the amine solvent studied in this
work. The developed models ignore the complex degradation
reactions of the solvent and can be employed to predict the
thermal degradation of any solvent in a solvent-based PCC
process. Referring to the importance of global warming, this
study can provide a suitable platform for the further analysis of
the thermal degradation mechanism of the solvents and the
development of reliable optimization models, leading to
process improvement in terms of cost, energy, and environ-
mental aspects. As a future work, the developed models can be
used for the prediction of thermal and oxidative degradation of
different solvents and comparison of their potential and
capabilities in various CO2 absorption processes. The most
suitable solvent can be then used for conventional PCC
processes toward optimal conditions and process sustainability.
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