Data in Brief 9 (2016) 1122-1129

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

A dataset of multiresolution functional brain @CmssMark
parcellations in an elderly population
with no or mild cognitive impairment

a,b,c,%

Angela Tam , Christian Dansereau ¢,

AmanPreet Badhwar “¢, Pierre Orban <, Sylvie Belleville ¢,
Howard Chertkow ?, Alain Dagher ?, Alexandru Hanganu “*,
Oury Monchi “**, Pedro Rosa-Neto *", Amir Shmuel?,

John Breitner *°, Pierre Bellec ““**, for the Alzheimer's Disease
Neuroimaging Initiative’

2 McGill University, Montreal, QC, Canada

Y Douglas Mental Health University Institute, Research Centre, Montreal, QC, Canada

€ Centre de recherche de linstitut universitaire de gériatrie de Montréal, QC, Canada

d Université de Montréal, QC, Canada

€ University of Calgary, AB, Canada
f Hotchkiss Brain Institute, Calgary, AB, Canada

ARTICLE INFO ABSTRACT

Article history: We present group eight resolutions of brain parcellations for
Received 22 September 2016 clusters generated from resting-state functional magnetic reso-
Received in revised form nance images for 99 cognitively normal elderly persons and 129

10 November 2016
Accepted 11 November 2016
Available online 18 November 2016

patients with mild cognitive impairment, pooled from four inde-
pendent datasets. This dataset was generated as part of the fol-
lowing study: Common Effects of Amnestic Mild Cognitive Impair-
ment on Resting-State Connectivity Across Four Independent Studies
(Tam et al., 2015) [1]. The brain parcellations have been registered
to both symmetric and asymmetric MNI brain templates and
generated using a method called bootstrap analysis of stable
clusters (BASC) (Bellec et al., 2010) [2]. We present two variants of
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these parcellations. One variant contains bihemisphereic parcels
(4, 6,12, 22, 33, 65, 111, and 208 total parcels across eight resolu-
tions). The second variant contains spatially connected regions of
interest (ROIs) that span only one hemisphere (10, 17, 30, 51, 77,
199, and 322 total ROIs across eight resolutions). We also present
maps illustrating functional connectivity differences between
patients and controls for four regions of interest (striatum, dorsal
prefrontal cortex, middle temporal lobe, and medial frontal cor-
tex). The brain parcels and associated statistical maps have been
publicly released as 3D volumes, available in .mnc and .nii file
formats on figshare and on Neurovault. Finally, the code used to
generate this dataset is available on Github.
© 2016 Published by Elsevier Inc. This is an open access article
under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area
More specific sub-
ject area
Type of data
How data was
acquired
Data format
Experimental
factors
Experimental
features

Data source
location
Data accessibility

Biology
Neuroscience

Images
MRI, resting-state functional MRI (Philips & Siemens 3 T scanners)

Analyzed

Pre-processing for motion-related or other artifacts, group-level statistical
analysis

We pooled resting-state fMRI data from 4 independent studies with cognitively
normal elderly subjects and patients with mild cognitive impairment to generate
1) group-level functional brain parcellations with varying numbers of parcels,
and 2) maps illustrating functional connectivity differences between patients
and controls in four parcels of interest.

Canada & The United States

Data is within this article and available online at the following sites: Figshare:
http://dx.doi.org/10.6084/m9.figshare.1480461Neurovault:http://neurovault.
org/collections/1003/Github:https://github.com/SIMEXP/mcinet

Value of the data

® These parcellations can be used as atlases for brain imaging studies in elderly populations.

e The functional clusters and t-maps we have derived can be used as target regions in hypothesis-
driven studies, especially for those interested in aging, mild cognitive impairment and dementia.

® The code can be adapted to generate similar atlases on other datasets or populations.

1. Data

This data release contains group brain parcellations at multiple resolutions (4, 6, 12, 22, 33, 65, 111,
and 208 parcels) generated from resting-state functional magnetic resonance images for 99 cogni-
tively normal elderly persons and 129 patients with mild cognitive impairment. This work also
includes parcellations that contain regions-of-interest (ROIs) that are spatially connected and span


http://dx.doi.org/10.6084/m9.figshare.1480461
http://neurovault.org/collections/1003/
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only one hemisphere at 8 resolutions (10, 17, 30, 51, 77, 137, 199, and 322 total ROIs). Labels based on
typical resting-state networks, and their decomposition into subnetworks or regions, are proposed for
all brain parcels. This release also includes unthresholded maps of connectivity differences (t-maps)
between patients and controls for four seeds/regions of interest (striatum, dorsal prefrontal cortex,
middle temporal lobe, and medial frontal cortex).

2. Experimental design, materials and methods
2.1. Participants

We pooled resting-state functional magnetic resonance imaging (fMRI) data from four indepen-
dent studies: the Alzheimer's Disease Neuroimaging Initiative 2 (ADNI2) sample, two samples from
the Centre de recherche de I'institut universitaire de gériatrie de Montréal (CRIUGMa and CRIUGMb),
and a sample from the Montreal Neurological Institute (MNI) [3]. All participants gave their written
informed consent to engage in these studies, which were approved by the research ethics board of the
respective institutions, and included consent for data sharing with collaborators as well as secondary
analysis. Ethical approval was also obtained at the site of secondary analysis (CRIUGM).

The ADNI2 data used in the preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 by the
National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the
Food and Drug Administration, private pharmaceutical companies and non-profit organizations, as a
$60 million, 5-year public-private partnership representing efforts of co-investigators from numerous
academic institutions and private corporations. ADNI was followed by ADNI-GO and ADNI-2 that
included newer techniques. Subjects included in this study were recruited by ADNI-2 from all 13 sites
that acquired resting-state fMRI on Philips scanners across North America. For up-to-date informa-
tion, see www.adni-info.org.

The final combined sample included 112 cognitively normal elderly subjects (CN) and 143 patients
with mild cognitive impairment (MCI). In the CN group, the mean age was 72.0 (s.d. 7.0) years, and
38.4% were men. Mean age of the MCI subjects was 72.7 (s.d. 7.7) years, and 50.3% were men. For
more information about recruitment or participant characteristics, please refer to Tam et al. [1].

2.2. Imaging data acquisition

All resting-state fMRI and structural scans were acquired on Philips and Siemens 3 T scanners. For
more detailed information on the imaging parameters, please refer to Tam et al. [1].

2.3. Computational environment

All experiments were performed using the Neurolmaging Analysis Kit (NIAK)'[4] version 0.12.18,
under CentOS version 6.3 with Octave” version 3.8.1 and the Minc toolkit®> version 0.3.18. Analyses
were executed in parallel on the “Guillimin” supercomputer,” using the pipeline system for Octave
and Matlab [5], version 1.0.2. The scripts used for processing can be found on Github.’

1 http://simexp.github.io/niak/.

2 https://www.gnu.org/software/octave/.

3 http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit.
4 http://www.calculquebec.ca/en/resources/compute-servers/guillimin.

5 https://github.com/SIMEXP/mcinet.
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Parcellations across multiple resolutions

33 clusters 65 clusters 111 clusters 208 clusters
Fig. 1. Functional parcellations across resolutions (or number of clusters).

a Clusters at resolution 6

Fig. 2. Clusters at resolution 6 (cerebellum not shown) and their respective regions-of-interest. Note how each cluster in (A) is
bihemispheric prior to breaking down into multiple spatially constrained regions-of-interest in (B).

2.4. Pre-processing

Each fMRI dataset underwent preprocessing as described in Tam et al. [1]. A more detailed
description of the pipeline can also be found on the NIAK website® and Github.”

2.5. Parcellation of the brain into functional clusters

After pre-processing, we generated functional brain atlases at eight resolutions with a bootstrap
analysis of stable clusters [2], containing 4, 6, 12, 22, 33, 65, 111 and 208 total parcels, as described in
Tam et al. [1]. These eight resolutions of brain parcellations (Fig. 1), registered to both symmetric and
asymmetric MNI templates, have been released on figshare® and Neurovault.® These eight resolutions
were further processed to generate eight parcellations that contain ROIs that are spatially connected

8 http://niak.simexp-lab.org/pipe_preprocessing.html.

7 https://github.com/SIMEXP/mcinet/tree/master/preprocess.
8 http://dx.doi.org/10.6084/m9.figshare.1480461.

® http://neurovault.org/collections/1003/.
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a Anterior default mode network at resolution 12
1

b subclusters of the anterior default mode network at higher resolutions
View 1

Resolution 22 Resolution 33 Resolution 65 Resolution 111 Resolution 208

Fig. 3. The decomposition of the anterior default mode network into smaller subclusters at higher resolutions in four different
views. Resolution 12 was used as a reference for the labeling of subnetworks at higher resolutions.
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Effect maps in MCI-CN of seeds and connections of interest
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Fig. 4. Maps for a selection of four seeds that show effects related to MCI at resolution 33. These effect maps reveal the spatial
distribution of the differences in functional connectivity for (A) striatum, (B) dorsal prefrontal cortex, (C) middle temporal lobe,
and (D) the medial frontal cortex. For each panel, the top line maps the spatial location of the seed region in red, the second
and third lines show the connectivity (Fisher-transformed correlation values (F(r)) between the designated seed region and the
rest of the brain in CN and MCI respectively, and the fourth line shows a difference map between MCI and CN (t-test). The
numbers in parentheses refer to the numerical IDs of the clusters in the 3D parcellation volume at resolution 33.

and span only one hemisphere (for an example, see Fig. 2). These latter parcellations contain 10, 17,
30, 51, 77, 137, 199, and 322 total ROIs.

We have provided labels for each parcel at every resolution, except for resolutions 4 and 6 due to
the merging of networks at those low resolutions. At resolution 4, we observed the sensory-motor
network, visual network, a network that resembles the endogenous network [6] and a network that
merges the cerebellum and the mesolimbic network together. At resolution 6, we observed the visual
network, cerebellum, mesolimbic network, sensory-motor network, a network that merges the deep
gray matter nuclei with the frontoparietal network, and a network that merges the default mode
network with the posterior attention network. For resolution 12, we manually labeled each parcel
(deep gray matter nuclei (DGMN), posterior default mode network (pDMN), medial temporal lobe
(mTL), ventral temporal lobe (vTL), dorsal temporal lobe (dTL), anterior default mode network
(aDMN), orbitofrontal cortex (OFC), posterior attention (pATT), cerebellum (CER), sensory-motor (SM),
visual (VIS), and frontoparietal network (FPN)). Then, we decomposed the networks at resolution 12
into smaller subclusters at all higher resolutions (for an example, see Fig. 3). Each parcel at higher
resolutions was labeled in reference to the parcels at resolution 12, with the following convention:
(resolution)_(parcel label)_(#); for example, at resolution (R) 22, the anterior default mode splits into
two clusters, which were named “R22_aDMN_1" and “R22_aDMN_2".

2.6. Derivation of functional connectomes

Between and within-clusters connectivity was measured as described in Tam et al. [1].
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2.7. Statistical testing

To test for differences between aMCI and CN at a resolution of 33 clusters, we used a general linear
model (GLM) for each connection between two parcels [7]. Specific details of the GLM can be found in
Tam et al. [1]. From this analysis, we present uncorrected t-maps illustrating functional connectivity
differences between patients and controls for four seeds/regions of interest (striatum, dorsal pre-
frontal cortex, middle temporal lobe, and medial frontal cortex) (Fig. 4). These maps have been
released on figshare and Neurovault. These four seeds were chosen for further analyses because,
together, they were associated with 47% of all significant group differences across all brain regions.
Briefly, we found that MCI patients exhibited reduced connectivity between default mode network
nodes and between areas of the cortico-striatal-thalamic loop. For a more in-depth presentation and
discussion of results, please refer to Tam et al. [1].
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